
Automatic Test Case Generation for Procedural Languages

Stefan Klikovits12, Paul Burkimsher1, Manuel Gonzalez-Berges1, and Didier
Buchs2

1 CERN, European Organization for Nuclear Research, Geneva, Switzerland
{stefan.klikovits,paul.burkimsher,manuel.gonzalez}@cern.ch

2 Université de Genève, Centre Universitaire d’Informatique, Carouge, Switzerland
didier.buchs@unige.ch

Abstract

CERN wishes to augment its test code coverage by applying dynamic symbolic exe-
cution tools to legacy code. Many of these tools available have been written for object-
oriented languages such as Java or C#. This paper describes an application of automated
test case generation to a non-object-oriented scripting language.

1 Problem description

CERN uses Supervisory Controls And Data Acquisition (SCADA) software to control its accel-
erators, experiments and installations. The chosen platform, Siemens’ Simatic WinCC Open
Architecture (WinCC OA), provides a platform for two locally written frameworks which facil-
itate the creation, operation and maintenance of the final applications.

WinCC OA offers a scripting API, programmable with the proprietary language CTRL
which has been inspired by ANSI-C. CTRL developers have historically worked without the
support of an automated unit test framework. There is currently a backlog of nearly 500,000
lines of framework code having no automated verification/validation procedures.

This not only engenders an uncertainty about code correctness, but also implies that there
is a large overhead when changing execution environments, such as operating system or WinCC
OA versions or simply installing patches. In any of these situations the code has to be manually
tested to ensure unchanged behaviour – a process absorbing significant developer time and effort.

2 Approach

Due to the size of the code base lacking automated unit tests, we decided to look into automatic
test case generation (ATCG). Once generated, a significant proportion of the code can then
be checked against previous results automatically and easily. The main disadvantage – our
tests look for changed behaviour instead of correctness – is deemed acceptable, as the target
frameworks have both reached a stable state after 13 years of continuous use and we presume
that all of the serious bugs have been already been identified.

Our initial literature research led us to dynamic symbolic execution tools such as Microsoft
Research’s Pex [6], currently regarded as the most powerful in terms of flexibility, coverage and
test suite size[2]. Pex stands out when compared with alternative products in that it supports
C#, a language that is very flexible, providing features such as operator overloading and custom
casting definitions.

To establish a mapping from CTRL to Pex, a dedicated framework has been built around
the latter tool. This system parses the original CTRL input and replaces each functions’
dependencies (e.g. global variables or function calls) with additional input parameters. This
process is known as semi-purification [4]. The resulting dependency-free routines are translated



ATCG for Procedural Languages S. Klikovits, P. Burkimsher, M. Gonzalez-Berges, D. Buchs

to C# and ATCG is run on the C# version. To fully support this, it was necessary to translate
into C# many of the CTRL standard library functions and to implement the novel CTRL data
types therein.

The generated values for the additional parameters are used to specify software mocks[5]
for the test case execution.

3 Results

Preliminary results show that the above approach is suited to achieve high code (line) coverage.
Pex works well in this regard but we identified certain caveats. Firstly, producing “sensible”
input data seems to be a difficult task for the generation tool (Pex). In our case we would like
to, for example, produce a list of strings with certain format. Although Pex is capable of doing
this, the processing time increases dramatically as a result.

We further applied mutation analysis[3, 1], although the results have not been satisfying
so far. An initial evaluation showed that Pex produces the smallest set of inputs to cover the
largest number of execution paths without taking boundary values or mutation considerations
into account.

4 Future

We are currently in the process of evaluating whether writing our own, domain (CTRL language)
specific test case generation tool would be beneficial or feasible.

We further aim to generalise our framework to facilitate ATCG for other C-like languages.

References

[1] Hiralal Agrawal, Richard A. DeMillo, Bob Hathaway, William Hsu, Wynne Hsu, E.W. Krauser,
R.J. Martin, Aditya P. Mathur, and Eugene Spafford. Design of Mutant Operators for the C
Programming Language. Technical report, Purdue University, March 1989.

[2] Lajos Cseppentő. Comparison of Symbolic Execution Based Test Generation Tools. BSc. Thesis,
Budapest University of Technology and Economics, Budapest, 2013.

[3] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, 11(4):34–41, 1978.

[4] Stefan Klikovits, David P. Y. Lawrence, Manuel Gonzalez-Berges, and Didier Buchs. Considering
execution environment resilience: A white-box approach. In Software Engineering for Resilient
Systems - 7th International Workshop, SERENE 2015, Paris, France, September 7-8, 2015. Pro-
ceedings, pages 46–61, 2015.

[5] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code, chapter 23. Test Double Patterns,
pages 521–590. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[6] Microsoft Research. Pex, Automated White box Testing for .NET. http://research.microsoft.

com/en-us/projects/pex/.

2

http://research.microsoft.com/en-us/projects/pex/
http://research.microsoft.com/en-us/projects/pex/

	Problem description
	Approach
	Results
	Future

