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Abstract

We present how common JAVA CARD security properties can be formalised in Dy-
namic Logic and verified, mostly automatically, with the KeY system. The proper-
ties we consider, are a large subset of properties that are of importance to the smart
card industry. We discuss the properties one by one, illustrate them with examples
of real-life, industrial size, JAVA CARD applications, and show how the properties are
verified with the KeY Prover—an interactive theorem prover for JAVA CARD source
code based on a version of Dynamic Logic that models the full JAVA CARD standard.
We report on the experience related to formal verification of JAVA CARD programs
we gained during the course of this work. Thereafter, we present the current state
of the art of formal verification techniques offered by the KeY system and give an
assessment of interactive theorem proving as an alternative to static analysis.
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1 Introduction

JAVA CARD [9] is a technology designed to enable and incorporate JAVA in smart card
programming. The main ingredient of this technology is the JAVA CARD language
specification, which is a stripped down version of JAVA. In recent years JAVA CARD

technology gained interest in the formal verification community. There are two main
reasons for this: (1) JAVA CARD applications are safety and security critical, and thus
a perfect target for formal verification, (2) due to the relative language simplicity
JAVA CARD is also a feasible target for formal verification.

In this paper we show how common JAVA CARD security properties can be for-
malised in the Dynamic Logic used in the KeY system and proved with the KeY
interactive theorem prover. The properties in question are a rather large subset of
properties that are of interest to the smart card industry [20]. We demonstrate the
formalisation and verification of the properties on two real-life JAVA CARD applets.
After giving the detailed description of the properties we formalised and proved,
we report on the experience we gained during the course of this work and analyse
the main difficulties we encountered. In an earlier paper [14] we reported on the
verification of transactions related safety properties based on a somewhat simpli-
fied example of a JAVA CARD purse applet. We proposed the approach of design
for verification, where we argue that certain precautions have to be taken into ac-
count during the design and coding phase to make verification feasible. In this work
however, we concentrate on source code verification of already existing JAVA CARD

applications without any simplifications whatsoever, and we discuss wider range of
security properties than before. In particular, one of the assumptions we made,
is that we should be able to specify properties and perform verification without
modifying the source code of the verified program. Thus, this work presents the
current state of the art of automated formal verification techniques offered by the
KeY system for industrial size JAVA CARD applications with respect to meaningful,
industry related security properties. The main conclusion is that full source code
verification of JAVA CARD applications is absolutely possible and in most part can
indeed be achieved automatically, however, such verification requires deep under-
standing of the specification issues, including full understanding of the application
being verified and the specificities of the JAVA CARD environment. Therefore, we
consider the KeY system, assuming the approach we present in this work, mostly
suitable for experienced users.

The properties that we consider here, originate from the area of static anal-
ysis [20], however, to the best of our knowledge, no static analysis technique for
thorough treatment of those properties has been developed. We managed to for-
malise and verify almost all of the properties using the KeY interactive theorem
prover. For the remaining properties we give concrete suggestions on how to treat
them with the KeY system. We give arguments why we think that interactive the-
orem proving is a reasonable, and in fact in some ways better, alternative to static
analysis.

In the following Section we give the background information about the KeY
project, its objectives, the Dynamic Logic used in the KeY interactive prover, and
a brief overview of related work. Section 3 describes shortly the JAVA CARD appli-
cations (case studies) used to demonstrate our results. In Section 4 we present the
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formalisation of security properties one by one illustrated with numerous examples
and also discuss briefly properties not covered in this paper. In Section 5 we dis-
cuss the difficulties we encountered during the course of this work, the experience we
gained, and we asses interactive theorem proving as an alternative to static analysis.
Finally, Section 6 concludes the paper.

2 Background

2.1 The KeY Project

The work presented in this paper is part of the KeY project1 [1]. The main goals of
KeY are to (1) provide deductive verification for a real world programming language
and to (2) integrate formal methods into industrial software development processes.

For the first goal a deductive verification tool for JAVA source programs, the KeY
Prover, has been developed. The main target of the KeY system is the JAVA CARD

language. The verification is based on a specifically tailored version of Dynamic
Logic—JAVA CARD Dynamic Logic (JAVA CARD DL), which supports most of sequen-
tial JAVA, in particular the full JAVA CARD language specification including the JAVA

CARD transaction mechanism. JAVA CARD DL and the KeY Prover are designed in a
way to make the verification process as automated as possible.

For the second goal we enhance a commercial CASE tool with functionality for
formal specification and deductive verification. The design and specification lan-
guages of our choice are respectively UML (Unified Modelling Language) and OCL
(Object Constraint Language), which is part of the UML standard [24]. The KeY
system translates OCL specifications into JAVA CARD DL formulae, whose validity
can then be proved with the KeY Prover. All this is tightly integrated into a CASE
tool, which makes formal verification as transparent as possible to the untrained
user.

Of course, the use of OCL is not mandatory: logically savvy users of the KeY
system can write their proof obligations directly in JAVA CARD DL and use its full
expressive power. Due to specificities of the security properties in question and the
necessity to operate on relatively low level of the specification this is actually the
approach we have taken in the present work.

2.2 JAVA CARD

JAVA CARD technology [9] provides means of programming smart cards with (a subset
of) the JAVA programming language. Smart cards are nothing more (and nothing
less) than small computers, providing limited power CPU and three types of memory:
ROM (read only), EEPROM (writable, persistent), and RAM memory (writable,
non-persistent). The card’s ROM contains a JAVA CARD Virtual Machine and the
implementation of the JAVA CARD API, together they allow running JAVA CARD ap-
plets on the card. The EEPROM memory is used to store applet’s persistent data
that is kept from session to session, while RAM is used for local run-time compu-
tations. Smart cards communicate with the rest of the world through application

1http://www.key-project.org
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protocol data units (APDUs, ISO 7816–4 standard). The communication is done in
master-slave mode—it’s always the master/terminal application that initialises the
communication by sending the command APDU to the card and then the card replies
by sending a response APDU. Certain JAVA language features are not supported by
the JAVA CARD language: large primitive data types (int, long, double, float),
characters and strings, multidimensional arrays, dynamic class loading, threads and
garbage collection. Most of the remaining JAVA features, in particular object oriented
ones like interfaces, inheritance, virtual methods, overloading, dynamic object cre-
ation, are supported by the JAVA CARD language. Also, the JAVA CARD API is a very
small subset of the JAVA API designed to handle smart card specific routines and
resources: Application IDentifiers (AIDs), APDUs, and JAVA CARD applets among
others. Schematically, JAVA CARD applet implements the install method responsi-
ble for the initialisation of the applet and a process method for handling incoming
command APDUs and sending the response APDUs back to the host.

2.3 JAVA CARD Dynamic Logic

We give a very brief introduction to JAVA CARD DL. We are not going to present or
explain any of its sequent calculus rules. Dynamic Logic [26, 15] can be seen as an
extension of Hoare logic. It is a first-order modal logic with parametric modalities
[p] and 〈p〉 for every program p (we allow p to be any sequence of legal JAVA CARD

statements). In the Kripke semantics of Dynamic Logic the worlds are identified
with execution states of programs. A state s′ is accessible from state s via p, if p
terminates with final state s′ when started in state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ expresses
that φ holds in some final state of p. In versions of DL with a non-deterministic
programming language there can be several final states, but JAVA CARD programs
are deterministic, so there is exactly one final state (when p terminates) or no final
state (when p does not terminate). In JAVA CARD DL termination forbids exceptions
to be thrown, i.e., a program that throws an uncaught exception is considered to
be non terminating (or, terminating abruptly) [5]. The formula φ→ 〈p〉ψ is valid
if, for every state s satisfying precondition φ, a run of the program p starting in s
terminates, and in the terminating state the postcondition ψ holds. The formula
φ→ [p]ψ expresses the same, except that termination of p is not required, that is
ψ needs only to hold if p terminates.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive ver-
ification of JAVA CARD programs. The detailed description of the calculus can be
found in [2]. The calculus covers all features of JAVA CARD, such as exceptions, com-
plex method calls, atomic transactions (see below), JAVA arithmetic. The full JAVA

CARD DL sequent calculus is implemented in the KeY Prover. The prover itself is
implemented in JAVA. The calculus is implemented by means of so-called taclets [3],
that avoid rules being hard coded into the prover. Instead, rules can be dynamically
added to the prover. As a consequence, one can, for example, use different versions
of arithmetic during a proof: idealised arithmetic, where all integer types are infi-
nite and do not overflow, or JAVA arithmetic, where integer types are bounded and
exhibit overflow behaviour [6].
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Strong Invariants. The most common semantics of an invariant is based on the
initial and final states of a program, i.e., if an invariant holds before the program
is executed then it should hold after the execution has completed. This however
is not enough to treat certain atomicity properties, for example to specify that a
certain property should hold in case of an unexpected/abrupt termination (e.g.,
when the smart card is ripped out from the terminal). Thus, we introduced the
notion of a strong invariant to JAVA CARD DL. Such an invariant on the objects’
data is maintained at any time during applet execution and, in particular, in case
of abrupt termination. This resulted in extending the JAVA CARD DL with a new
modal operator [[·]] (“throughout”), which closely corresponds to Temporal Logic’s 2

operator. In the extended logic, the semantics of a program is a sequence of all states
the execution passes through when started in the current state (its trace). Using [[·]],
it is possible to specify properties of intermediate states in traces of terminating
and non-terminating programs. To fully treat strong invariant related properties
one also needs formalisation of JAVA CARD transactions in the logic. The transaction
mechanism [9] ensures that a piece of JAVA CARD program is executed to completion
or not at all. The theoretical aspects of integration of the throughout modality and
transactions into JAVA CARD DL are discussed in [4] and the practical experiences
in [14]. We refer the reader to those two papers for more in-depth discussion about
transaction related issues, here we should only say that transactions (specifically,
the possibility of an programmatic transaction abort) make the technical details of
JAVA CARD DL quite involved. Strong invariants and transactions are central part of
one of the discussed security properties.

2.4 Related Work

Formal approaches to JAVA CARD application development cover a wide spectrum of
techniques and we discuss only some of them here. One of the most common low-
level ones are byte code level verification [8] and model checking [10]. For us, the
most interesting approaches are those considered with source code level verification,
based on static checking and various program calculi. The work of Jacobs et al. [16]
is most closely related to our work and can partly serve as an overview of verification
techniques targeted at source code. It reports on successful verification attempts of
a commercial JAVA CARD applet with different verification tools: ESC/JAVA2 [12], the
Krakatoa tool [18], the Jive system [21], and the LOOP tool [17]. The security
property under consideration, one of the properties we discuss in this paper, is that
only ISOExceptions are thrown at the top level of the applet. The analysed applet
is a commercial one, sold to customers. There are no technical details revealed
about the applet, so it is difficult to compare its complexity to our case studies.
Jacobs et al. detected subtle bugs in the applet with respect to a possible uncaught
ArrayIndexOutOfBoundsException (with LOOP and Jive tools), as well as full
verification (no exceptions other than ISOException, satisfied postcondition, and
preserved class invariant) of single methods with the Krakatoa tool. The paper
admits that expertise and considerable user interaction with the back-end theorem
provers (PVS and Coq) were required. It is also noted that the provers are the
performance and scalability bottlenecks in the verification process. We will relate
to those issues while we present our results.
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3 Case Studies

In the remainder of this paper we will use two JAVA CARD case studies. The first
one is a JAVA CARD electronic purse application Demoney2 [19]. While Demoney
does not have all of the features of a purse application actually used in production,
it is provided by Trusted Logic S.A. as a realistic demonstration application that
includes all major complexities of a commercial program, in particular it is optimised
for memory consumption, which, as noted in [14], is one of the major obstacles in
verification. The Demoney source code is at present not publicly available, so there
are certain limits to the level of the technical detail in the presented examples.

The second case study is an RSA based authentication applet for logging into
a Linux system (SafeApplet). It was initially developed by Dierk Bolten for JAVA

Powered iButtons3 and was one of the motivating case studies to introduce strong
invariants into JAVA CARD DL. Here, we use a fully refactored version of SafeApplet,
which is described in [22].

4 Security Properties

The security properties that we discuss here are directly based on the ones described
in [20], which we will refer to as the SecSafe document in the rest of the paper. We
considered all of the properties listed there, but few of them we did not yet analyse in
full detail. However, we still discuss those remaining properties and the possibilities
of handling them in the KeY system at the end of this Section. Let us start with a
brief overview of the five properties that we do discuss in detail.

Only ISOExceptions at Top Level (Section 3.4 of the SecSafe document).
The exceptions of type ISOException are used in JAVA CARD to signal error condi-
tions to the outside environment (the smart card terminal). Such an exception
results with a specific APDU (Application Protocol Data Unit) carrying an error
code being sent back to the card terminal. To avoid leaking out the information
about error conditions inside the applet, a well written JAVA CARD applet should only
throw exceptions of type ISOException at top level.

No X Exceptions at Top Level. Due to its complexity, the first property is
proposed to be decomposed into simpler subproperties. Such properties say that
certain exceptions are not thrown, including most common NullPointerException,
ArrayIndexOutOfBoundsException, or NegativeArraySizeException. A special
case of this property is the next one.

Well Formed Transactions. This property consists of three parts, which say,
respectively: do not start a transaction before committing or aborting the previous
one, do not commit or abort a transaction without having started any, and do
not let the JAVA CARD Runtime Environment close an open transaction. The JAVA

CARD specification allows only one level of transactions, i.e., there is no nesting of

2We thank Renaud Marlet of Trusted Logic S.A. for providing the Demoney code.
3http://www.ibutton.com
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transactions in JAVA CARD. As we show later, this property can be expressed in terms
of disallowing JAVA CARD’s TransactionException.

Atomic Updates (Section 3.5 of the SecSafe document). In general, this
property requires related persistent data in the applet to be updated atomically. In
the context of our work this property is directly connected to the “rip-out” properties
and strong invariants, which we will use to deal with this property.

No Unwanted Overflow (Section 3.6 of the SecSafe document). This prop-
erty simply says that common integer operations should not overflow.

In the following we will go through these security properties one by one. For
each of the properties we will give a general guideline on how to formalise it in JAVA

CARD DL, give an example based on one or both of the case studies, give comments
about the verification of a given property and possibly discuss some more issues
related to the property.

4.1 Only ISOExceptions at Top Level

The KeY system provides a uniform framework for allowing and disallowing excep-
tions of any kind in JAVA CARD programs. We explain this with a general example.
Given some applet MyApplet one can forbid aMethod to throw any exception other
than ISOException in the following way (this is the actual syntax used by the KeY
Prover, we will explain it shortly):

java {"source/"}

program variables {
MyApplet self;

}

problem {
preconditions ->
<{ method-frame(MyApplet()): {

try {
self.aMethod();

}catch(javacard.framework.ISOException ie) {}
} }> true

}

This is a proof obligation that is an input to the KeY Prover. The first section in
the file tagged with java tells the prover where the source code of the program to
be verified is. The program variables section defines all the program/JAVA vari-
ables that are going to be used in the proof obligation. The problem section defines
the actual proof obligation. The string preconditions is a place holder for the
preconditions necessary to establish the correct execution of aMethod. One of the
obvious conditions to put there, is that the self reference is not null: !self =

null. With this proof obligation we want to prove that a call to aMethod either
terminates normally or with an exception of type ISOException. The actual call
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to the method, self.aMethod(), appears inside the diamond modality (<{}>) and
is wrapped with some additional statements. The diamond requires the program to
terminate normally, without any exceptions—any program p throwing an uncaught
exception does not satisfy the formula 〈p〉true. So, to specify that a program throws
a certain kind of exception only, one wraps the actual program with a try-catch

statement catching the particular kind of exception. This way, if our method termi-
nates normally or throws an ISOException (only), the program inside the diamond
still terminates normally, making the proof obligation valid. In case any other kind of
exception is thrown the proof obligation becomes invalid. The method-frame state-
ment tells the prover that our program is executed in the context of the MyApplet

class. Such information is necessary, for example, when the method in question is
private. The method-frame statements is one of the extensions to JAVA syntax used
in JAVA CARD DL to deal with scopes of methods, method return values, etc. We
want to stress here, that this extension is a superset of JAVA, not a subset—any valid
JAVA/JAVA CARD program can be used inside the modality. What follows, and what
cannot be seen in this schematic example, is that method calls can have arguments
and return values of arbitrary JAVA type.

Let us now demonstrate this property with real examples. First we give a speci-
fication of Demoney ’s method verifyPIN. This method is common to almost every
JAVA CARD applet, it is responsible for verifying the correctness of the PIN passed
in the APDU. When the PIN is correct the method sets a global flag indicating
successful PIN verification and returns. If the PIN is not correct or the maximum
number of PIN entry trials has been reached an ISOException with a proper status
code (including the number of tries left to enter the correct PIN) is thrown. The
following is the proof obligation for the KeY Prover specifying that the verifyPIN

method is only allowed to throw ISOException. For the simplicity of reading we
diverge slightly from the actual KeY Prover syntax, however no important issues are
omitted4:

java {"demoney/"}

program variables {
fr.trustedlogic.demo.demoney.Demoney self;
javacard.framework.APDU apdu;
byte length;
short offset;

}

problem {
// General preconditions for verifyPIN

!self = null & !apdu = null
& length = Demoney.VERIFY_PIN_LC & offset = ISO7816.OFFSET_CDATA
& !apdu.buffer = null
& apdu.buffer.length = length + ISO7816.OFFSET_CDATA
& apdu.buffer[ISO7816.OFFSET_LC] = length

// PIN well-formed

4E.g., accessing private object attributes requires extra syntax, integer operations are not ex-
pressed with infix operators, etc.
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& !self.pin = null
& !self.pin.isValidated = null & self.pin.isValidated.length = 1
...

// ISOException well-formed
& !ISOException.systemInstance = null
& !ISOException.systemInstance.theSw = null
& ISOException.systemInstance.theSw.length = 1

-> <{ method-frame(fr.trustedlogic.demo.demoney.Demoney()): {
try {
self.verifyPIN (apdu, offset, length);

}catch(javacard.framework.ISOException ie) {}
} }> true

}

There are numerous preconditions to guard the execution of verifyPIN. The first
set of preconditions defines, among other things, the proper values for the arguments
passed to verifyPIN. The second set specifies that the pin attribute of the applet is
a properly allocated OwnerPIN object. Finally, the third set of preconditions specifies
well formedness of the singleton class ISOException. In general, JAVA CARD does not
support garbage collection, so, to avoid dynamic object allocation and discarding,
the JAVA CARD environment keeps single instances of each exception type and reuses
them.

It took some trial and error steps to get all the preconditions right (we discuss
this issue in detail in Section 5). Missing even the smallest one renders the program
not terminating normally. This proof obligation is proven automatically by the KeY
Prover in slightly more than 3 minutes5 with less that 10 000 proof steps. This
proves that the verifyPIN method, given the preconditions, indeed can only throw
ISOException.

The SecSafe document requires that exceptions other than ISOException are
not thrown as a result of invoking the entry point of the applet. For us, it means
that we would have to prove our property for the applet entry method process. At
the current stage of our experiments we found it technically difficult to perform a
proof of this kind for the applet of the size of Demoney. We know however, that
such a proof can be modularised (see next example).

Let us show one more example of this property based on the SafeApplet. Among
other things, SafeApplet keeps a table of registered users that can be authenticated
with the applet. For each user a unique user ID and a set of RSA encryption keys
are stored. One of the methods in the applet is responsible for unregistering a given
user ID. The method is called dispatchDeleteKeyPair. It takes an APDU, which
stores the user ID to be unregistered. In case no user with such an ID is registered
an ISOException with a proper code (SW USER UNREGISTERED) is thrown, otherwise
the proper entry in the user table is marked as empty for future reuse. The actual
proof obligation reads as follows (some things that have been shown already are
marked with comments):

program variables {

5All the benchmarks presented here were run on a Pentium IV 2.6GHz Linux system with
1.5GB of memory. The version of the KeY system used is available on request.
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SafeApplet self;
javacard.framework.APDU apdu;
short expLen;
boolean finishedWithISOEx;
boolean finishedOK;

}

problem {
// APDUException well-formed
// ISOException well-formed

& !self = null
& !self.temp = null & self.temp.length = 200
& expLen = 1 & !apdu = null
& !apdu.buffer = null
& apdu.buffer.length = expLen + ISO7816.OFFSET_CDATA
& apdu.buffer[ISO7816.OFFSET_LC] = castToByte(expLen)

// User PIN well-formed and positively verified
& !self.users = null & self.users.length = SafeApplet.MAX_USERS
& all i:int. ((i >= 0 & i < SafeApplet.MAX_USERS) ->

!self.users[i] = null)
-> <{ method-frame(SafeApplet()):{

finishedWithISOEx = false; finishedOK=false;
try {
self.dispatchDeleteKeyPair(apdu);
finishedOK = true;

}catch(javacard.framework.ISOException e1){
finishedWithISOEx = true;

}
} }> (finishedOK = TRUE |
(finishedWithISOEx = TRUE &
javacard.framework.ISOException.systemInstance.theSw[0]

= SafeApplet.SW_USER_UNREGISTERED))
}

Among other things, the precondition says that the APDU that is a parameter to
our method contains proper data (1 byte containing the user ID to be unregistered),
and that the entries in the user table are not null. In the postcondition we also want
to specify that the ISOException that might be thrown contains the right status
code. Because of this, we need to distinguish between two cases in the postcondition:
either the method terminates normally or an ISOException is thrown with a proper
status code. That is why we had to use two local boolean variables: finishedOK and
finishedWithISOEx. The way the program in the modality is constructed ensures
that those two variables cannot be true at the same time (this can also be verified).

4.1.1 Proof Modularisation

This proof obligation is proved automatically with the KeY Prover in about 15
minutes and takes less than 40 000 proof steps. This may seem to be a lot. The
reason for such performance is threefold. First of all, there is a loop involved, which
goes through the table of users. This loop is symbolically unwound step by step
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and the proof size depends on the actual (constant) value of MAX USERS, which in
this case is 5. Secondly, the method performs a lot of preliminary work before
the actual modification of the users table. Finally, for this particular benchmark
result, there was no proof modularisation used whatsoever—when a method call is
made in a program the prover replaces the call with the actual method body and
executes it symbolically. Instead, one can use the pre- and postcondition of the called
method. In that case it is enough to establish that the precondition of the called
method is satisfied, and then the call can be replaced with the postcondition of the
called method. Obviously, one also has to prove that the called method satisfies its
specification. One limitation of this technique is that the method specification have
to include so called modification conditions [23, 7], i.e., a complete set of attributes
that the method possibly modifies. Factoring out method calls this way shortens
the total proof effort even in the simplest cases, e.g., a call to a relatively small
method may appear only once in a program, but, due to proof branching, it may
appear multiple times in the proof. Thus, using method specification in the proof
potentially avoids multiple symbolic execution of the same method. For comparison,
we applied such modularisation to our last example—we used specification just for
one method that contains a loop. The resulting proof took less that one minute
with 5 000 proof steps, the side proof establishing that the method containing the
loop satisfies its specification took less than 2 minutes with less than 12 000 rule
applications—the time performance increased 5 times.

4.2 No X Exceptions at Top Level

As already mentioned, the KeY system provides a uniform framework for dealing
with exceptions. The JAVA CARD DL calculus rules and the semantics of the diamond
modality require that no exceptions are thrown whatsoever. In particular, the cal-
culus is carefully designed to establish that each object that is dereferenced is not
null, that the indices used to access array elements are within array bounds, etc.
So, as long as the total correctness semantics is used, the KeY Prover establishes
absence of all possible exceptions.

Still, for the sake of consistency, we may want to say that we disallow one type
of exception in our program, while allowing all other kinds of exceptions. Following
the same schema as before, the general property of this kind can be formalised as
follows:

program variables {
MyApplet self;
boolean unwantedException;

}

problem {
preconditions & unwantedException = FALSE ->
<{ method-frame(MyApplet()): {

try {
self.aMethod();

}catch(java.lang.Exception e) {
unwantedException = (e instanceof UnwantedException);
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}
} }> (unwantedException = FALSE)

}

Here, the boolean variable unwantedException will become true only when the
undesired exception is thrown in aMethod, thus the above proof obligation states
that no UnwantedException is thrown by aMethod. Since it seems obvious how to
reuse previous examples to show that, e.g., no NullPointerException is thrown,
we are not going to show any more examples of this property.

4.3 Well Formed Transactions

The first two parts of this property say that a transaction should not be started
before committing or aborting the previous one, and that no transaction should
be committed or aborted if none was started. This boils down to saying that no
TransactionException related to well-formedness is thrown in the program. Since
in our model of JAVA CARD environment TransactionExceptions are only thrown
when transactions are badly formed (i.e., so far we do not model transaction ca-
pacity), we can simplify this part of the property to “No TransactionException is
thrown in the program.” We have already shown how such a property is formalised
and proved in previous sections.

The last part of the property says that no transactions should be left open to
be closed by JCRE. The information about open transactions is kept track of by
JCRE and can be accessed through the JAVA CARD API. In our model, the static at-
tribute transactionDepth of the JCSystem class stores this information. It is quite
straightforward to specify that a given method does not leave an open transaction:

problem {
preconditions & JCSystem.transactionDepth = 0 ->
<{ method-frame(MyApplet()): {

self.aMethod();
}

}> (JCSystem.transactionDepth = 0)
}

The precondition says that there is no open transaction before aMethod is called.
Such a precondition is necessary in case aMethod is considered to be top-level and
does not check for an open transaction before it starts its own. After aMethod is
finished we require the transactionDepth to be equal to 0 again, this ensures that
there is no open transaction. Also, what is implicit, is that no TransactionEx-

ception is thrown. Alternatively, one can show that the transaction depth after
executing the method is the same as before the execution. We will incorporate
illustrating this property with a real example into the next Section, as it integrates
nicely with the next property.

4.4 Atomic Updates

This property requires related persistent data in the applet to be updated atomi-
cally. As we stated already at the beginning of the paper, strong invariants are used
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to specify consistency of data at all times, so that in case an abrupt termination oc-
curs, the data (in particular, related data) stay consistent. Hence, strong invariants
seem to be the right technique to deal with consistency properties related to atomic
updates.

We will illustrate this property briefly with the same example that is discussed
in full in [14], for this work however we were able to use the real Demoney applet
instead of the simplified one used in [14]. One of the routines of the electronic
purse is responsible for recording information about the purchase in the log file.
Among other things, the current balance after the purchase is recorded in a new
log entry. As the SecSafe document points out accurately, when atomic consistency
properties are considered, one has to be able to say what it means for the data to
be related. In our example we want to state that the current balance of the purse
is always the same as the one recorded in the most recent log entry. The method
that is responsible for debiting the purse balance and updating the log file is called
performTransaction and uses JAVA CARD transaction mechanism to ensure atomic
update of the involved data. In JAVA CARD DL, to specify that a property holds at all
times, the throughout modality is used. Thus, the resulting proof obligation reads:

problem {
JCSystem.transactionDepth = 0

& !self = null & !apduBuffer = null
& apduBuffer.length = 45
& apduBuffer[ISO7816.OFFSET_LC] = DemoneyIO.COMPLETE_TRANSACTION_LC
& offsetTransCtx = DemoneyIO.COMPLETE_TRANSACTION_OFF_TRANS_CTX
& !self.logFile = null
& !self.logFile.records = null
...
& ex currentRecordPre:ArrayOfint.(

currentRecordPre = self.logFile.records[
(self.logFile.nextRecordIndex - 1) % self.logFile.records.length]
& short_compose(

currentRecordPre[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE],
currentRecordPre[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE + 1]) =

self.balance
)

-> [[{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {
self.performTransaction (amount, apduBuffer, offsetTransCtx);

}
}]] all currentRecordPost:ArrayOfint.(

currentRecordPost = self.logFile.records[
(self.logFile.nextRecordIndex - 1) % self.logFile.records.length]

->
short_compose(

currentRecordPost[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE],
currentRecordPost[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE+1]) =

self.balance
)

}

The preconditions basically state that all the applet’s data is properly formed and
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initialised. The main part of the specification is the strong invariant, which state
that the current balance of the purse (self.balance) is equal to the one recorded
in the most recent log entry (short compose...). Our strong invariant occurs in
two places, in the precondition and in the postcondition. The throughout modality
requires the postcondition to hold in every intermediate state of execution of the
program in the modality, including the initial state, thus, we need to assume that
our strong invariant holds before the program is executed, and that is why the
strong invariant is included in the precondition. The purchase log data structure in
Demoney is basically two-dimensional byte array, where the first index points to a
given log entry, and the second index points to the actual entry data. Since JAVA

CARD only allows only one-dimensional arrays, a workaround in the Demoney code
has been introduced, namely, first a one-dimensional array of objects is allocated:

Object[] records = new Object[...];

and then each entry in this array is associated with a byte array:

records[i] = new byte[...];

Because of this, the records array lacks static type information. This results in
(1) type casts in the Demoney code, and (2) necessity to express this hidden type
information in our JAVA CARD DL formulae. The way to do this is to use existential
quantifiers in the preconditions and universal quantifiers in the postconditions, as
in our example above. Those quantifier constructs are basically equivalents of type
casts in JAVA CARD DL.

Log records are stored in a cyclic file, i.e., the new entry overwrites the oldest
one, thus, the need for cyclic indexing, using the modulo operator, of the array
elements in the strong invariant.

The last element of the strong invariant to explain is the short compose function
symbol. It is an abstracted way to say that two byte values are composed to form
a short value. This way one abstracts away from the actual JAVA CARD Virtual
Machine implementation of short data type (e.g., big or small endian) and avoids
unnecessarily complicated JAVA integer expressions. Obviously, a small set of proof
rules to deal with this abstracted representation is needed.

This proof obligation is proved automatically in 12 minutes with less than 12 000
proof steps. This particular method uses two loops to copy array data, which are not
factored out by modularisation, so we consider this a relatively good result. Some
modularisation using JAVA CARD API specification has been used in the proof (e.g.,
a method specification for JAVA CARD’s setShort method, which makes use of the
short compose function symbol), however we have to point out here, that in case
of proof obligations involving the throughout modality using method specifications
is not possible in general, and in cases where it is possible it has to be used with
caution.

This proves that the related data stays consistent throughout the execution of
the performTransaction method. Since a JAVA CARD transaction is involved in this
method it would be desirable to also show that no TransactionException is thrown
and that no open transaction is left after this method is executed as stipulated in
the previous Section. We intend to make this property even stronger and say that
there is no exception thrown whatsoever. The proof obligation reads:
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problem {
// Mostly the same preconditions as before
-> <{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {

self.performTransaction (amount, apduBuffer, offsetTransCtx);
}

}> (JCSystem.transactionDepth = 0)

This is proved automatically in 11 minutes with less than 12 000 proof steps.
We have also proved a similar consistency property about one of the methods in

SafeApplet. There we specified that all the registered users have a properly defined
set of private and public encryption keys at all times. The proof obligation is the
following:

problem {
// General preconditions

!self = null & !apdu = null & !self.SafeApplet::temp = null
& expLen = 1
// APDUException, ISOException well formed
// userPIN well formed
& !self.userPIN = null & ...
// General assumptions about the users table
& !self.users = null
& self.users.length = SafeApplet.MAX_USERS
& all i:int.all j:int. (

(i >= 0 & i < SafeApplet.MAX_USERS &
j >= 0 & j < SafeApplet.MAX_USERS ) ->

(!self.users[i] = null & !self.users[i].keydata = null &
(!i=j ->

(!self.users[i] = self.users[j] &
!self.users[i].keydata = self.users[j].keydata &
(
(self.users[i].empty = FALSE &
self.users[j].empty = FALSE) ->

!self.users[i].userID = self.users[j].userID
)))))

// Strong Invariant
& all i:int.(

i >= 0 & i < SafeApplet.MAX_USERS &
self.users[i].empty = FALSE ->
rsa_proper_key(self.users[i].keydata.privateExponent,
self.users[i].keydata.publicExponent,
self.users[i].keydata.modulus

) = TRUE)
-> [[{ method-frame(SafeApplet()):{

self.dispatchGenerateKeyPair(apdu); }
}]]
// Strong Invariant
all i:int.(
i >= 0 & i < SafeApplet.MAX_USERS &
self.users[i].empty = FALSE ->
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rsa_proper_key(self.users[i].keydata.privateExponent,
self.users[i].keydata.publicExponent,
self.users[i].keydata.modulus

) = TRUE)

The preconditions in the front are mostly the same as in the previous examples.
The preconditions about the users table require more explanations. Due to lack
of garbage collection the entries in the users table are reused, thus, each object of
type User contains a boolean attribute empty to indicate if a given object is in use.
Furthermore, we have to say that (1) each element in the users table contains a
distinct User object, (2) users don’t share key data objects, and (3) user IDs of non
empty users are unique, i.e., a user with a given ID is registered only once. The
strong invariant specifies that all non empty users contain a set of matching private
and public keys at all times. The rsa proper key function symbol is used to specify
that a key set contains matching keys. This function symbol has the same role as
the short compose function symbol in the previous example and is handled in a
very similar way.

The actual implementation of the dispatchGenerateKeyPair does not use JAVA

CARD transactions to ensure data consistency. Instead, the method makes use of the
empty attribute of each User object. When a new user is introduced, first the User

object is initialised and then it is marked to be in use. When a user is deleted, the
object is simply marked as empty. This way, the consistency property that applies
to non empty objects only, holds at all times. However, such coding results in a
more complex proof. Also, because of the numerous occurrences of quantifiers in
the proof obligation, some small amount of manual interaction with the prover was
necessary, namely 8 manual quantifier instantiations were required. Otherwise the
proof proceeded automatically and took 3 minutes to finish.

4.5 No Unwanted Overflow

Finally, we deal with a property purely related to integer arithmetic. It says that
additions, subtractions, multiplications and negations must not overflow. To deal
with all possible issues related to integer arithmetic, in particular overflow, the KeY
Prover uses three different semantics of arithmetic operations. The first semantics
treats the integer numbers in the idealised way, i.e., the integer types are assumed to
be infinite and, thus, not overflowing. The second semantics bounds all the integer
types and prohibits any kind of overflow. The third semantics is that of JAVA, that
is, all the arithmetic operations are performed as in the JVM, in particular they are
allowed to overflow and the effects of overflow are accurately modelled. Thus, to
deal with overflow properties, it is enough for the user to choose appropriate integer
semantics in the KeY Prover.

Let us illustrate this with an example taken from the SecSafe document. First let
us look at a proof obligation with a badly formed program with respect to overflow:

problem {
inShort(balance) & inShort(maxBalance) & inShort(credit) &
balance > 0 & maxBalance > 0 & credit > 0 ->
<{ try {
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if (balance + credit > maxBalance)
throw ie;

else
balance += credit;

}catch(javacard.framework.ISOException e){}
}> balance > 0

}

The problem in this program is that the balance + credit operation can overflow
making the condition inside the if statement false resulting in a balance being less
than 0 after this program is executed. When processed by the KeY Prover with the
idealised integer semantics switched on, this proof obligation gets proved quickly.
When the arithmetic semantics with overflow control is used this proof obligation is
not provable. The fix to the program to avoid overflow is to change the if condition
in the following way:

...
if (balance > maxBalance - credit)

...

This proof obligation is provable with both kinds of integer semantics. Further
discussion about handling integer arithmetic in the KeY system can be found in [6].

4.6 Other Properties

We have just shown how to formalise and prove five kinds of security properties from
the SecSafe document. Here we briefly discuss the remaining ones.

Memory Allocation. Due to restricted resources of a smart card, one of the
requirements on a properly designed JAVA CARD applet is the constrained memory
usage. This includes bounded dynamic memory allocation and no memory allocation
in certain life stages of the applet. This seems like a problem strictly related to static
analysis, because in general there is no need for precise analysis of the control flow,
although in some cases such precise analysis would be required. For example, if
memory allocation is performed inside a loop, the precise loop bound has to be
known. Either way, we believe that this property in general can be formalised
and proved with the KeY system as well. The main idea is the following. The
KeY Prover maintains a set of implicit attributes for every object to model certain
aspects of the JAVA virtual machine, in particular object creation. For example, each
type of object contains an implicit reference <next>, which points to the object of
the same type that was created next after this one—the JAVA CARD DL rules that
handle object creation are responsible for updating the state of the <next> reference
in the proof. There is no obstacle to introduce a new static implicit attribute to
our JAVA model that would keep track of the amount of allocated memory or the
possibility to allocate memory. However, due to optimisation of inheritance and
interface representation in JVM, the actual memory consumption may differ for each
JVM implementation. Thus, keeping precise record of the allocated memory seems
to be a non trivial task and thorough treatment of this problem requires further
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research. For the moment, we would be only able to give approximate figures for
memory consumption.

Conditional Execution Points. This property says that certain program points
must only be executed if a given condition holds. Again, this is a subject to static
analysis (e.g., ESC/JAVA2 provides means to annotate and check conditions at any
program point), but it can also be done with theorem proving by introducing a
generalised version of the throughout modality. The throughout modality requires
that a property holds after every program statement. For the generalised case, such
a property would have to hold only in certain parts of the program. So there are no
theoretical obstacles here, but due to less priority this has not yet been implemented
in KeY.

Information Privacy and Manipulation of Plain Text Secret. Those two
properties fall into the category of data security properties. As it has been shown
in [11], formalising and proving data security properties can in general be integrated
into interactive theorem proving, however no experiments on real JAVA CARD exam-
ples were performed so far.

5 Discussion

5.1 Lessons Learned

Here we sum up the practical experience we gained during the course of this work.
The main lesson is that the current state of software verification technology that
at least the KeY system offers makes the verification tasks feasible. Schematic for-
malisation of the security properties from the SecSafe document was easy, however,
applying it to concrete examples was much more tricky. We found getting right
all the preconditions to guard the execution of a given method very difficult. This
particularly holds when normal termination is required. Getting the preconditions
right requires deep understanding of the program in question and the workings of
the JCRE. However, calculation of the preconditions can be tool supported as well:

In [16] ESC/JAVA2 is used to construct preconditions. In short, the tool is run
interactively on an unspecified applet, which results in warnings about possible ex-
ceptions. Such warnings are removed step by step by adding appropriate expressions
to the precondition. Alternatively, as [16] suggests, the weakest precondition cal-
culus of the Jive system could be used by running the proof “backwards”, i.e.,
by starting with a postcondition and calculating the necessary preconditions. This
however, has not been presented in the paper and to our understanding the approach
has certain limitations.

The KeY system itself provides a functionality to compute specifications for
methods to ensure normal termination [25]. The basic idea behind computing the
specification is to try to prove a total correctness proof obligation. In case it fails,
all the open proof goals are collected and the necessary preconditions that would
be needed to close those goals are calculated. There are two disadvantages to this
technique: (1) for the proof to terminate the preconditions that guard the loop
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bounds cannot be omitted, so there is no way to calculate preconditions for loops,
they have to be given beforehand, (2) proofs have to be performed the same way
for computing the specification as it is done when one simply tries to prove the
obligation, so computing the specification is in fact a front-end for analysing failed
proof attempts in an organised fashion. Moreover, the specifications produced can
be equally hard to read as is analysing the failed proof attempt manually. Despite
all this, we still find the specification computation facility of the KeY system quite
helpful for proof obligations that produce failed proof obligations that are either
small or at least contain only few open proof goals.

Proving partial correctness also requires caution. A wrong or unintended pre-
condition can render the program to be always terminating abruptly. This makes
any partial correctness proof obligation trivially true. Thus, in cases where a partial
correctness proof is necessary, like the atomicity related properties (the through-
out modality is partial), one should accompany such a proof with an additional
termination property, like we did in Section 4.4.

To enable automation, the KeY Prover and the JAVA CARD DL are designed in a
way not to bother the user with the workings of the calculus and the proof system.
However, we have realised that proper formulation of the DL expressions can further
support automation. We have also introduced a small number of additional simpli-
fication rules for arithmetic expressions. Such rules considerably simplify the proof,
but introducing them, although being relatively easy, requires a little bit more than
the basic understanding of JAVA CARD DL. Moreover, each introduced rule has to
be proven sound. The rules are very simple and we have means to do it automati-
cally with the KeY system [3], but due to constantly changing set of those rules, we
decided to leave the correctness proofs out for the time being.

Our experimental results show that proof modularisation greatly reduces the
verification effort. The problem of modularising proofs using method specifications
has been well researched [23, 7], but has been implemented in the KeY system only
recently, thus, we gained relatively little experience here. So far we have learnt that
using method specification in the context of the throughout modality is not always
possible and has to be done with care.

Finally, one of the goals of formal verification is to find and eliminate bugs. So far,
we have not found any in our case studies. We believe the reason for this is twofold.
First, the properties we considered so far were relatively simple and the methods
were expected not to contain bugs related to those properties. Second, neither of
the applications we analysed as a whole, only parts of them. In particular, the
bugs often occur at the points where the methods are invoked, due to an unsatisfied
method precondition.

5.2 Static Analysis vs. Interactive Theorem Proving

The results of this paper show that we are able to formalise and prove all of the
security properties defined in the SecSafe document. Many of the properties would
require quite advanced static analysis and, as far as we know, no such static analysis
technique has been developed so far. Moreover, we believe that some properties
go beyond static analysis, e.g., certain aspects of memory allocation (Section 4.6)
require accurate analysis of the control flow. Furthermore, each single property
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would probably require a different approach in static analysis, while the KeY Prover
provides a uniform framework. For example, all properties related to exceptions are
formalised in the same, general way, and in fact can be treated as one property.
Also, dealing with integer number overflow is done within the uniform framework of
different integer semantics, that cover all possible overflow scenarios.

Therefore, we consider interactive theorem proving as a feasible alternative to
static analysis. More generally, deep integration of static analysis with our prover is
a subject of an ongoing research [13]. One argument that speaks for static analysis
is full automation. However, our experiments show that the KeY system requires
almost no manual interaction to prove the properties we discussed. Also, the time
performance of the KeY prover seems to be reasonable, although the work on im-
proving it continues. On the other hand, as we noticed earlier, constructing proof
obligations require some user expertise. In our opinion however, this is something
that is difficult to factor out when serious formal verification attempts are consid-
ered, no matter if theorem proving or static analysis is used as the basis.

6 Summary and Future Work

We have shown how most of the security properties of the industrial origin for JAVA

CARD applications can be formalised in JAVA CARD DL and proved, for the most
part automatically, with the KeY Prover. Most of the properties were illustrated by
real-life JAVA CARD applets. Considerable experience related to formal verification
has been gained during the course of this work. This experience indicates that JAVA

CARD source code verification, at least using the KeY system, has recently become a
manageable and relatively easy task, however, for scenarios like the one presented in
this work, user expertise is required. Two main areas for improvement are clearly the
modularisation of the proofs and tool support for calculating specifications (more
precisely, preconditions). Our future work will concentrate on those two aspects,
to reach full, truly meaningful verification of JAVA CARD applications with as much
automation as possible. We feel that the performance results should already be
acceptable by software engineers, however, the work on improving the speed of the
prover will continue. Finally, our experience clearly shows that interactive theorem
proving is a reasonable alternative to static analysis—we plan to further explore this
area by concentrating on the few properties we only discussed briefly here.
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[11] Ádám Darvas, Reiner Hähnle, and Dave Sands. A theorem proving approach
to analysis of secure information flow. Technical Report 2004–01, Department
of Computing Science, Chalmers University of Technology and Göteborg Uni-
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