Taking Search-based Software Testing
to the Real World

Robert Feldt

Professor of Software Engineering

Chalmers University and Blekinge Inst of Tech
robert.tfeldtldgmail.com

mailto:robert.feldt@gmail.com

Main message

1. Search / Optimization / Machine Learning
- useful tools for improving testing!

2. No guarantees - but useful in practice
- less formal than many alternatives
- N0 guarantees In testing anyway

3. Good when “exact” alg missing
- more problems than specialized solutions
- search/optimization can adapt

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

Who am I?

Tech Competence/Innovation, Broad knowledge SE
Consulting in telecom, aerospace industry, Al/Machine learning

Early pioneer of SBSE, Dynamic programming languages
-4 - b Rk i

o =¥ B TH 200
Ldndon & York b

2013

. B

,-\"'; Kmkh;un | ‘ ' " }
Beijing 2009 S

-
’

: - - \‘v" 3 ‘PE
Tl Nghau:l:lun A, 4 China
Pinatcl Pakbtan} K(ﬁb . :
L e
o - l"-d'i.a .o t ‘anmar.
(Burma) <

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

What is search-based software engineering?

Search-based software engineering

From Wikipedia, the free encyclopedia

Search-based software engineering (SBSE) applies metaheuristic search techniques such as genetic algorithms,
simulated annealing and tabu search to software engineering problems. Many activities in software engineering can be
stated as optimization problems. Optimization techniques of operations research such as linear programming or dynamic
programming are mostly impractical for large scale software engineering problems because of their computational
complexity. Researchers and practitioners use metaheuristic search techniques to find near-optimal or "good-enough"

solutions.

Search-Based Software Engineering (SBSE)

Many software engineering problems have the property that:
a solution:
a potential solution:

Such tasks are amenable to solution using modern optimisation
(“search”) algorithms such as

Traditional Approach

Search-Based Approach

SBSE - Advantages

® automation
® scalability

® complex problems become tractable

® leverages high-performance computing power
® Jack of bias

® innovation

® more diversity

® multi-objective problems

SBSE - Applications

Planning
Analysis
Design

Build

Testing

Implementation

Maintenance

project planning

feature selection

real-time systems design
module clustering

protocol synthesis
concurrent software verification
algorithm construction

code refactoring

test data generation
test case selection
test case prioritisation

system tuning

automated bug fixing

Why is interest in SB/ML-SE growing?

160

Generating Multiple Diverse Software Versions with Genetic Programming

140

Software faulr toderance schemes often employ mwltiple
sofiware versions developed 0 meer the same specifica.
thon. [f the versions fail independently of eack other, they
can be combined to give high levels of reliability. While
design dbversity s @ means 20 develop these versions, it
has heen guestioned becawse # imcreases development
costs and becawse reliability gains are limited by
common-modde ilures. We propose the wse of genetic
programming to generate multiple software versions and
postulare that these versions can be forced to differ by
varying parameclers fo the gemenic programming algo-
rithm. Thix might prove a costeffective approach fo
obtain forced diversity amd make possible comtrolied
experiments with large aumbers of diverse development
methodologies. This paper qualitatively compares the
proposed approack to design diversity and ity sources of
diversity. An experiment environment to evaluate whether
significant diversity can be gencrated is outlined.

8o

60

Number of Publications

40

Robert Feldt
Department of Computer Engincening
Chalmers University of Technology
120 Horsalsv. 11, S-412 96, SWEDEN
felde@@ce, chalmers se
Abstract tat the developed programs il independomtly of cach
100 other and (2) the life cycle cost of the software will likely

mcrease. The origmal idea of n-version programming
(NVP) put forward in (1) opted for the specification of the
software 10 be given o dafferent development teams. The
teams should mdependently develop a solution, and ths
independence between the scams should masifest itself n
independort failure behavior, However, software
development personned have similar education and trasning
and use similar thinking, methods and wols, This will lead
w common-mode falures, several veruons faling foe the
same inpet, and himit the diversity that can be achicved
Experimental research ([2]) bas shown that there are
systems for which the mdependence assumption is not
valid. The strength of wang design diversay has thus been
questioned

In [3], the wrm rendom diversity was proposed 1
denote the above scenario; generation of diversity is kefl 1o
chance and arises from differences i backgrouad and
capabilities of the personned in the development tcams. In
contrast to this, they introduced the notion of enforced

20

-T‘[TT‘[TTT
e g & - NSNS B S
Es55885883258%833
AR - R A AR AR AR AR A A A

Why is interest in SB/ML-SE growing?

- # Bonus:
SB/ML algorithms are
embéﬁrassingly parallel

- good fit:to modern computers

Exchange human time with CPU power
Good enough solutions without specifying details
More problems than time to find specific algorithm

Meta-heuristics

Subfield of Stochastic optimization:
“algorithms that apply some degree of
randomness to find (more) optimal
solutions to hard problems”

Apply for “I-Know-it-when-I-see-it” problems:
- You lack alg to find optimal solution
- You can't brute-force search
- You CAN score how good a candidate Is or
- You CAN score which candidate 1s better

Example algorithm: Genetic Algorithm

'

‘

‘

Recombine

‘

But there are so many other search/opt algorithms!

Simulated Annealing
Hill-climbing

CMA-ES

Differential evolution

Gradient descent

Newton’'s methoad

Nesterov's method

What is SB/ML SE?

[llustration
Original Best Evolving
97.42% Fitness
8451 Improvements
2887721 Mutations

Elavmand bluan

nm

Learning more about “meta-heuristics”

https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf

amazon

Shop by
Department ~ Your Amazon.com Today's Deals GiftCards Sell Help

Books Advanced Search New Releases Best Sellers The New York Times® Best Sellers Children's Books Textbooks Textbook Rentals Sell Us Your Books Be

Essentials of Metaheuristics (Second Edition) Paperback — June 21, 2013

Look inside ¥
by Sean Luke ~ (Author)

'S¢ v 1 customer review

See all formats and editions

Paperback
$25.00

) 1IN LUKL
Essentials of 1 Used from $108.34
3 New from $25.00

Metaheuristics

¢ raaned
e ocona g !

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of
Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate
students, programmers, and non-experts. The book covers a wide range of algorithms, representations,
selection and modification operators, and related topics, and includes 71 figures and 135 algorithms
great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated
Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the

Steadv-State Genetic Alaorithm. Differential Evolution. Particle Swarm Obptimization. Genetic

https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

What is Search-Based Software Testing (SBST)?

8th International Workshop on Search-Based Software Testing (SBST) 2015

HOME CALL COMMITTEE CONTESIT DINNER IMPORTANT DATES KEYNOTES PROGRAM SPONSORS

Search-Based Software Testing (SBST) is the application of optimizing search techniques (for Search
example, Genetic Algorithms) to solve problems in software testing. SBST is used to generate

test data, prioritize test cases, minimize test suites, optimize software test oracles, reduce

human oracle cost, verify software models, test service-orientated architectures, construct test NEWS

suites for interaction testing, and validate real-time properties.

Random Testing

A uniform distribution

Probability

input

Random Testing

/* 1<=a<=50, 1l<=b<=20 */
int simpleFunc(int a, int b)

{
}

Structural Coverage Testing

/* 1<=a<=50, 1l<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5h)

v / \X

[if (b>=18) j [if (b<=3) j

v / N X v / N X

(o) rem) (Freen) cmwem)
! ! ! !

[return r; j

Structural Coverage Testing

exercised
count

structural element

Structural Coverage Testing

int simpleFunc(int a, int b)

[/* 1<=a<=50, 1l<=b<=20 */]

|

int r;
if (a<=5)

1

4
[if (b>=18) j
v / Ny X

[if (b<=3)

J

v / Ny X

(e) -5 (-

abs(b-2); j [r

10+b; j

| |

|

|

[return r;

)

Structural Coverage Testing

e Difficult to test sets within specific coverage
criteria
® ... buteasyto whether a test set satisfies a

coverage criteria

Enter Search-Based Software Testing (SBST)

® traditional approach is to considers each coverage
element (e.g. each branch) in turn

® find inputs that exercised the element using search
methods such as

® genetic algorithms

® simulated annealing

Search-Based Software Testing (SBST)

Fithess function based on:

o - how close to executing desired
branch condition

° - how close returning the
correct value for the branch condition

SBST - Approach Level
a=6,b=16
/* 1<=a<=50, 1l<=b<=20 */
int simpleFunc(int a, int b)
int r;
approach level = 2 »{ if (a<=5) J
4

\\‘><

[if (b>=18)] [if (b<=3) j

v / N\ X v N X

= b;][r=abs(b—2);j[r = 10+b; j
| |

[return r;]

SBST - Approach Level

a=5b=16
/* 1<=a<=50, 1l<=b<=20 */
int simpleFunc(int a, int b)
int r;
approach level = | if (a<=5)

\ ¢/ \ X
[if (b>=18) j [if (b<=3)]

v / N\ X v N X

= b; j[r=abs(b—2);j[r = 10+b; j
! !

[return r;]

SBST - Branch Distance

a=5b=16
/* 1<=a<=50, 1l<=b<=20 */
int simpleFunc(int a, int b)
branch distance l
=|18-b| =2 { int r; J
if (a<=5)

\ ¢/ \ X
[if (b>=18) j [if (b<=3)]

v / N\ X v N X

= b; j[r=abs(b—2);j[r = 10+b; j
! !

[return r;]

SBST - Branch Distance

a=5b=17
/* 1<=a<=50, 1l<=b<=20 */
int simpleFunc(int a, int b)
branch distance l
=|18b|=1 { int r; J
if (a<=5)

\ ¢/ \ X
[if (b>=18) j [if (b<=3)]

v / N\ X v N X

= b; j[r=abs(b—2);j[r = 10+b; j
! !

[return r;]

Broadening the Search in Search-Based Software
Testing: It Need Not Be Evolutionary

Robert Feldt and Simon Poulding
Dept. of Software Engineering
Belkinge Institute of Technology, Karlskrona, Sweden
Email: robert.feldt@bth.se and simon.poulding @bth.se

Abstract—Search-based software testing (SBST) can poten-
tially help software practitioners create better test suites us-
ing less time and resources by employing powerful methods
for search and optimization. However, research on SBST has
typically focused on only a few search approaches and basic
techniques. A majority of publications in recent years use
some form of evolutionary search, typically a genetic algorithm,
or, alternatively, some other optimization algorithm inspired
from nature. This paper argues that SBST researchers and
practitioners should not restrict themselves to a limited choice
of search algorithms or approaches to optimization. To support
our argument we empirically investigate three alternatives and
compare them to the de facto SBST standards in regards to
performance, resource efficiency and robustness on different test
data generation problems: classic algorithms from the optimiza-
tion literature, bayesian optimization with gaussian processes
from machine learning, and nested monte carlo search from
game playing / reinforcement learning. In all cases we show
comparable and sometimes better performance than the current
state-of-the-SBST-art. We conclude that SBST researchers should
consider a more general set of solution approaches, more consider
combinations and hybrid solutions and look to other areas for
how to develop the field.

I. INTRODUCTION

The term Search-Based Software Testing (SBST) describes
a number of powerful methods that permit practitioners to

published at these venues in 2013 and 2014. Two-thirds of the
papers—26 out of 39—applied an evolutionary algorithm, of
which 23 applied a Genetic Algorithm (GA): 15 as a standard
GA, 2 as a GA-based memetic algorithm, and 7 as a multi-
objective GA (the majority using NSGA-II)!. The next most-
frequently applied algorithms were Genetic Programming (4
papers), (1+1) EA (4 papers), hill-climbing (3 papers), and
alternating variable methods (3 papers). Our analysis suggests
that evolutionary search, and GAs in particular, are the algo-
rithms of choice for both single- and multi-objective problems
in SBST.

We offer a number of explanations for this prevalence of
GAs as the search technique. GAs can be applied to a wide
range of problem classes and typically find solutions with
acceptably good quality. This wide applicability permits us, as
researchers, to re-use the knowledge gained in applying GAs
to one testing problem when solving subsequent problems. In
addition, there is a great deal of active research in GAs that can
guide their application to testing problems, and this research
is typically disseminated in a form that is readily-accessible to
us. In contrast, the research on classic optimization algorithms
is often described for fellow mathematicians and may be less
accessible.

But EA's and GA’s are used in 60-80% of papers

% 40-

We checked 39 SBST papers from:
- SBST 2013 & 2014
- GECCO SBSE 2013 & 2014
- SSBSE 2013 & 2014

W
o
I

-
o
|

o
1

N
o
|

o

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

Technology Transfer Model

Academia

Problem
formulation

SBST has stayed mostly within academia!

Academia

Problem
formulation

So what is SBST missing?

Application to industrial-scale systems
Not generating only numbers

Interfaces: Interaction, Visualisation

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

Data

Visualisation

Discussions

Insights

TEST START TIME TEST CASE SYSTEM VERSION OUTCOME

2013-09-04 04:17:12 Login non existing user 1.32 - Build 3476

2013-09-04 04:17:12 Login existing user 1.32 - Build 3476 @
. - - - , — - ——————

Heatmaps shows “raw” data and
reveals patterns

Pt v
'

i

Test failures

.- L _
- .
N -.I n
=
o -: : : -
o —- o R - o ;:‘\.
11
[o B4 J
= g (. Pl - -
a L — - ..
= - eomm e ' - - - (-"
- . . '”’. ’ -
= ~-:0
me - b -
——— . "E..'l)
=1
- . .
Lack of integration

traces!

Most Reg lest research not realistic

Requires too much (or complete) information

Source & Test code, Changes, Outcome,
Bug reports, Priorities, Severities, ...

Focus on only one criteria (Mono-objective)
In companies, things change & situations differ

Evaluated on very small examples
Scalability problems don’t surface

Unclear if relevant for you

But simple modeling often give BIG benefits!

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

3 Types of Regression lest Selection

ST S2
i 1 1
2 0 0
Testcases 8" 3 3
e 4 4
e 5 5
=3 P2

1. TCS = "Which n test cases should | run given P2!1=P1"”

2. TSM = “Minimal test suite that gives adequate testing”?”

3. TCP = “Priority order of test cases to find faults early”?”

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

History-based Prioritization

“Use history of test outcomes to focus testing
where most heeded”

Example, Fazlilazadeh (2009):

Sessions since

Priority # Fails Prev. Priority last run
x >‘ck \ j
PR, =g x==EB*xPR. . +yx*h,

/ €ck
This session /; a,b,y<1,k=>1

Runs

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

How to optimize history-based reg testing?

mailto:robert.feldt@gmail.com

Optimizing Fazlilazadeh

Sessions since

Priorit # Fails Prev. Priority last run
l >ck \ j
PRk:a* IB*PRk_l‘l'y*hk
/ €ck
Next session 0 < <1k>1

Runs \

INn our previous wWork:

Now: Find optimal constants

TCSR FDR
ORCRIORCORC 60 % 86 %
0.9, 0.05, 0.1 60 % 94 %

Random sel. 60 % 59 %

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

Which constants give best FDR?

Optimization a, ﬁ Y TCSR FDR
old None, standard Faz(0.3, 0.3, 0.3) 60 % 86 %
old Manual testing Faz(0.9, 0.05, 0.1) 60 % 94 %

baseline N/A Random sel. 60 % 59 %
new Simulated Annealing None better! 60 % 94 %

Faz Is robust when many test cases are selected!
(Less space for improvement)

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

IS Faz robust for different TCSR’s?

Optimization a, ﬁ Y TCSR
old None, standard Faz(0.3, 0.3, 0.3)
old Manual testing Faz(0.9, 0.05, 0.1)
baseline NAP Random sel.
new Simulated annealing Faz(0.18, 0.47, -0.08)

FDR

10 %

57 %

20 %

89 %

Faz not robust when selecting few test cases!

robert.feldt@gmail.com

L arge variation between param settings

mailto:robert.feldt@gmail.com

Y Y Y X Y Y rrYryy

2000080899

.........

...... 0 © ¢ 000000000000 0000 N~ ~—~ 2000000000 00000000000000000000000
) 0000000000000 OQO00

.........,t.....O............................ .
fo0oooccodooocoocooooooOOOOooOoOCOCOOOOOOPORCOOOROROORRE!

mailto:robert.feldt@gmail.com

How much can we gain” (FDE-S curves)

TestSelection
random

©
—
-
O
—
7))
@
P
=
o
~-~—
—
(o]
[V
(@)
(4]
—
=
[V
O
—
¥
o

40 60
Percentage of tests selected

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

How much can we gain®

TestSelection
random
ideal

©
—
-
O
—
7))
@
P
=
o
~-~—
—
(o]
[V
(@)
(4]
—
=
[V
O
—
¥
o

40 60
Percentage of tests selected

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

How much can we gain®

TestSelection
random

- jdeal
faz_vanilla

©
—
-
O
—
7))
@
P
=
o
~-~—
—
(o]
[V
(@)
(4]
—
=
[V
O
—
¥
o

40 60
Percentage of tests selected

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

How much can we gain®

Better than “80/20”!

TestSelection
random
ideal

- faz_vanilla
faz_single best

©
—
-
O
—
(7))
@
P
=
o
~-~—
—
(o]
[V
(@)
(4]
—
=
[V
O
—
¥
o

System 1

40 60
Percentage of tests selected

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

Are the result robust (for other system)?

Circa “80/20"

TestSelection
random
Ideal

- faz_vanilla

- faz_single best
faz_ssl_only
faz_fr only

©
| —
=
(o]
“—
n
@
p—
=
©
-—
(Yo
o
[V
o
©
-—
c
o
O
—
@
o

System 2

40 60 80
Percentage of tests selected

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

Can we be sure this will work?

No, it will work If there are clear patterns in testing

For less regular systems we need more data.
The next natural step Is 1o add info about source code
changes

In [Wikstrand2009] we showed a simple file-based
technique

Keeps a cache of when source code files were changed

This Is one way we can extend the model if not
good enough.

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

Combined method for test prioritization

If Top-10/20% selected, ~80-90% failures caught

“But want to be sure every test run every 4th test”

Add 20% more from prio list that not executed In
last 4 tests

Ensures all tests executed at least every 4th full
test but reduces total number of test runs -60%

Many different trade-offs/solutions possible
once optimization framework In place!

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

So what Is the best way forward?

If someone forces me to make a recommendation
today | would suggest:

1. Prioritize test cases on their historical failure
rate (number of failures / number of executions)

2. Refine the priorities based on source code file
changes since last test run

3. Add the time since last execution to
prioritization

For all three “levels” use simple optimization to
adapt to the project

robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

Taking it Online

Flight code changes awous Test executions avouts
2 . . . Range from few to many line changes . O O . Range from more failed to more su
* No matching module found Row numbers: Total number of executions
Y
N
"> Feb
> Feb Mar Apr

o>
v Feb Mar Apf

“

N
v Feb Mar Apr

<

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

Highly-Structured Test Data

Some types of software take highly-structured
inputs that must satisfy often complex constraints

> . data indexing systems

int main() { |
. printf(“Hello”); gccC compilers
!

..................................
-

§"<html>

. <body>
i <ht >A</h1> |
. </body>

. </html>

') HTML rendering engines

Bias Objectives

Effective testing may require the structured data to
have specific intrinsic or extrinsic properties

...........

size

Bias Objectives

Effective testing may require the structured data to
have specific intrinsic or extrinsic properties

size

Generation and Filtering

Bias objectives are typically met using a generator
that builds test data with properties close to the

desired values, often supplemented by an exact
filter

/'

filter

~ ™
g en era.t OI' ‘‘:
o /

Boltzmann Samplers

A simple grammar describes how to generate test
data using elementary operations that combine
simpler objects

G = Z - sequence(G)

Boltzmann Samplers

A simple grammar describes how to generate test
data using elementary operations that combine
simpler objects

Boltzmann Samplers

Mathematically tractable: it is relatively easy to
calculate the local distributions at operators that
produce a given mean tree size. But are limited to
specific structures and only for the property of size.

G = Z - sequence(G)

2 geometric distribution
fo p=0.51
©
0 3
O e,
Q
..
..
B KT ® Yy 9

sequence length

Stochastic Grammars

More flexible than Boltzmann samplers, but in
general there is no analytical method for setting
production weights to achieve bias objectives

S — GeneralTree
GeneralTree — nodeLabel SubTrees
SubTrees — € | GeneralTree SubTrees

Non-Deterministic Programs

More flexible than grammars, but again there is
generally no analytical methods of tuning non-
determinism to achieve bias objectives

data Tree = Node Int [Tree] deriving (Eg, Show, Ord)

instance Arbitrary Tree where
arbitrary = sized tree'
where tree' n = 1liftM2 Node arbitrary (
resize (n-1) (listOf' arbitrary))

listOf' gen = sized $ \n ->
do k <- choose (0,n)
if k ==
then vectorOf 0 gen
else vectorOf k (resize ((n+k-1) "div k) gen)

Objective

Require a technique:

- has the flexibility of non-deterministic programs
- can bias the generation to any property (not just size)

- can automatically tune the generator to achieve these biases

GOdelTest Framework

Extracts a model of choice points from a non-
deterministic generator; optimises the choice model
using metaheuristic optimisation to met bias
objectives

...

generator

% 2,1,4,0,2,3,0]
Gddel numbers property

i A . metrics

©

choice model

\ J . e ™

L metaheuristic
RALTPY optimisation

4 N probabllity distributions N)

sampler
factory

(Generators

A DSL in Julia for constructing well-formed data;
non-determinism arises from a small set of implicit
and explicit choice points

recursive generator for arithmetic expressions
@generator RecursiveExprGen begin
start = expression

expression = operand x " " x operator x " " % operand
operand = number

operand = "(" x expression x ")"

number = (choose(Bool) ? "-" : "") x join(plus(digit))
digit = string(choose(Int,0,9))

operator = "+"

operator = "-"

operator = "/"

operator = "x"

end

Sampler Factory

A sampler factory associates appropriate local
distribution (samplers) to each choice point in the

model

(plus)

(rule choice)

(rule choice]

(choose_int)

e geometric distribution
.
®
] categorical distribution
Q.‘
¢ categorical distribution

0 0-0-® uniform distribution

parameters

0.90

0.41
0.59

0.57
0.43

Metaheuristic Search

Metaheuristic search acts on the set of sampler
parameters in order to modify the local distribution
of Godel numbers associated with each choice
points

geometric distribution

categorical distribution

categorical distribution

...

Problem

Two target bias objectives specified in terms of tree
size and height

Sive target 1: size = 100 AND height = 36
| target 2: size = 100 AND height = 6

..........

Results

Scatter plots show the distribution of tree sizes and
heights; target bias objectives are indicated by

Tree height

Crosses
80 - 80 -
60 - 60 -
c
D
()
c
40 - o 40 -
)
+ 2 +
20 - 20 -
+ 4
| | | |
100 200 100 200
Tree size Tree size

Boltzmann Sampler QuickCheck

Results

Scatter plots show the distribution of tree sizes and
heights; target bias objectives are indicated by

Ccrosses
80 - 80 -
60 - 60 -
< <
2 =)
()] ()]
i L
o 40 - o 40 -
() (O]
= = s
20 - 20 -
|
| | | |
100 200 100 200
Tree size Tree size
GodelTest GodelTest

(Decay Distribution) (Decay Histogram)

Results

The percentage of generated trees within a given
tolerance of the bias objective target of size = 100,

height = 36
60 -
Id
~—— GodelTest DHO4
40 - --= QuickCheck

-~ Boltzmann

Percentage of generated trees

Tolerance (%) from target

Summary

GddelTest can efficiently generate highly-structured test data with specific
desirable properties

The use of a non-deterministic program as a generator enables GodelTest to
generate a wider range of data structures than Boltzmann samplers

The choice model is abstracted from the generator, and the local probability
distributions associated with the model are optimised using metaheuristic search

Any property that is quantifiable can be used to specify a bias objective, and
GodelTest is able to optimise for multiple bias objectives simultaneously

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:
Optimizing test case selection
Generating complex test data

Searching for diverse test suites

Test Set Diameter:
Quantifying the Diversity of Sets of Test Cases

Robert Feldt and Simon Poulding
Software Engineering Research Lab
Blekinge Institute of Technology
Karlskrona, Sweden
Email: robert.feldt@bth.se, simon.poulding @bth.se

Abstract—A common and natural intuition among software
testers is that test cases need to differ if a software system
is to be tested properly and its quality ensured. Consequently,
much research has gone into formulating distance measures for
how test cases, their inputs and/or their outputs differ. However,
common to these proposals is that they are data type specific
and/or calculate the diversity only between pairs of test inputs,
traces or outputs.

We propose a new metric to measure the diversity of sets of
tests: the test set diameter (TSDm). It extends our earlier, pairwise
test diversity metrics based on recent advances in information
theory regarding the calculation of the normalized compression
distance (NCD) for multisets. An advantage is that TSDm can
be applied regardless of data type and on any test-related
information, not only the test inputs. A downside is the increased
computational time compared to competing approaches.

Our experiments on four different systems show that the test
set diameter can help select test sets with higher structural and
fault coverage than random selection even when only applied
to test inputs. This can enable early test design and selection,
prior to even having a software system to test, and complement
other types of test automation and analysis. We argue that
this quantification of test set diversity creates a number of
opportunities to better understand software quality and provides
practical ways to increase it.

David Clark and Shin Yoo
Department of Computer Science
University College London
London, UK
Email: david.clark@ucl.ac.uk, shin.yoo@ucl.ac.uk

has support in the research literature. For example, adaptive
random testing [1] only adds a new, randomly-generated test
case if it has large distance to existing test cases. But Chen
et al. [1] also note that a number of testing methods such
as Restricted Random Testing [2], Antirandom testing [3],
and Quasi-Random Testing [4] are all based on the same
idea: ‘evenly spreading’ test cases over the input domain.
Critical to the success of these techniques is a genericly
applicable diversity measure and Chen et al. go as far as
saying that “We have come to realise that “even spreading”
can be better described as a form of diversity’ [1]. They
describe a distance calculation scheme based on the category-
partition (partition testing) method, but it requires that the
tester manually identifies categories and levels which can be
varied.

Most approaches to quantifying diversity among test cases
are specific to a certain type of data. It is common to assume
that the data is numeric since there are a multitude of existing
distance functions that can then be applied. One example is
the approach of Bueno et al. [S] which selects test sets that
maximize the sum of the distances from each test input to
its nearest neighbor. In their empirical work they use the
Euclidean distance which requires the inputs to be numerical
vectors. More recently, Alshawan et al. [6] proposed to select

The Kolmogorov complexity of a string of symbols, z, is
the length of the shortest program that outputs x [10]. It 1s a
measure of the information contained in x, and we denote it
here as K(x). The conditional Kolmogorov complexity of x
given y, denoted K (z|y) is the length of the shortest program
that outputs = given the input y.

Normalized Info Distance

max{K (z|y), K(y|z)}
max{ K (z), K(y)}

NID(z,y) =

Normalized Compression Distance

C(zy) — min{C(z),C(y)}
max{C(z), C(y)}

NCD(z,y) =

10

25

50

oo

&
S 0.4
2 et
O
(&)
c
O 03+
©
-
17
=
0.2
T T T I I I T T I T T I T T 1
075 080 08 09 09 075 080 08 09 09 075 08 085 090 0.95

(a) JEuclid

100 -

o -
(o)} @

(pazireuwliou) abelanod uolonlIsu|

50
Test set size

25

Thanks to

My colleague Dr. Simon Poulding for many of the
slides and for our collaboration on GodelTest

My other colleagues, students and co-authors
for the research presented here...

Thank you! Questions?

robert.feldt[dgmail.com

http://www.robertfeldt.net

([ddrfeldt

