
Taking Search-based Software Testing
to the Real World

Robert Feldt
Professor of Software Engineering
Chalmers University and Blekinge Inst of Tech
robert.feldt@gmail.com

mailto:robert.feldt@gmail.com

Main message

1. Search / Optimization / Machine Learning
 - useful tools for improving testing!

2. No guarantees - but useful in practice
 - less formal than many alternatives
 - no guarantees in testing anyway

3. Good when “exact” alg missing
 - more problems than specialized solutions
 - search/optimization can adapt

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

Who am I?

Beijing 2009

Chalmers 1991-

BTH 2006-

London & York
2013

Tech Competence/Innovation, Broad knowledge SE
Consulting in telecom, aerospace industry, AI/Machine learning
Early pioneer of SBSE, Dynamic programming languages

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

What is search-based software engineering?

constructing a solution: difficult

checking a potential solution: easy

Many software engineering problems have the property that:

Such tasks are amenable to solution using modern optimisation
(“search”) algorithms such as evolutionary computation

Search-Based Software Engineering (SBSE)

Traditional Approach

Search-Based Approach

SBSE - Advantages

• automation

• scalability

• complex problems become tractable

• leverages high-performance computing power

• lack of bias

• innovation

• more diversity

• multi-objective problems

test data generation

test case prioritisation
test case selection

project planning

automated bug fixing

feature selection

module clustering
real-time systems design

code refactoring

concurrent software verification
protocol synthesis

algorithm construction

system tuning

Planning

Analysis

Design

Build

Testing

Implementation

Maintenance

SBSE - Applications

Why is interest in SB/ML-SE growing?

Why is interest in SB/ML-SE growing?

Exchange human time with CPU power

Good enough solutions without specifying details

More problems than time to find specific algorithm

Bonus:
SB/ML algorithms are

embarrassingly parallel
> good fit to modern computers

Meta-heuristics

Subfield of Stochastic optimization:
“algorithms that apply some degree of
randomness to find (more) optimal
solutions to hard problems”

Apply for “I-Know-it-when-I-see-it” problems:
- You lack alg to find optimal solution
- You can’t brute-force search
- You CAN score how good a candidate is or
- You CAN score which candidate is better

Example algorithm: Genetic Algorithm

Initialize Population

Select

Mutate

Evaluate

Recombine

But there are so many other search/opt algorithms!

Hill-climbing
Simulated Annealing

Differential evolution

CMA-ES

Gradient descent

Newton’s method

Nesterov’s method

What is SB/ML SE?

Illustration

Learning more about “meta-heuristics”

https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf

https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

What is Search-Based Software Testing (SBST)?

Random Testing

uniform distribution

Pr
ob

ab
ili

ty

input

Random Testing

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)
{
 ...
}

Structural Coverage Testing

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5)

r = abs(b-19); r = b;

if (b>=18) if (b<=3)

r = abs(b-2); r = 10+b;

return r;

✓ ✕

✓ ✕ ✓ ✕

Structural Coverage Testing

structural element

ex
er

ci
se

d
co

un
t

Structural Coverage Testing

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5)

r = abs(b-19); r = b;

if (b>=18) if (b<=3)

r = abs(b-2); r = 10+b;

return r;

✓ ✕

✓ ✕ ✓ ✕

r = b-19;

Structural Coverage Testing

• Difficult to derive test sets within specific coverage
criteria

• ... but easy to check whether a test set satisfies a
coverage criteria

Enter Search-Based Software Testing (SBST)

• traditional approach is to considers each coverage
element (e.g. each branch) in turn

• find inputs that exercised the element using search
methods such as

• genetic algorithms

• simulated annealing

Search-Based Software Testing (SBST)

Fitness function based on:

• approach level - how close to executing desired
branch condition

• branch distance - how close returning the
correct value for the branch condition

SBST - Approach Level

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5)

r = abs(b-19); r = b;

if (b>=18) if (b<=3)

r = abs(b-2); r = 10+b;

return r;

✓ ✕

✓ ✕ ✓ ✕

a = 6, b = 16

approach level = 2

SBST - Approach Level

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5)

r = abs(b-19); r = b;

if (b>=18) if (b<=3)

r = abs(b-2); r = 10+b;

return r;

✓ ✕

✓ ✕ ✓ ✕

a = 5, b = 16

approach level = 1

SBST - Branch Distance

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5)

r = abs(b-19); r = b;

if (b>=18) if (b<=3)

r = abs(b-2); r = 10+b;

return r;

✓ ✕

✓ ✕ ✓ ✕

a = 5, b = 16

branch distance
= | 18-b | = 2

SBST - Branch Distance

/* 1<=a<=50, 1<=b<=20 */
int simpleFunc(int a, int b)

int r;
if (a<=5)

r = abs(b-19); r = b;

if (b>=18) if (b<=3)

r = abs(b-2); r = 10+b;

return r;

✓ ✕

✓ ✕ ✓ ✕

a = 5, b = 17

branch distance
= | 18-b | = 1

%

But EA’s and GA’s are used in 60-80% of papers

We checked 39 SBST papers from:
- SBST 2013 & 2014
- GECCO SBSE 2013 & 2014
- SSBSE 2013 & 2014

%

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

Technology Transfer Model

SBST has stayed mostly within academia!

So what is SBST missing?

Application to industrial-scale systems

Not generating only numbers

Interfaces: Interaction, Visualisation

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

Heatmaps shows “raw” data and
reveals patterns

Test failures

Lack of integration
traces!

Model Model++

robert.feldt@gmail.com

Most RegTest research not realistic
Requires too much (or complete) information

Source & Test code, Changes, Outcome,
Bug reports, Priorities, Severities, ...

Evaluated on very small examples
Scalability problems don’t surface
Unclear if relevant for you

Focus on only one criteria (Mono-objective)
In companies, things change & situations differ

But simple modeling often give BIG benefits!

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

3 Types of Regression Test Selection

1
2
3
4
5

1
2
3
4
5

S1
1
2
3
4
5

S2

1. TCS = “Which n test cases should I run given P2!=P1?”

P1 P2

2. TSM = “Minimal test suite that gives adequate testing?”

3. TCP = “Priority order of test cases to find faults early?”

Testcases

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

History-based Prioritization

“Use history of test outcomes to focus testing
where most needed”

Example, Fazlilazadeh (2009):
Priority

This session

Fails

Runs

Prev. Priority
Sessions since

last run

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

How to optimize history-based reg testing?

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

Optimizing Fazlilazadeh
Priorit

Next session

Fails

Runs

Prev. Priority
Sessions since

last run

In our previous work:
TCSR FDR

0.3, 0.3, 0.3 60 % 86 %
0.9, 0.05, 0.1 60 % 94 %
Random sel. 60 % 59 %

Now: Find optimal constants

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

Which constants give best FDR?
Optimization TCSR FDR

old None, standard Faz(0.3, 0.3, 0.3) 60 % 86 %

old Manual testing Faz(0.9, 0.05, 0.1) 60 % 94 %

baseline N/A Random sel. 60 % 59 %

new1 Simulated Annealing None better! 60 % 94 %

Faz is robust when many test cases are selected!
(Less space for improvement)

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

Is Faz robust for different TCSR’s?
Optimization TCSR FDR

old None, standard Faz(0.3, 0.3, 0.3) 20 % 10 %

old Manual testing Faz(0.9, 0.05, 0.1) 20 % 57 %

baseline NAP Random sel. 20 % 20 %

new1 Simulated annealing Faz(0.18, 0.47, -0.08) 20 % 89 %

Faz not robust when selecting few test cases!
Large variation between param settings

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

How much can we gain?

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

How much can we gain? (FDE-S curves)

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

How much can we gain?

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

How much can we gain?

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

How much can we gain?

Better than “80/20”!

System 1

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

System 2

Are the result robust (for other system)?

Circa “80/20”

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

Can we be sure this will work?

No, it will work if there are clear patterns in testing

For less regular systems we need more data.
The next natural step is to add info about source code
changes

In [Wikstrand2009] we showed a simple file-based
technique

Keeps a cache of when source code files were changed

This is one way we can extend the model if not
good enough.

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

Combined method for test prioritization
If Top-10/20% selected, ~80-90% failures caught

“But want to be sure every test run every 4th test”

Add 20% more from prio list that not executed in
last 4 tests

Ensures all tests executed at least every 4th full
test but reduces total number of test runs -60%

Many different trade-offs/solutions possible
once optimization framework in place!

mailto:robert.feldt@gmail.com

robert.feldt@gmail.com

So what is the best way forward?
If someone forces me to make a recommendation
today I would suggest:

1. Prioritize test cases on their historical failure
rate (number of failures / number of executions)

2. Refine the priorities based on source code file
changes since last test run

3. Add the time since last execution to
prioritization

For all three “levels” use simple optimization to
adapt to the project

mailto:robert.feldt@gmail.com

Taking it Online

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

GödelTest Framework
Extracts a model of choice points from a non-
deterministic generator; optimises the choice model
using metaheuristic optimisation to met bias
objectives

generator

choice model

sampler
factory

[2, 1, 4, 0, 2, 3, 0]

metaheuristic
optimisation

Gödel numbers

probability distributions

property
metrics

Generators
A DSL in Julia for constructing well-formed data;
non-determinism arises from a small set of implicit
and explicit choice points

Results
Scatter plots show the distribution of tree sizes and
heights; target bias objectives are indicated by
crosses

Boltzmann Sampler QuickCheck

20

40

60

80

100 200
Tree size

Tr
ee

 h
ei

gh
t

20

40

60

80

100 200
Tree size

Tr
ee

 h
ei

gh
t

Results
Scatter plots show the distribution of tree sizes and
heights; target bias objectives are indicated by
crosses

GödelTest
(Decay Distribution)

GödelTest
(Decay Histogram)

20

40

60

80

100 200
Tree size

Tr
ee

 h
ei

gh
t

20

40

60

80

100 200
Tree size

Tr
ee

 h
ei

gh
t

Todays tutorial

What is SBSE?

What is SBST?

Why is it not real-world (enough)?

Examples of real-world applications:

Optimizing test case selection

Generating complex test data

Searching for diverse test suites

Normalized Info Distance

Normalized Compression Distance

Thanks to

My colleague Dr. Simon Poulding for many of the
slides and for our collaboration on GödelTest

My other colleagues, students and co-authors
for the research presented here…

Thank you! Questions?

robert.feldt@gmail.com

http://www.robertfeldt.net

@drfeldt

