
Generation of Failure Models through Automata Learning

[Position Paper]

Sebastian Kunze, Wojciech Mostowski, Mohammad Reza Mousavi, Mahsa Varshosaz
Centre for Research on Embedded Systems, Halmstad University, Sweden

{sebastian.kunze,wojciech.mostowski,m.r.mousavi,mahsa.varshosaz}@hh.se

ABSTRACT
In the context of the AUTO-CAAS project that deals with
model-based testing techniques applied in the automotive
domain, we present the preliminary ideas and results of
building generalised failure models for non-conformant soft-
ware components. These models are a necessary building
block for our upcoming efforts to detect and analyse failure
causes in automotive software built with AUTOSAR com-
ponents. Concretely, we discuss how to build these gen-
eralised failure models using automata learning techniques
applied to a guided model-based testing procedure of a fail-
ing component. We illustrate our preliminary findings and
experiments on a simple integer queue implemented in the
C programming language.

Keywords
model-based testing; automatic test generation; automata
learning; failure model; AUTOSAR standard

1. INTRODUCTION
Establishing the severity of a failed test case and predict-

ing its possible consequences is a challenge in test processes.
Very often failed test cases are dismissed on the basis that
they concern only singular corner cases and will not lead to
any further catastrophic failures. This problem is intensified
in the context of model-based testing, where it is more dif-
ficult to relate the generated test-cases to the requirements.
We have observed this problem in the context of our indus-
trial collaboration in the AUTO-CAAS project [4], where
our aim is to provide effective consequence analysis meth-
ods in the context of AUTOSAR software.

Our solution to the problem above is to come up with
generalised failure models. Such models start from a single
failing test case and produce a model which specifies under
what other circumstances (e.g., other interaction scenarios
with possibly different parameters), a similar failure can be
observed. To this end, we build a wrapper around the model-
based testing tool QuickCheck [3] that by using automata-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WASA ’16 , April 4, 2016, Venice, Italy
c© 2016 ACM. ISBN xxx-xxxx-xx-xxx/xx/xx. . . $15.00

DOI: xx.xxx/xxx x

learning algorithms turns failing test cases into generalised
failure models. We currently have an prototype implemen-
tation of our approach to experiment with different methods
to come up with succinct generalised failure models that are
accessible for automotive software engineers.

The rest of this paper is organised as follows. Section 2
describes the main ideas behind model-based testing as im-
plemented in QuickCheck, Sect. 3 elaborates on our method
for failure model generation using automata learning, Sect. 4
discusses primary experiments with our prototype wrapper
around QuickCheck, and finally Sect. 5 concludes the paper
with a short discussion.

2. MODEL-BASED TESTING WITH
QUICKCHECK

The scenario and particular set up that we focus in our
work is testing of the AUTOSAR components [6] using the
QuickCheck [3] model-based testing tool and AUTOSAR
models developed by QuviQ.1 For the purpose of this paper
we abstract from AUTOSAR, as we have not yet performed
any substantial experiments on the actual AUTOSAR com-
ponents; this is part of our upcoming work. However, we
do use the QuickCheck tool and its model-based testing
methodology, adapting it to our needs.

QuickCheck models are symbolic state-full specifications
of a behaviour of the underlying implementation expressed
in the functional language Erlang [7]. Typically, this spec-
ification declares the model state of the underlying imple-
mentation and symbolic inputs, and describes the valid pro-
tocol of calling operations (functions, procedures, or meth-
ods, depending on the nomenclature of the implementation
language) using preconditions for every declared operation.
A precondition establishes if a given operation with its pa-
rameters is permitted under the current model state of the
system, i.e., preconditions place operations in the call proto-
col sequence. Additionally, each operation can be annotated
with a postcondition, i.e., a property that should be satisfied
after the corresponding operation is completed. Hence the
resulting testing method is called property based testing.

The QuickCheck testing method works by walking the
model and randomly generating (a) sequences of operations
to be called on the implementation under test and selecting
those that satisfy the requirements of the specified call pro-
tocol, i.e., preconditions, and (b) concrete input parameters
to these operations following the data generators specified
in the model. The generated test sequence is run against the

1http://www.quviq.com.

xx.xxx/xxx_x
http://www.quviq.com

implementation under test, and after each completed oper-
ation the postcondition specified in the model is checked.
When it fails, a counter example comprising of the sequence
of operations and their parameters executed so far and the
failing property is reported to the user. Then QuickCheck
applies its flagship procedure of shrinking the counter exam-
ple to get a minimal failing test case. This works by recur-
sive application of the shrinking procedure starting from the
sequence of executed operations down to single data values
for each operation involved. Each intermediate step applies
the shrunk candidate test case to the implementation to es-
tablish the persistence of the fault under shrinking. The
procedure stops when the discovered fault stops manifest-
ing itself under subsequent shrinking steps. The suitable
shrinking strategy is an inherent feature of each data gener-
ator used in the model, and each such strategy and can be
modified to further guide the shrinking mechanism.

By providing suitable bridging mechanisms, QuickCheck
can relate to implementations in several programming lan-
guages, in particular system and library implementations in
the C programming language.

Example 1. Figure 1 shows a fragment of a QuickCheck
model of a FIFO queue of integers. The state of the model
keeps the pointer ptr to the underlying queue C structure,
the size of the queue, as well as the model contents of the
queue – a list of elements currently stored in the queue.
The put operation refers the model to the C implementa-
tion q:put of the queue passing the pointer Ptr and value
Val parameters. The remaining put * model functions de-
fine the intended behaviour and constraints of the put op-
eration. The arguments function put args defines the argu-
ments to be used with put – the pointer currently stored
in the model state, and a randomly generated integer. The
latter is expressed with a data generator int(), which pro-
vides random generation and shrinking facilities for integer
parameter types. The precondition put pre specifies that
put can only be called on already initialised queues (with a
new operation not quoted here) that are also not full. The
postcondition put post checks that the return value of put
is equal to its parameter, and finally, the put next function
defines how the state of the model changes after the oper-
ation. Other queue operations are declared in the similar
fashion, after which a test property prop q is defined that is
responsible for generating model conforming test cases and
reporting the (possibly failing) test results.

3. GUIDED TEST PROCEDURE FOR
FAILURE MODEL CONSTRUCTION

In earlier work, automata learning has been investigated
for the purpose of building correct QuickCheck models of
complex implementations, see e.g. [5]. Our practical goal
for this paper is to build a formal description of a failure
detected by QuickCheck in the implementation under test
in a form of a model, i.e., a specification rather than just
one counter example. This model consists of an automaton
formalising the execution paths leading to a failure, and the
property that failed to verify after the last operation on the
given execution path, essentially the failing postcondition of
the last operation. Given an implementation that is known
to have a failure from an earlier test run, the failure model
is built automatically by bridging automata learning to a

−record(state, {ptr, size, elements}).
initial state() −> #state{ elements=[] }.
. . .
put(Ptr, Val) −> q:put(Ptr, Val).
put args(S) −> [S#state.ptr, int()].
put pre(S, [P, E]) −>
S#state.ptr /= undefined andalso
length(S#state.elements) < S#state.size.

put post(S, [P, E], R) −> R == E.
put next(S, R, [P, E]) −>
S#state{ elements = S#state.elements ++ [E] }.

. . .
prop q() −> ?FORALL(Cmds, commands(?MODULE),

begin
{H, S, Res} = run commands(?MODULE, Cmds),
collect(S, pretty commands(?MODULE, Cmds,
{H, S, Res}, Res == ok))

end).

Figure 1: Specification of the queue of integers put
operation in QuickCheck.

refined and guided test procedure applied by QuickCheck to
this failing implementation. More precisely, the original test
procedure of QuickCheck is adapted so that (a) the input al-
phabet of the operations under test is suitably abstracted to
support the learning procedure, (b) the test cases used in the
learning process are similar to each other to reduce learning
noise and consequently keep the resulting model small, and
(c) test results reported by QuickCheck are adapted so that
the behaviour of one particular failure can be determined.
Our learning procedure requires a user supplied configura-
tion with implementation specific information to guide the
process, hence certain a priori knowledge about the imple-
mentation under test is required. We elaborate on these
points in the remainder of this section.

3.1 Automata Learning with LearnLib
The automata learning framework we have chosen for our

work is the LearnLib platform2 [8] developed at TU Dort-
mund. The main reason for choosing this platform is the
fully functional and flexible implementation in Java, as well
as earlier very successful results of applying LearnLib to
non-trivial, realistic implementations [2, 1]. Additionally,
an easy to use visualisation interface is available in Learn-
Lib making it an ideal tool for experimentation.

LearnLib provides several different learning (inference) al-
gorithms for several different kinds of automata. For our
work we use Mealy machines, i.e., deterministic finite state
machines with input and output labelled transitions. With
its set of inputs, the generated machine characterises the
operation sequences leading to one distinguished state rep-
resenting the failure. The outputs of the machine are es-
sentially the status of conformance to the model, with the
failure status always leading to the failure state.

The basic learning setup consists of a learner, in our case
the failure model learning module, and the teacher, in our
case the adapted system under test. The inference proceeds
by the learner invoking membership queries on the teacher
and building a hypothesised state machine H that reflects
the behaviour of the system under learning. Membership

2http://learnlib.de.

http://learnlib.de

queries are simply operations and their parameters to be
invoked on the system under learning, and responses to these
queries are the output results of the operations. We do not
report the actual operation results to the learner, but the
state of the test after the given operation, i.e., whether the
given operation is permitted according to the model, and if
so whether it caused any failures in the implementation. The
inference procedure is finished once the hypothetical Mealy
machine H becomes stable3 and H becomes the resulting
model of the failure in the system under learning.

3.2 Input Data Abstraction
The automata inference algorithms work efficiently only

when the language alphabet is relatively small. This is
clearly not the case for automotive software systems with
several operations that can take parameters from a large do-
main. Hence, abstraction of the concrete input and output
data is required to keep the automata language small and
the learning process feasible. This abstraction is done by
mediating between the learner and the system under learn-
ing, i.e., the teacher. The learner uses a possibly small set
of abstract parameters that are made concrete by the medi-
ator for each abstract set. The mediator in our case is the
adapted QuickCheck testing procedure, which chooses suit-
able representatives for the abstract domains of operation
parameters.

An additional aspect that we need to take into account
during input parameter mediation is to make the subsequent
test cases similar to each other, so that our hypothetical
model H does not diverge and stabilises quickly. This is
best explained with the following example.

Example 2. Consider the new operation of the queue that
takes an integer parameter size and initialises a new queue
accordingly. Two queues of different sizes will give rise to
two different Mealy machines, each one having essentially
the number of states equal to the size of the queue. If we
allow the queue to be initialised with random sizes in each
new operation trace during the inference procedure, the pro-
cess will either not terminate within reasonable time, or it
will produce a very complicated model that attempts to for-
malise queues of different sizes in one Mealy machine. Thus,
it is better to use a fixed parameter for all new operations in
one learning process, either by fixing the parameter value a
priori, or by consistently reusing one that has been chosen
by the test generator for the first use of new.

This gives rise to the following two methods of parameter
mediation between the learner and system under test. The
first method is to simply allow the user to fix the param-
eters of selected operations to constant values and bypass
the data generation mechanism of QuickCheck that would
be used otherwise. For our queue example, we would fix the
parameter to the new operation, e.g., to size 3, and allow the
test procedure to use randomly generated parameters for the
put operation. These would not influence the shape of the
resulting model which only reflects the number of elements
stored and not the value of elements in its state space.

3In an ideal situation the teacher knows the actual state ma-
chineM that is being inferred by the learner, in which case
part of the process is to probe the teacher with an equiva-
lence query M = H. Our teacher, however, is a black-box
system, and this equivalence can be only established based
on statistical stabilisation of H under subsequent queries.

The second method generalises the first one. Instead of
fixing the parameters we allow the test procedure to decide
which parameters should be fixed after the first use. This
is done by defining an oracle that traces the changes in the
model state of the implementation under test and decides
whether the state change incurred by the given operation
requires fixing the operation parameter for subsequent calls
to the same operation. In particular, on its first occurrence
the new operation would update the size field of the model
state of the queue. The oracle would detect this change
in the model state, by seeing that the size field is changed
from one value to another, and save the parameter used with
the operation that triggered this change. In other words,
our oracle divides operations and their parameters to ones
that cause meaningful and meaningless changes of the model
state for the purpose of learning a concise failure model.

Both methods of parameter mediation require a priori
knowledge about the system under test. This is inevitable
to facilitate efficient model inference and also the readability
of the result. On the practical side, the user has to prepare a
suitable configuration for the adapted QuickCheck test gen-
eration procedure to guide the learning process. This test
configuration can include an association of fixed parame-
ters to particular operations, or an oracle function described
above to compare subsequent model states, or a mixture of
both. We show a brief example of this in Sect. 4.

3.3 Adapting Test Results for Learning
Similarly to the input parameters, the outputs of the op-

erations invoked on the concrete implementation during in-
ference have to be abstracted too. The first obvious reason
is to narrow down the language alphabet of the model under
construction. More importantly, however, the outputs have
to be adapted so that the constructed model represents the
fault in the system that we try to formalise. To this end, we
ignore the actual operation results (e.g., the concrete value
that a get queue operation returns), and concentrate on the
current state of the model and the current status of the test
suite executed on the implementation.

More precisely, we report the following outputs to the
learner. If an operation is not permitted by the model ac-
cording to a precondition, we report notrace result to inform
the learner that the given operation is not in the scope of the
model. Otherwise, operations permitted by the model can
result in two values. We report the value ok if the operation
does not cause any test failure, or we report fail otherwise.
Since we are interested in scenarios leading to a failure, and
not ones after the failure has occurred, all subsequent op-
erations after a failure return notrace to signal no further
need to probe the system. The resulting Mealy machine has
several states representing the behaviour of the implemen-
tation up to the failure, and then one special failure state
F to which the failing operation from selected normal state
leads. To improve readability we project out all the notrace
transitions from the resulting failure model.

4. EXPERIMENTS
We have implemented a prototype of our failure model

generator following what we presented in Sect. 3. Our tool
is a wrapper around QuickCheck that adds facilities to de-
fine test configurations (operation parameter fixing and state
change tracing oracles, see Sect. 3.2), mediate operation in-
puts and outputs, and communicate with LearnLib through

tconf1() −> eqc learn fault:init learn(q eqc, [{new, [3]}]).

cmp state(OS, NS) −> OS#state.size /= NS#state.size.
tconf2() −> eqc learn fault:init learn(q eqc, [],

fun(OS, NS) −> cmp state(OS, NS) end).

Figure 2: Two kinds of configurations for learning
the fault in the queue implementation.

S 1 2 3 4

F

new/ok
put/ok

get/ok

put/ok

get/ok

put/ok

get/ok
size/oksize/fail

size/fail size/fail

Figure 3: Failure model of the queue of size 3.

a socket. For experimentation we used the FIFO queue of
integers that is used as a standard QuickCheck tutoring ex-
ample. The queue implementation contains two subtle bugs
that cause the space function reporting available space in
the queue to return incorrect results.

Example 3. Figure 2 shows a snapshot of two configura-
tion definitions for learning the faulty queue behaviour, the
first one fixes the size parameter of new to 3, the second
one uses an oracle function detecting a change of size in the
queue model to fix the parameter to be used with new. Fig. 3
shows the result of learning the fault in the queue with the
first configuration, while Fig. 4 is the result of using the sec-
ond configuration where the first instance of calling new has
been randomly chosen to use 2 for the queue size, which was
subsequently reused during the inference process.

In both cases it is clear that the space operation is not
behaving according to the specification. The failure model
in Fig. 3 shows that space only gives a correct result on a
full queue. In Fig. 4, however, despite a smaller queue size
chosen by the generator, the space operation shows seem-
ingly more unpredictable behaviour. Its correct behaviour
depends on the interleaving of earlier put and get operations.
The underlying problem in the implementation is actually
due to the input and output pointers to a circular array
and size working incorrectly when one pointer “overtakes”
the other. From both figures we can also conclude that the
parity of the queue size plays a role in the detected failure.

5. DISCUSSION AND CONCLUSIONS
We have presented preliminary ideas for using automata

learning to generate models of failing or non-conformant
behaviour of software components. In the AUTO-CAAS
project, we will use these models to match and find a com-
ponent contributing to a failure in a larger system. So far
we have concentrated only on mediating the inputs and out-
puts between the learner and the system under test to enable
creation of concise and readable models. At this stage our
failure models are still quite limited. First, they only show
the failure for one particular configuration of the underlying
implementation (in our examples, a queue of a fixed size).
As our experiments show, different configurations can show

S 1 2 3

4 5 6F

new/ok put/ok put/ok

put/ok put/ok

get/okget/ok get/okget/ok

size/ok size/ok

size/ok

size/fail

size/fail

size/fail

Figure 4: Failure model of the queue of size 2.

varying failure characteristics of the same implementation
defect. Second, our generated model only shows which op-
eration exhibits the failure, but not exactly how. For our
example, we know that the size operation returns the wrong
value, but not how this actual value generally relates to the
expected one.

More generally, our method does not yet indicate if the
generated models show the failure caused by one or several
defects in the implementation. If it is several defects, then
the question is how can we separate them in our method.
For now, our first approximation is that we associate a defect
with the failing operation, in our example the size function.

In the course of our upcoming work we will be address-
ing all these issues, and also we will apply our methods on
more realistic examples in the automotive domain using the
AUTOSAR software components.

Acknowledgements
Our work is supported by the Swedish Knowledge Founda-
tion grant for the AUTO-CAAS project and by the Swedish
Research Council grant for the project on Effective Model-
Based Testing of Concurrent Systems (EFFEMBAC).

6. REFERENCES
[1] F. Aarts, J. D. Ruiter, and E. Poll. Formal models of

bank cards for free. In Software Testing Verification and
Validation Workshop. IEEE Computer Society, 2013.

[2] F. Aarts, J. Schmaltz, and F. Vaandrager. Inference
and abstraction of the biometric passport. In
Proceedings of ISoLA 2010. Springer, 2010.

[3] T. Arts, J. Hughes, J. Johansson, and U. Wiger.
Testing telecoms software with QuviQ QuickCheck. In
Proceedings of ERLANG’06. ACM, 2006.

[4] T. Arts and M. Mousavi. Automatic consequence
analysis of automotive standards (AUTO-CAAS). In
First International Workshop on Automotive Software
Architectures (WASA 2015). ACM Press, 2015.

[5] T. Arts, P. Seijas, and S. Thompson. Extracting
QuickCheck specifications from EUnit test cases. In
Proceedings of the 10th ACM SIGPLAN workshop on
Erlang. ACM, 2011.

[6] AUTOSAR BSW and RE Conformance Test
Specification, Release 4.0, Revision 2, 2011.

[7] F. Cesarini and S. Thompson. Erlang Programming.
O’Reilly, 2009.

[8] M. Merten, B. Steffen, F. Howar, and T. Margaria.
Next generation LearnLib. In Proceedings of TACAS
2011. Springer, 2011.

	Introduction
	Model-Based Testing with QuickCheck
	Guided Test Procedure for Failure Model Construction
	Automata Learning with LearnLib
	Input Data Abstraction
	Adapting Test Results for Learning

	Experiments
	Discussion and Conclusions
	References

