Path Testing

Mohammad Mousavi

Halmstad University, Sweden

http://ceres.hh.se/mediawiki/DT8021_Ed_2015

Testing and Verification of Embedded Systems (DT8021), March 30, 2015

Functional Testing: Pros and Cons

Pros:

- Straightforward test-case generation
- Based on specification (early test-case generation)

Cons:

- ▶ No use of program information
- Gaps and redundancies

Structural Testing

Idea

- ► Derive structural abstractions from programs Example: flow graphs
- ▶ Use them to measure the adequacy of the test-set

Structural Testing (Example from the 1st Lecture)

```
Spec.: input: an integer x [1..2<sup>16</sup>]
output: x incremented by two, if x is less than 50,
x decremented by one, if x is greater than 50, and
50. otherwise.
```

```
if x < 50 then
  x = x + 2:
end if
if x > 50 then
  x = x - 1:
end if
return x
```

Structural Testing

$$\begin{aligned} &\text{if } x < 50 \text{ then} \\ & x = x + 2; \\ &\text{end if} \\ &\text{if } x > 50 \text{ then} \\ & x = x - 1; \\ &\text{end if} \\ &\text{return } x \end{aligned}$$

Adequacy criterion: test until all statements are at least executed once (subject of today's lecture: DD-path coverage).

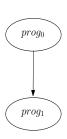
Input	Output	Pass/Fail
3222	3221	Р
30	32	Р

Flow Graphs

- Nodes: program statements
- ▶ Edges: $p \rightarrow q$ iff q may execute immediately after p

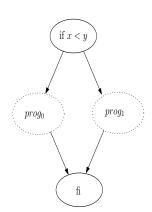
Flow Graph for simple statements

Sequential composition: $prog_0$; $prog_1$,



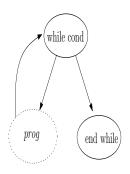
Flow Graph for simple statements

- Sequential composition: $prog_0$; $prog_1$,
- Conditional: if (cond) then prog₀ else prog₁ fi,



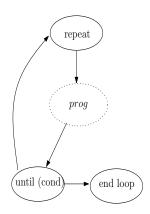
Flow Graph for simple statements

- Sequential composition: $prog_0$; $prog_1$,
- Conditional: if (cond) then $prog_0$ else $prog_1$ fi,
- ► While loop: while(cond)do prog endwhile,



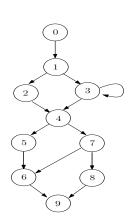
Flow Graph for simple statements

- Sequential composition: $prog_0$; $prog_1$, Conditional:
- if (cond) then $prog_0$ else $prog_1$ fi,
- While loop: while(cond)do prog endwhile,
- Repeat-until loop: repeat prog until(cond),



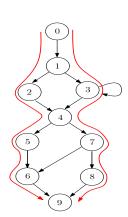
The test-set covers, in the flow graph,

1. all nodes (statement coverage)



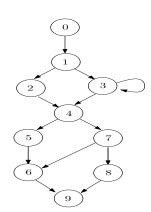
The test-set covers, in the flow graph,

1. all nodes (statement coverage)



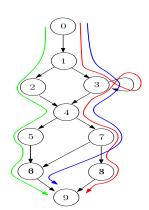
The test-set covers, in the flow graph,

- 1. all nodes (statement coverage)
- 2. all edges (DD-path coverage)



The test-set covers, in the flow graph,

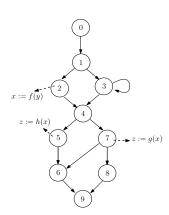
- 1. all nodes (statement coverage)
- 2. all edges (DD-path coverage)



Test Adequacy Criteria

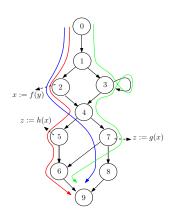
The test-set covers, in the flow graph,

- 1. all nodes (statement coverage)
- 2. all edges (DD-path coverage)
- 3. all prime paths (single-loop coverage)
- all edges + all combinations of data-flow dependent edges (dependent pairs coverage: next lecture)



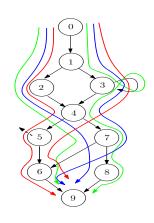
The test-set covers, in the flow graph,

- 1. all nodes (statement coverage)
- 2. all edges (DD-path coverage)
- 3. all prime paths (single-loop coverage)
- 4. all edges + all combinations of data-flow dependent edges (dependent pairs coverage)



The test-set covers, in the flow graph,

- 1. all nodes (statement coverage)
- 2. all edges (DD-path coverage)
- all prime paths (single-loop coverage)
- all edges + all combinations of data-flow dependent edges (dependent pairs coverage)
- all edges + all combinations of condition edges (multiple-condition coverage)
- 6. all paths (full path coverage)



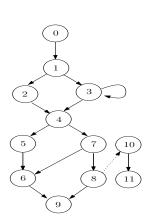
Finite Feasibility

An adequacy criteria should be satisfiable by some finite test-set.

Question: Which of the aforementioned criteria are finitely feasible?

Finite Feasibility

An adequacy criteria should be satisfiable by some finite test-set.



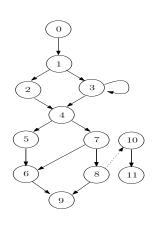
Finite Feasibility

An adequacy criteria should be satisfiable by some finite test-set.

Solution: Adding feasibility:

- 1. all reachable nodes (feasible statement coverage)
- 2. all reachable edges (feasible DD-path coverage)
- 3. all reachable ...

Problem solved? No, checking reachability is undecidable in general!



Chain: Definition

A chain n_0, \ldots, n_i , with $0 \le i$, is a list of nodes s.t.

- 1. $n_i \rightarrow n_{i+1}$ for each j < i,
- 2. $indeg(n_j) = outdeg(n_j) = 1$, for each $0 \le j \le i$,

A chain n_0, \ldots, n_i is maximal when neither n', n_0, \ldots, n_i nor n_0, \ldots, n_i, n' (for any n') are chains. Each node is a member of at most one maximal chain.

DD-Path: Definition

A DD-Path is a set of nodes satisfying one of the following:

Flow Graphs

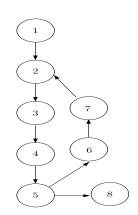
- 1. $\{n\}$ s.t. indeg(n) = 0 (staring node) or outdeg(n) = 0 (terminal node),
- 2. $\{n\}$ s.t. $outdeg(n) \ge 2$ or $indeg(n) \ge 2$ (branch or merge nodes)
- 3. $\{n_0, \ldots, n_i\}$ with $i \ge 0$ s.t. $n_0 \to \ldots \to n_i$ is a maximal chain

Property: each node belongs to precisely one DD-path

DD-Path: Simplified Definition

A DD-Path is a set of nodes satisfying one of the following:

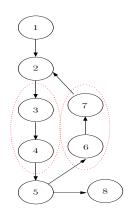
- 1. $\{n\}$ s.t. $indeg(n) \neq 1$ or $outdeg(n) \neq 1$,
- 2. $\{n_0, \ldots, n_i\}$ with $i \ge 0$ s.t. $n_0 \to \ldots \to n_i$ is a maximal chain



DD-Path: Simplified Definition

A DD-Path is a set of nodes satisfying one of the following:

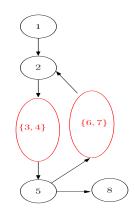
- 1. $\{n\}$ s.t. $indeg(n) \neq 1$ or outdeg(n) \neq 1,
- 2. $\{n_0, ..., n_i\}$ with $i \ge 0$ s.t. $indeg(n_i) = outdeg(n_i) = 1$ and $n_0 \rightarrow \ldots \rightarrow n_i$ is a maximal chain



DD-Path Graph

In a DD-Path graph:

- 1. nodes: DD-Paths as
- 2. edges: $\{n_i \mid i \in I\} \to \{m_i \mid j \in J\}$ when $\exists_{i'\in I, j'\in J}$ s.t. $n_{i'} \rightarrow m_{i'}$.

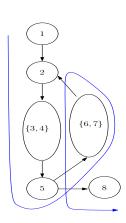


DD-Path Coverage

A test-set is adequate when for each node or edge in the DD-path graph, there exists a test-case covering it.

This is equivalent to edge coverage, but requires less checks.

This subsumes node coverage.



DD-Path Testing: Complete?

```
\label{eq:continuous} \begin{split} & \textbf{if } \times < 50 \textbf{ then} \\ & \times = \times + 2; \\ & \textbf{end if} \\ & \textbf{if } \times > 50 \textbf{ then} \\ & \times = \times - 1; \\ & \textbf{end if} \\ & \text{return } \times \end{split}
```

Input	Output	Pass/Fail
3222	3221	Р
30	32	Р
49	51	F
50	50	Р

DD-Path: Complete?

Solutions:

- 1. Use stronger adequacy criteria: prime paths, dependent pairs testing, multiple condition coverage testing
- 2. Problems: more test-sets; even sometimes: not that many more faults detected
- 3. Use more switch statements instead of sequential conditions.

DD-Path Testing

Pros:

- 1. DD-paths instead of statements: more efficient coverage measuring
- 2. DD-paths coverage: a practical measure of test adequacy
- 3. implemented in many tools

Cons.

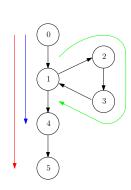
- 1. infeasible paths must be tested!
- 2. some important paths left untested
- no test-case generation technique
- 4. main reason: ignoring specification and data-dependencies: dependent pairs testing (see the next lecture)

Simple Path: Definition

A simple path n_0, \ldots, n_t , with $0 \le t$, is a list of nodes s.t.

- 1. $n_i \rightarrow n_{i+1}$ for each j < t,
- 2. for each $0 \le i < j \le i$, $n_i \ne n_j$ or $(n_i = n_0 \text{ and } n_j = n_t)$

Informally: a simple path visits a node at most once, except that the start and the ending node may be the same.

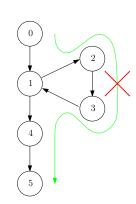


Simple Path: Definition

A simple path n_0, \ldots, n_i , with $0 \le i$, is a list of nodes s.t.

- 1. $n_i \rightarrow n_{i+1}$ for each j < i,
- 2. for each $0 < i < j \le i$, $n_i \ne n_j$

Informally: a simple path visits a node at most once, except that the start and the ending node may be the same.

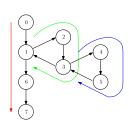


Prime Path: Definition

A prime path is:

- a simple path that
- does not appear as a proper sub-path of any other simple path.

Informally: a prime path is a complete path from start to end, or a complete and simple iteration of a loop (infeasibility issue set aside)

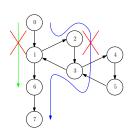


Prime Path: Definition

A prime path is:

- a simple path that
- does not appear as a proper sub-path of any other simple path.

Informally: a prime path is a complete path from start to end, or a complete and simple iteration of a loop

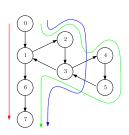


Prime Path Coverage

A test set is adequate if for each prime path, there is a test case covering it (as a sub-path).

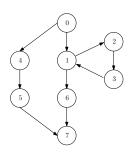
Informally: all complete simple paths and up to one iteration of each loop

Variants with tours, detours and side-trips



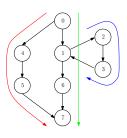
Prime Path Coverage: Exercise

Propose a set of test cases that is adequate for prime path coverage.



Prime Path Coverage: Solution

Prime paths



Prime Path Coverage: Solution

Prime paths

