
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 9

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering

Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

:-)

It is possible to get by if we concentrate on programs of a
restricted form.

Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

:-)

It is possible to get by if we concentrate on programs of a
restricted form.

Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

:-)

It is possible to get by if we concentrate on programs of a
restricted form.

Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

:-)

It is possible to get by if we concentrate on programs of a
restricted form.

Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

:-)

It is possible to get by if we concentrate on programs of a
restricted form.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Initial restricted model

STARTUP

Ports

Ports

Objn

Obj1

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Notation

CiCi

Ti (=Di)Ti (=Di)

Each reactive object obji executes a message (thread/task/job) mi

in a periodic fashion.

For each message mi

I We know its period Ti (given, determines the AFTER offset)

I We know its WCET Ci (meassured or analyzed)

I We know its relative deadline Di (given, equal to Ti for now)

We want to determine its priority Pi!

Notation

CiCi

Ti (=Di)Ti (=Di)

Each reactive object obji executes a message (thread/task/job) mi

in a periodic fashion.

For each message mi

I We know its period Ti (given, determines the AFTER offset)

I We know its WCET Ci (meassured or analyzed)

I We know its relative deadline Di (given, equal to Ti for now)

We want to determine its priority Pi!

Notation

CiCi

Ti (=Di)Ti (=Di)

Each reactive object obji executes a message (thread/task/job) mi

in a periodic fashion.

For each message mi

I We know its period Ti (given, determines the AFTER offset)

I We know its WCET Ci (meassured or analyzed)

I We know its relative deadline Di (given, equal to Ti for now)

We want to determine its priority Pi!

Notation

CiCi

Ti (=Di)Ti (=Di)

Each reactive object obji executes a message (thread/task/job) mi

in a periodic fashion.

For each message mi

I We know its period Ti (given, determines the AFTER offset)

I We know its WCET Ci (meassured or analyzed)

I We know its relative deadline Di (given, equal to Ti for now)

We want to determine its priority Pi!

Notation

CiCi

Ti (=Di)Ti (=Di)

Each reactive object obji executes a message (thread/task/job) mi

in a periodic fashion.

For each message mi

I We know its period Ti (given, determines the AFTER offset)

I We know its WCET Ci (meassured or analyzed)

I We know its relative deadline Di (given, equal to Ti for now)

We want to determine its priority Pi!

In concrete code

The application

int ignite(APP * self, int nothing){
BEFORE(D1, &obj1, m1, arg1);

BEFORE(D2, &obj2, m2, arg2);
...

BEFORE(Dn, &objn, mn, argn);

}

int main(){ return TINYTIMBER(&app,ignite, 0); }

In concrete code

The objects

Classi obji = initClassi();

int mi(Classi *self, int arg){
// read ports

// compute

// update self state

// write ports

SEND(Ti, Di, self, mi,arg);

}

Each Di = Ti

In concrete code

The objects

Classi obji = initClassi();

int mi(Classi *self, int arg){
// read ports

// compute

// update self state

// write ports

SEND(Ti, Di, self, mi,arg);

}

Each Di = Ti

Schematically (again)

STARTUP

Ports

Ports

Objn

Obj1

Static priorities – method

Rate monotonic (RM)

Under the given assumptions, there exists a static priority
assignment rule that is really simple

The shorter the period, the higher the priority

For RM, the actual priority values do not matter, only their relative
order.

Because of our inverse priority scale, we can simply implement RM
by letting Pi = Di (=Ti)

Static priorities – method

Rate monotonic (RM)

Under the given assumptions, there exists a static priority
assignment rule that is really simple

The shorter the period, the higher the priority

For RM, the actual priority values do not matter, only their relative
order.

Because of our inverse priority scale, we can simply implement RM
by letting Pi = Di (=Ti)

Static priorities – method

Rate monotonic (RM)

Under the given assumptions, there exists a static priority
assignment rule that is really simple

The shorter the period, the higher the priority

For RM, the actual priority values do not matter, only their relative
order.

Because of our inverse priority scale, we can simply implement RM
by letting Pi = Di (=Ti)

RM example

Given a set of periodic tasks with periods
T1 = 25ms
T2 = 60ms
T3 = 45ms

Valid priority assignments
P1 = 10 P1 = 1 P1 = 25
P2 = 19 P2 = 3 P2 = 60
P3 = 12 P3 = 2 P2 = 45

RM example

Given a set of periodic tasks with periods
T1 = 25ms
T2 = 60ms
T3 = 45ms

Valid priority assignments
P1 = 10 P1 = 1 P1 = 25
P2 = 19 P2 = 3 P2 = 60
P3 = 12 P3 = 2 P2 = 45

RM example

(High) T1

(Mid) T3

(Low) T2

Period = Deadline. Arrows mark start of period.
Blue: running. Gray: waiting.

RM example

(High) T1

(Mid) T3

(Low) T2

Period = Deadline. Arrows mark start of period.
Blue: running. Gray: waiting.

Dynamic priorities – method

Earliest Deadline First – EDF
Dynamic priority assignment rule:

The shorter the time remaining until deadline, the higher
the priority

To use absolute deadlines: priorities = remaining clock cycles
(before missing the deadline)

Under EDF, each activation n of periodic task i will receive a new
priority: Pi(n) = baselinei(n) + Di

Dynamic priorities – method

Earliest Deadline First – EDF
Dynamic priority assignment rule:

The shorter the time remaining until deadline, the higher
the priority

To use absolute deadlines: priorities = remaining clock cycles
(before missing the deadline)

Under EDF, each activation n of periodic task i will receive a new
priority: Pi(n) = baselinei(n) + Di

Dynamic priorities – method

Earliest Deadline First – EDF
Dynamic priority assignment rule:

The shorter the time remaining until deadline, the higher
the priority

To use absolute deadlines: priorities = remaining clock cycles
(before missing the deadline)

Under EDF, each activation n of periodic task i will receive a new
priority: Pi(n) = baselinei(n) + Di

EDF example

T1

T3

T2

T1 arrives later, but its deadline is earlier than both T2’s and T3’s
absolute deadlines!

EDF example

T1

T3

T2

T1 arrives later, but its deadline is earlier than both T2’s and T3’s
absolute deadlines!

EDF example

T1

T3

T2

Deadline of T1 < Deadline of T2

EDF example

T1

T3

T2

(absolute) Deadline of T1 > (absolute) Deadline of T2

Optimality

Multiple ways assigning priorities to meet deadlines

Optimal: a method which fails only if every other method fails

I RM is optimal among static assignment methods

I EDF is optimal among dynamic methods

Optimality

Multiple ways assigning priorities to meet deadlines

Optimal: a method which fails only if every other method fails

I RM is optimal among static assignment methods

I EDF is optimal among dynamic methods

Optimality

Multiple ways assigning priorities to meet deadlines

Optimal: a method which fails only if every other method fails

I RM is optimal among static assignment methods

I EDF is optimal among dynamic methods

Schedulability

An optimal method may also fail
A set of task may not be schedulable at all

Example

The shortest path from A to B is 200km (the optimal scheduling).
We have only one hour to reach the destination and the maximum
speed is 120 km/h (deadline and platform constraints).
Can we be there on time (schedulability analysis)

Schedulability

An optimal method may also fail
A set of task may not be schedulable at all

Example

The shortest path from A to B is 200km (the optimal scheduling).
We have only one hour to reach the destination and the maximum
speed is 120 km/h (deadline and platform constraints).
Can we be there on time (schedulability analysis)

Schedulability

To determine whether task set is at all schedulable (with optimal
methods)

Schedulability must take the WCETs of tasks into account.

Schedulability

To determine whether task set is at all schedulable (with optimal
methods)

Schedulability must take the WCETs of tasks into account.

Utilization-based analysis

Ti

Ci

For a periodic task set, an important measure is how big a fraction
of each turn a task is actually using the CPU.

That is, the CPU utilization of a periodic task i is the ratio Ci
Ti

,
where Ci is the WCET and Ti is the period.

Note
Any task for which Ci=Ti will effectively need exclusive access to
the CPU!

Utilization-based analysis

Ti

Ci

For a periodic task set, an important measure is how big a fraction
of each turn a task is actually using the CPU.

That is, the CPU utilization of a periodic task i is the ratio Ci
Ti

,
where Ci is the WCET and Ti is the period.

Note
Any task for which Ci=Ti will effectively need exclusive access to
the CPU!

Utilization-based analysis

Ti

Ci

For a periodic task set, an important measure is how big a fraction
of each turn a task is actually using the CPU.

That is, the CPU utilization of a periodic task i is the ratio Ci
Ti

,
where Ci is the WCET and Ti is the period.

Note
Any task for which Ci=Ti will effectively need exclusive access to
the CPU!

Utilization-based analysis (RM)

Given a set of simple periodic tasks, scheduling with priorities
according to RM will succeed if

U ≡
N∑
i=1

Ci

Ti
≤ N(21/N − 1)

where N is the number of threads.

That is, the sum of all CPU utilizations must be less than a certain
bound that depends on N.

Utilization-based analysis (RM)

Given a set of simple periodic tasks, scheduling with priorities
according to RM will succeed if

U ≡
N∑
i=1

Ci

Ti
≤ N(21/N − 1)

where N is the number of threads.

That is, the sum of all CPU utilizations must be less than a certain
bound that depends on N.

Utilization bounds

N Utilization bound

1 100.0 %

2 82.8 %

3 78.0 %

4 75.7 %

5 74.3 %

10 71.8 %

Approaches 69.3% asymptotically

Example A

Task Period WCET Utilization

i Ti Ci Ui

1 50 12 24%

2 40 10 25%

3 30 10 33%

The combined utilization U is 82%, which is above the bound for 3
threads (78%).

The task set fails the utilization test.

Time-line for example A

0 10 20 30 40 50 60

Missed
deadline

2++10

Example B

Task Period WCET Utilization

i Ti Ci Ui

1 80 32 40%

2 40 5 12.5%

3 16 4 25%

The combined utilization U is 77.5%, which is below the bound for
3 threads (78%).

The task set will meet all its deadlines!

Time-line for example B

0 16 32 48 968064

+ 3+ ++ +7

444444

555

+76412

4

Example C

Task Period WCET Utilization

i Ti Ci Ui

1 80 40 50%

2 40 10 25%

3 20 5 25%

The combined utilization U is 100%, which is well above the
bound for 3 threads (78%).

However, this task set still meets all its deadlines!

How can this be??

Time-line for example C

0 10 20 30 40 50 60 70 80

15

5 5 5

10 10

5 15 5

5

Characteristics

The utilization-based test

I Is sufficient (pass the test and you are OK)

I Is not necessary (fail, and you might still have a chance)

Why bother with such a test?

I Because it is so simple!

I Because only very specific sets of tasks fail the test and still
meet their deadlines!

Characteristics

The utilization-based test

I Is sufficient (pass the test and you are OK)

I Is not necessary (fail, and you might still have a chance)

Why bother with such a test?

I Because it is so simple!

I Because only very specific sets of tasks fail the test and still
meet their deadlines!

Utilization-based analysis (EDF)

Given a set of simple periodic tasks, scheduling with priorities
according to EDF will succeed if

U ≡
N∑
i=1

Ci

Ti
≤ 1

That is, the sum of all CPU utilizations must be less than or equal
100%, independent of the number of tasks.

Unlike the case for RM, the utilization-based test for EDF is both
sufficient and necessary (demand more than 100% of the CPU and
you are bound to fail!)

Utilization-based analysis (EDF)

Given a set of simple periodic tasks, scheduling with priorities
according to EDF will succeed if

U ≡
N∑
i=1

Ci

Ti
≤ 1

That is, the sum of all CPU utilizations must be less than or equal
100%, independent of the number of tasks.

Unlike the case for RM, the utilization-based test for EDF is both
sufficient and necessary (demand more than 100% of the CPU and
you are bound to fail!)

Utilization-based analysis (EDF)

Given a set of simple periodic tasks, scheduling with priorities
according to EDF will succeed if

U ≡
N∑
i=1

Ci

Ti
≤ 1

That is, the sum of all CPU utilizations must be less than or equal
100%, independent of the number of tasks.

Unlike the case for RM, the utilization-based test for EDF is both
sufficient and necessary (demand more than 100% of the CPU and
you are bound to fail!)

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a different way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di ≤ Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

Implementation (RM)

In TinyTimber.c

struct msg_block{

...

Time baseline;

Time priority;

...

};

void async(Time offset, Time prio,

OBJECT *to, METHOD meth, int arg){

...

m->baseline=MAX(TIMERGET(),

current->baseline+offset);

m->priority = prio;

...

}

Implementation (EDF)

In TinyTimber.c

struct msg_block{

...

Time baseline;

Time deadline;

...

};

void async(Time BL, Time DL,

OBJECT *to, METHOD meth, int arg){

...

m->baseline=MAX(TIMERGET(),

current->baseline+BL);

m->deadline = m->baseline+DL;

...

}

Loosening the assumptions

Sporadic Tasks

Sporadic tasks: no fixed period (interrupt handlers), urgent
deadlines
Characteristics needed for schedulability analysis

Characteristics
Minimum inter-arrival time: minimum time between two events
causing sporadic tasks (e.g., key strokes, signal updates)
Period T interpreted as inter-arrival time
For sporadic tasks: D < T

Loosening the assumptions

Sporadic Tasks

Sporadic tasks: no fixed period (interrupt handlers), urgent
deadlines
Characteristics needed for schedulability analysis

Characteristics
Minimum inter-arrival time: minimum time between two events
causing sporadic tasks (e.g., key strokes, signal updates)
Period T interpreted as inter-arrival time
For sporadic tasks: D < T

Scheduling Sporadic Tasks

Deferrable Servers
A task with period T and the highest priority
Fixed capacity C

Scheduling

Sporadic events scheduled in the server when there is capacity left
Capacity is replenished every T units

Scheduling Sporadic Tasks

Deferrable Servers
A task with period T and the highest priority
Fixed capacity C

Scheduling

Sporadic events scheduled in the server when there is capacity left
Capacity is replenished every T units

Bonus question

Name an alternative to deferrable servers. Compare it with
deferrable servers.
Send in your answers before 08:30 tomorrow.

More on real-time

Other analysis

Response-time analysis: more powerful technique than utilization
based

More on this in specialized courses on real-time (such as
distributed real time systems)

More on real-time

Other analysis

Response-time analysis: more powerful technique than utilization
based

More on this in specialized courses on real-time (such as
distributed real time systems)

	
	Assigning priorities
	Analysis

