
Noname manuscript No.
(will be inserted by the editor)

Systematic Development of JAVA CARD Applets

Wojciech Mostowski

Radboud University Nijmegen, The Netherlands
Computing Science Department
e-mail: W.Mostowski@cs.ru.nl

31 July 2006

Abstract We present an approach to systematic, tool-
supported design and development of JAVA CARD ap-
plets. We employ the Unified Modeling Language (UML)
and formal methods for object-oriented software devel-
opment in our approach. Our goal is to make JAVA CARD

applets robust “by design”, to make the development
process independent of the JAVA CARD platform, and to
enable applets to be verified formally by the KeY system.
First we analyse the current situation of JAVA CARD ap-
plet development, then we present a real life JAVA CARD

case study and describe the problems we found that
should be addressed by systematic development. Finally,
we propose some solutions to selected problems by us-
ing UML specifications, software design patterns, formal
specifications and a modern CASE tool support.

Key words object-oriented software development –
UML – OCL – formal verification – JAVA CARD – smart
cards

1 Introduction

In this article1 we present an approach to systematic,
tool-supported design and development of JAVA CARD

applets. Our work has been driven by the following goals:
JAVA CARD applets should be robust “by design”, the
development process should be independent of the JAVA

CARD platform, and it should be possible to formally
verify applet correctness with the KeY system [1]. First
we analyse the current situation of JAVA CARD applet
development, then we present a real life JAVA CARD case
study (pam iButton [6]) and describe the problems we
found that should be addressed by systematic develop-
ment and formal verification. Based on the case study we

1 This article is based on a paper that was published in the
proceedings of Rigorous Object-Oriented Methods Workshop
held in London, U.K., in March 2002.

propose solutions to selected problems by presenting a
framework that incorporates the use of UML [29] speci-
fications, software idioms and design patterns, a modern
CASE tool support, as well as formal specification and
verification to provide a systematic development process
for JAVA CARD applets.

1.1 JAVA CARD

JAVA CARD technology2 [10] provides a means of pro-
gramming smart cards with (a subset of) the JAVA pro-
gramming language. Today’s smart cards are small com-
puters, providing 8, 16 or 32 bit CPU with clock speeds
ranging from 5 up to 40 MHz, ROM memory between
32 and 64KB, EEPROM memory (writable, persistent)
between 16 and 32 KB and RAM memory (writable, non-
persistent) between 1 and 4 KB. Smart cards communi-
cate with the rest of the world through application proto-
col data units (APDUs, ISO 7816–4 standard). The com-
munication is done in master-slave mode—it is always
the master/terminal application that initialises the com-
munication by sending the command APDU to the card
and then the card replies by sending a response APDU
(possibly with empty contents). In the case of JAVA pow-
ered smart cards (JAVA CARDs) the card’s ROM con-
tains a JAVA CARD virtual machine which implements
a subset of the JAVA programming language and allows
running JAVA CARD applets on the card. The following
are the features not supported by the JAVA CARD lan-
guage compared to full JAVA: large primitive data types
(int, long, double, float), characters and strings, mul-
tidimensional arrays, dynamic class loading, threads and
garbage collection. Selected JAVA CARD smart cards go
beyond those limitations, for example, by supporting
the int type or garbage collection. However, such ex-
tensions to the JAVA CARD standard are vendor-specific
and in general should not be relied on. Most of the re-
maining JAVA features, in particular object-oriented ones

2 http://java.sun.com/products/javacard/

2 Wojciech Mostowski

like interfaces, inheritance, virtual methods, overload-
ing, dynamic object creation, are supported by the JAVA

CARD language. The card also contains the standard
JAVA CARD API, which provides support for handling
APDUs, JAVA CARD specific system routines, PIN codes,
etc. A JAVA CARD applet should implement the install
method responsible for the initialisation of the applet
and a process method for handling APDU communica-
tion with the terminal. A single JAVA CARD smart card
can host multiple applets.

1.2 Analysis of the Current Situation

Although the JAVA CARD language is based on full JAVA,
the nature of the JAVA CARD environment (for exam-
ple, constrained memory, no garbage collection) makes
JAVA CARD programming quite different from normal
JAVA programming. Powerful development and mod-
elling tools for JAVA are not JAVA CARD “aware”. Such
JAVA tools can become helpful provided they can be cus-
tomised to JAVA CARD needs. However, this is not com-
mon practice. Instead, each JAVA CARD vendor provides
its own development environment and proposes its own
JAVA CARD specific solutions. Examples of such envi-
ronments include the Sm@rtCafé Professional Toolkit,3

Aspects Developer,4 or iB-IDE tool.5 Such tools try to
ease the actual process of writing JAVA CARD programs,
installing them to the card and testing. However, they
hardly ever provide the support for the design of JAVA

CARD applets on a higher level; in particular the use of
UML development is not possible. A typical JAVA CARD

tool may provide the following functionality:

– automatic creation of the skeleton code for both the
card applet and Open Card Framework [30] compli-
ant JAVA terminal application,

– debugging tools with the possibility of running the
card applet in an emulated environment,

– a tool to send APDU messages which is used to com-
municate with applets installed on a card without
a terminal application, and to provide some card
administration services—installing applets onto the
card, erasing the card’s memory, etc.

However, none of the tools provide any kind of high level
modelling capabilities to design JAVA CARD applets, nor
do they provide any support for formal specification and
verification.

A notable exception in this situation is the JCOP
toolset from IBM.6 The toolset is implemented as a plug-
in for Eclipse.7 This gives the possibility to use UML and

3 http://www.gi-de.com
4 http://www.aspectssoftware.com/devtools/
5 http://www.maxim-ic.com/products/ibutton/iB-IDE/
6 http://www-306.ibm.com/software/wireless/wecos/

tools.html
7 http://www.eclipse.org

formal verification plug-ins available for Eclipse within
the same framework (see also Section 1.4).

We have just mentioned the need for the use of formal
methods in JAVA CARD applet development. This need
is motivated by two reasons. First of all, smart card ap-
plets are usually security-critical. Secondly, in contrast
to normal computer software, making updates on the
cards distributed in large amounts is not possible. Thus,
correctness of the card applet should be assured by the
best possible means. At the same time JAVA CARD ap-
plets seem to be suitable for formal verification because
they are small in size and the JAVA CARD programming
language lacks some of the complications of the full JAVA

language that makes formal verification difficult (such
as threads, graphical user interfaces, or complex data
types). Finally, a controlled software development pro-
cess in general (such as the one we propose in this article,
or an industrial one, for example the Nokia OK process)
will benefit from adding the formal methods support to
it. In the best case scenario, the obvious benefit of using
formal methods is a formally verified program. In the
worst case scenario, unverified formal specifications can
always serve as “formal” documentation.

Based on our experience, we believe that the quality
of JAVA CARD applets would benefit from a controlled,
well-defined, systematic development process with a pos-
sibility to formally verify applet properties. Our case
study, presented in Section 2, show that this is indeed the
case. Our further experience [15] shows that a properly
designed and developed JAVA CARD applet substantially
eases the formal verification effort.

1.3 Related Work

Most of the literature on JAVA CARD program develop-
ment concentrates on verification. It can be divided into
work on bytecode and source code level. An overview
of work done on the bytecode level can be found in [7].
For the source code verification of JAVA CARD applets
we only name the most important tools and projects.
The LOOP tool [19] employs the PVS theorem prover to
prove properties about JAVA CARD programs annotated
with JML [22] (JAVA Modeling Language) specifications.
In particular, [18] discusses the specification and verifi-
cation of control flow properties for a JAVA CARD applet.
Similarly to our approach, the properties are described
with a state machine, which is formalised in JML. JML is
also used as a specification language in ESC/JAVA2 [11].
ESC/JAVA2 provides full automation, trading off the
completeness and soundness of the static checking used
to verify JAVA CARD programs. [17] discusses system-
atic development of formally verifiable security proto-
cols; state machines are used again and the resulting
JML specifications are verified with ESC/JAVA2. Other
tools based on JML are Krakatoa [23], Jive [26], and
Jack [9]. The Krakatoa tool uses the Coq theorem

Systematic Development of JAVA CARD Applets 3

prover as the basis for verification. The Jive system
employs an extended Hoare style calculus implemented
in the Isabelle and PVS theorem provers and provides
a dedicated graphical user interface. Finally, the Jack
tool also provides a dedicated graphical user interface to
prove properties about JML annotated JAVA programs
by employing several possible back-end theorem provers.

Our work has been done in the context of the KeY
Project8 [1]. One of its main objectives is to integrate
formal methods with object-oriented software design to
provide user-friendly formal verification environment for
JAVA CARD. This makes the KeY system to be best suited
for our purposes. The design and specification languages
used in KeY are respectively UML [29] (Unified Modeling
Language) and OCL [32] (Object Constraint Language,
now part of the UML standard). As an alternative to
OCL, JML can also be used in the KeY system. In this
article we show how we use the KeY system to support
formal development of JAVA CARD applets.

Apart from the formal approaches to JAVA CARD

development, the following should be mentioned. The
Open Card organisation [30] bundles efforts to create a
common and unified programming framework for writing
terminal applications for smart cards from different man-
ufacturers (Open Card Framework). The Global Plat-
form organisation9 [14] concentrates on providing a high
level framework (API) for uniform treatment of certain
JAVA CARD applet features, including the applet life cy-
cle (personalisation) states that we will discuss. Finally,
JAVA CARD applets are quite often security-critical; [21]
shows how UML can be used to express security require-
ments during system development, and [8] discussed how
to secure the remote method invocation (RMI) protocol
of the new JAVA CARD standard.

1.4 Our Approach

Our approach to the development of JAVA CARD applets
uses UML modelling techniques, software patterns and
incorporate formal methods in an incremental way. By
incremental we mean that the use of formal methods
should be optional and it should be up to the devel-
oper (who might be unfamiliar with formal methods)
at which level of detail formal methods are used. This
view is stressed in [1,5]. To enable and ease the use of
formal methods, we try to provide means of creating cer-
tain kinds of formal specifications semi-automatically in
two ways. The first way is applying software and speci-
fication patterns solving some common problems to the
application design [13]. Such patterns usually need to be
instantiated with parameters, but giving the parameters
is the only job that is required from the developer. The
second way is to create a specification out of UML state
diagrams, also possibly taking some parameters from the

8 http://www.key-project.org
9 http://www.globalplaform.org

user. Both ways enable partial specifications to be cre-
ated without detailed knowledge about the formal spec-
ification language. The created specifications are well-
formed by design and ready to be formally verified.

Having all this support we can make JAVA CARD ap-
plets robust by design and easier to verify. To achieve
our goals we need support from a modern, fully cus-
tomisable UML CASE tool, as well as a suitable formal
verification system. As already mentioned, we use the
KeY system [1] as the basis in our framework. The KeY
system extends a commercial UML CASE tool with for-
mal verification modules in a seamless way. CASE tools
that the KeY system currently supports include the To-
gether tool family from Borland10 and Eclipse. The To-
gether Control Center that we used for this work pro-
vides state of the art support for UML and is fully ex-
tensible through its JAVA open API. Therefore, we can
use powerful UML support as well as formal verification
tools in one framework. One of the KeY extensions to
the CASE tool provides a library of common design and
specification patterns to support creation of OCL spec-
ifications [13]. Another extension we introduced to the
CASE tool supports low level JAVA CARD development
tasks, like compiling, installing, or testing applets, either
in a simulated environment or on real smart cards [27].
This allows us to make our solutions to JAVA CARD de-
sign issues independent of the actual JAVA CARD plat-
form and of any vendor-specific development environ-
ment. Another possible tool setup that would allow to
achieve such flexibility is Eclipse equipped with the KeY
plug-in for verification support, the Together Architect
plug-in for UML modelling, and the JCOP toolset for
low level JAVA CARD support.

In this work we limit ourselves to JAVA CARD ap-
plets residing on smart cards, that is, we do not con-
sider the problems of developing the terminal applica-
tion. The main reason is that terminal applications are
mostly regular JAVA programs and usually are part of a
bigger project, to which existing development techniques
can be applied, for example the Unified Process [20].
Moreover, suitable efforts to support uniform develop-
ment of terminal applications are carried out already,
for example in the Open Card Framework [30]. The ap-
plets themselves seem to be too small to be subject to
a “big” process like UP—we believe that developing a
JAVA CARD applet should be seen as a small subprocess,
that needs a JAVA CARD specific approach with more
focus on formal aspects.

The next section presents a motivating JAVA CARD

case study based on which we identify JAVA CARD spe-
cific design issues and problems we want to address (Sec-
tion 3). In Section 4 we walk through and re-engineer
our example to present our framework. In Section 5 we
discuss the solutions in the framework that address the

10 http://www.borland.com/together/

4 Wojciech Mostowski

problems we identified. Finally, Section 6 summarises the
article.

2 Case Study: pam iButton

We start with briefly discussing our case study, which
illustrates some of the common design requirements for
JAVA CARD applets. The pam iButton package was writ-
ten by Dierk Bolten and is available free of charge [6].
The package allows a Linux user to authenticate himself
to the system by inserting an iButton into the reader
instead of giving the password. A JAVA-powered iBut-
ton11 is a JAVA CARD smart card embedded in a but-
ton shaped case implementing JAVA CARD API version
2.0 (which differs substantially from the current JAVA

CARD API 2.2.1). It supports the int data type and pro-
vides garbage collection. The most recent JAVA-powered
iButton has an 8 bit processor, a cryptographic (RSA
and SHA1) coprocessor and 130KB of non-volatile RAM
memory. The pam iButton package consists of:

– a PAM (Pluggable Authentication Module) Linux
system library which is responsible for authentica-
tion,

– the JAVA CARD applet (SafeApplet) which performs
the actual authentication on the iButton device,

– a setup utility to configure the necessary system files
and administer the iButton applet.

The following is an example pam iButton usage sce-
nario. First a Linux user account needs to be set up to
be able to use the iButton authentication. The user is
assigned a unique ID number and an RSA key pair (pri-
vate and public key) is generated on the iButton and
stored together with the user ID in the iButton mem-
ory. Multiple user IDs can be registered on the iButton.
The public key is then retrieved by the system from the
iButton and stored in the system configuration file to-
gether with the user ID number. The iButton is ready
to be used for authentication. When the user wants to
be authenticated he types in his login name. The system
looks up his ID number and encrypts a random message
with the user’s public key. The encrypted message and
the user ID number are sent to the iButton applet. The
applet checks if the user is registered and if so, it de-
crypts the message with the private key, computes the
SHA1 hash code from the decrypted message and sends
it back to the system. The system compares the received
SHA1 code with its own and if they match the user is
authenticated successfully.

The most important commands that the SafeApplet
accepts are:

– Store data: stores temporary data for a subsequent
command.

11 http://www.maxim-ic.com/products/ibutton/

– Authenticate user: given the user ID performs the
challenge-response authentication described earlier.
In response sends back the SHA1 code of the mes-
sage. The encrypted message has to be sent before-
hand with the ‘store data’ command.

– Set PIN (PIN protected): sets a new PIN for PIN
protected commands.

– Generate key pair (PIN protected): given the user ID
generates an RSA key pair (the generation is done on
the card) and stores it together with the user ID in
the applet memory. In response sends back the public
part of the key.

– Get public key: given the user ID sends back the
public part of the key.

– Delete key pair (PIN protected): given the user ID
removes this user’s key pair entry from applet mem-
ory.

– Get key information: sends back the ID numbers of
users registered in the applet.

Any command (except for the first and the last) sent to
the applet can possibly result in an error. In that case,
instead of the expected answer, the error code (status
word) is sent back to the terminal indicating the cause
of the error. Internally in the JAVA CARD applet this is
done by throwing an appropriate ISOException.

3 Design Issues for JAVA CARD Applets

Here we describe the design issues that came up while
we were studying the example and we try to list some
common requirements for a JAVA CARD applet.

Some questions that immediately came to mind were
the following. Who is the owner of the applet PIN: the
Linux system administrator or the user? Who is the per-
son to set up iButton for authentication: the system ad-
ministrator, the user, both? What are the applet deploy-
ment steps: who is responsible for installing the applet to
iButton, when is iButton ready to be passed to the user
for regular use (that is, when does the applet get per-
sonalised)? Should it be possible for one iButton applet
to be used on two different Linux systems? Answers to
some of the questions imply answers to some of the other
questions. For example, if a single applet can be used on
many different systems then it certainly should be the
user owning the applet PIN and it should be the user
that sets up the system configuration (probably through
some administrator privileged system tool, which itself
needs careful design).

One way or the other, the answers to the questions
above are not provided by the design of the applet, at
least not explicitly, and since this kind of application is
security-critical, these issues require careful thought.

Next we took a closer look at the protocol that is
used to exchange information between the terminal ap-
plication and the iButton applet. We discovered the fol-
lowing:

Systematic Development of JAVA CARD Applets 5

– The applet does not impose or check the order on
commands it receives. This opens the possibility of
attack scenarios where commands are sent to the
card in a different order than the applet expects, with
the aim to corrupt the state of the applet. In case of
this particular applet we did not find a sequence of
command calls that could put the applet in an un-
recoverable state, but we did manage to corrupt the
applet state with garbage data, causing some mal-
functioning. The recovery process required tedious
manual command sending.

– The problem with out-of-sequence commands is ag-
gravated by the fact that some of the commands re-
quire input that does not fit into a single APDU,
so there are multiple APDU messages being sent for
one command. However, the applet does not check
whether the right number of APDU messages in a
right order is sent. In particular, this may cause the
applet to run out of memory, as all the incoming data
is being accumulated in the applet. Moreover, there
are no integrity checks on the data sent.

– The last thing we found strange about the protocol
is that the PIN is sent along with each command
that requires PIN authentication. Generally there is
nothing wrong with it, but it produces unnecessary
overhead and it is different from the commonly used
solution of establishing the PIN once per command
exchange (card) session.
Another potential problem (which also applies to

some other iButton applets that we have seen, not only
the one presented) is unconstrained dynamic memory
allocation. For iButtons this is not an issue, as they im-
plement garbage collection. In general, however, to make
applets portable between different JAVA CARD platforms,
the size of memory dynamically allocated should be re-
duced as much as possible. Otherwise, due to lack of
memory, the applet may stop working at any point of
execution.

Extensive testing of SafeApplet revealed one more
problem: if the user tears the iButton out of the reader
during authentication, the applet can be left in an in-
consistent state and fail to work correctly in subsequent
authentication sessions. The design of a JAVA CARD ap-
plet should take the possibility of card tears into consid-
eration and try to make the applets as robust and card
tear proof as possible. Our further research [15] shows
that formal verification is the right technique to ensure
that applets are card tear safe.

The last problem is that SafeApplet allows two or
more different key pairs registered with the same user
ID number. While this was the original author’s deliber-
ate design decision, we think the applet should forbid to
make double entries of this kind, instead of making the
user responsible for avoiding this.

Our analysis of the SafeApplet above lead us to the
following design requirements and programming guide-
lines for JAVA CARD applets:

– the applet has to be robust: it should be protected
against malicious terminal applications and against
tearing the card out of the reader,

– the applet deployment steps and life cycle should be
well-defined, and controlled by the applet itself to
prevent abuse,

– the command exchange protocol should be well-
defined, constrained and controlled by the applet to
disable illegal sequences of commands, and, for any
commands that consist of multiple APDU messages,
illegal sequences of those messages,

– the applet should minimise its memory footprint, and
allocate all its required memory at installation time,
to avoid OutOfMemoryException when the card is in
operation.

It should be noted that such requirements are common
conventions in JAVA CARD applet development, see for
example [10,24]. The example of our case study merely
emphasises the importance of these requirements. In the
next section we show how these requirements can be
addressed and enforced during design.

To end this section we want to stress that we do not
want to impose any particular design decisions for JAVA

CARD applets (for example, which deployment steps the
applet should have, whether a certain command should
be PIN protected, etc.). We only want to support the
design process and provide the developer with means
and tools to make those design decisions and control the
development steps in a systematic way. The design de-
cisions we present in the next section are only examples
among many possible alternatives and for real-life ap-
plications such decisions should be made by a domain
expert.

4 Developing JAVA CARD Applets

We now present how one can go about designing and de-
veloping a JAVA CARD applet by going through the case
study again and re-engineering it in a well-defined way.
The large parts of the example that we present should
give the reader the complete overview of the develop-
ment process. In the next section we will discuss the
crucial features of our framework that make the devel-
oped applet robust and free of the problems we identified
earlier.

4.1 Applet Life Cycle States

First we define the life cycle states of the applet (deploy-
ment steps). These are the distinguished states that the
applet will go through during its lifetime. Our applet can
be in one of the following four state:
Initialised This is the state of the applet just after in-

stalling (downloading) it onto the card, but before
setting some data in the applet that is necessary for
proper functioning of the applet,

6 Wojciech Mostowski

Applet Initialised

Applet Personalised

Applet Dead

Applet Locked

install applet

Fig. 1 SafeApplet life cycle states

Personalised This is the state after setting the data on
the applet. This is also the applet’s “normal opera-
tion” state,

Locked This is the state after something goes wrong dur-
ing normal applet usage, for example, after the user
entered the wrong PIN a number of times and the
applet access is blocked temporarily,

Dead This is the state after an unrecoverable misuse of
the applet. In our case after the user enters a wrong
master PIN, which can only be presented for verifica-
tion once and is only allowed to be presented in the
locked state.

An applet goes only once through the initialised state
during its lifetime and also it can never leave the dead
state after entering it. It can however move between per-
sonalised and locked states many times during its life-
time. These constraints are best expressed in a UML
state diagram, see Figure 1. Later we will show what
the exact conditions are that cause an applet life cycle
state change. One last thing that is required of the ap-
plet is that it enforces the card terminal session to be
restarted after the applet has moved from one life cycle
state to another.

4.2 Applet Commands

Now we can start defining the commands that the applet
should support. The new set of commands is a slightly
redesigned set of commands that we described in Sec-
tion 2. For each of the commands we give a name, we
say if it can be invoked in a given applet life cycle state
and if it is a user PIN or master PIN protected command
(for each state separately). Table 1 shows the list of com-
mands we are interested in. Below we give an informal
description of the commands:

authenticateUser This command is used to authenticate
a given user through a challenge-response protocol.
A single person owns one smart card with a single
SafeApplet. However, there can be more than one
user ID registered in the applet. Hence, the command
has to specify which user is to be authenticated, by
giving a user ID.

updateUserPIN This command changes the user’s PIN.
Depending in which life cycle state the applet is,

Name/State Init. Person. Locked Dead

authenticateUser No Yes No No
updateUserPIN Yes Yes (P) Yes (MP) No
setMasterPIN Yes No No No
verifyUserPIN No Yes No No
verifyMasterPIN No No Yes No
generateKeyPair No Yes (P) No No
deleteKeyPair No Yes (P) No No
getPublicKey No Yes No No
disableUser No Yes (P) No No
enableUser No Yes (P) No No
getKeysInfo No Yes No No

Table 1 SafeApplet commands. (P) denotes PIN protected
commands, (MP) denotes Master PIN protected command.

different security measures are taken to protect the
command. For example, since the personalisation
step should be taken in the issuer’s trusted area, it is
not necessary to require PIN authentication for up-
dating the user’s PIN in initialised state. On the other,
if the applet is, for example, in the locked state, the
master PIN has to be verified before any user PIN
changes can be made.

setMasterPIN This command sets the master PIN for the
applet. It is the only command required to make the
applet personalised, hence it moves the applet from
the state initialised to personalised.

verifyUserPIN This command performs the verification
of the user’s PIN, which after successful verification
stays validated until the end of the card/terminal
session. All PIN protected commands can check the
PIN validity flag.

verifyMasterPIN Same as the previous one, except for the
master PIN. This command can only be invoked in
the locked state to unlock the applet. Usually, the
master PIN is only allowed to be presented once; after
an unsuccessful try the applet becomes dead.

generateKeyPair This command generates a key pair
(public and private) for a given user ID and stores
this in the applet memory for future use.

deleteKeyPair This command removes the keys for a
given user ID from the applet memory.

getPublicKey This command retrieves the public part of
a key for a given user ID.

disableUser, enableUser These commands disable and en-
able the authentication of a given user ID. The user
may wish to block the usage of SafeApplet when
he has to pass the smart card to somebody else (for
example, to download some other applets).

getKeysInfo This command returns all registered user
IDs (for administrative purposes).

4.3 Command Invocation Protocol

The information we gathered so far is sufficient to de-
fine the protocol that SafeApplet should follow. We

Systematic Development of JAVA CARD Applets 7

do this by presenting further state diagrams, one inside
each state representing a single applet life cycle state.
We will call the new sub-states the command states. In
our applet we distinguish four different command states/
categories:

Selected This is the initial state after the applet is se-
lected by the JAVA CARD run-time environment (this
is triggered by the terminal application),

Application This is the state for “every day use” com-
mands. For SafeApplet authenticateUser is the only
such command,

User administration This is the state for user-level ad-
ministration commands, for example updateUserPIN,

System administration This is the state for system-level
administration commands, for example, generateKey-
Pair.

Commands belonging to one category should not be
interleaved with commands belonging to another cat-
egory. Not all of the applet life cycle states will con-
tain all of these command states. In particular, initialised
and locked life cycle states contain only one meaningful
command state—user administration. In such cases, we
merged the user administration command state with the
selected state for simplicity.

At this stage of the design we also precisely define
when the applet changes its life cycle state.

Let us start with the initialised life cycle state. Fig-
ure 2 shows the corresponding state diagram. The black
dot represents the state in which the applet is not ac-
tive and needs to be selected. When the applet is de-
selected by the JAVA CARD run-time environment or a
card reset occurs the applet has to be selected again.
There is only one command state inside the life cycle
state initialised and only two commands are possible,
namely updateUserPIN and setMasterPIN. The invoca-
tion of updateUserPIN is optional during the personali-
sation process—the applet issuer may wish to release the
applet without the user PIN set. Once setMasterPIN is
invoked successfully (no error occurs and the input data
for setting the master PIN is not corrupted) the applet
changes its life cycle state to personalised and never goes
back to initialised. The card/terminal session has to be
restarted after a life cycle state change, which means that
no further commands can be invoked after a successful
setMasterPIN until the applet is selected again.

Figure 3 shows the details of the personalised life cy-
cle state. This is the applet’s main operational state in
which most of the application and administration com-
mands are enabled. As before, after selection the applet
is in selected command state. Once a command belong-
ing to one of the three categories (application, system ad-
ministration, user administration) is invoked the command
state is changed accordingly and the applet stays in this
state until the end of the session. To enter a different
command mode the session has to be restarted. The ver-
ifyUserPIN command is treated in a special way—since

the PIN is required by the commands both in system
and user administration modes, invoking verifyUserPIN
does not change the command state of the applet. How-
ever, if the PIN verification fails the maximum allowed
number of times (userPINBlocked) the applet life cycle
state is changed to state locked where special rules ap-
ply for unblocking the PIN. The only application mode
command is authenticateUser, the only user administra-
tion command is updateUserPIN. In system administra-
tion mode the following commands are enabled: gener-
ateKeyPair, deleteKeyPair, getPublicKey, getKeysInfo, dis-
ableUser, and enableUser.

Finally we describe the command protocol for the
applet life cycle state locked (Figure 4). As in the case
of life cycle state initialised there is only one command
state, user administration, which is merged with the state
selected. The only two commands that are allowed here
are verifyMasterPIN and updateUserPIN. After successful
master PIN verification (MasterPINOK) the updateUser-
PIN command sets the new user PIN and unblocks it,
moving the applet back to personalised life cycle state. In
case the master PIN verification failed the applet life cy-
cle state changes to dead from which there is no return—
the applet becomes unoperational.

All command invocation sequences that are not al-
lowed by the diagrams are forbidden—in case of any at-
tempt to violate the defined protocol the applet should
end the communication immediately by throwing a suit-
able exception.

Note that we already gave a lot of semi-formal infor-
mation about the applet we are building without writing
or presenting a single line of JAVA CARD code. The state
diagrams are useful documentation that helps to under-
stand the intended behaviour of the applet.

4.4 Command Processing

For each of the applet commands we define what param-
eters it takes, whether there should be extra integrity
checks on the data (to detect possible transmission er-
rors), and whether the command has to be split into
several APDU messages (again with the indication of
whether extra integrity checks are required). Tables 2
and 3 show the complete list.

Now we can show the actual implementation of the
command dispatching methods. As examples we discuss
updateUserPIN, getPublicKey and authenticateUser. Let
us start with updateUserPIN. Recall that this command
had a conditional PIN check depending on the current
applet life cycle state. It also expects 8 bytes of input
data and there is a required integrity check on the data.
There is no response data, just a status word is sent back
to the terminal indicating the (un)successful invocation
of the command. The command should also follow the
protocol we defined. Here is the code:

/**

8 Wojciech Mostowski

Applet Personalised

Applet Initialised

Selected/User Administration

setMasterPIN[successfull]

deselect, cardReset

select appletinstall applet

updateUserPIN, setMasterPIN

Fig. 2 Command states in the initialised life cycle state

Applet Locked

Applet Personalised

Selected

User Administration

Application

System Administration

verifyUserPINdeselect, cardReset

enableUser, disableUser,
getKeysInfo, getPublicKey,
generateKeyPair, deleteKeyPair

deselect, cardReset

authenticateUser

select

verifyUserPIN[userPINBlocked]

deselect, cardReset
updateUserPIN, verifyUserPIN

verifyUserPIN[userPINBlocked]

updateUserPIN

authenticateUser

generateKeyPair, getPublicKey,
getKeysInfo, enableUser,
disableUser, deleteKeyPair

deselect, cardReset

verifyUserPIN

verifyUserPIN[userPINBlocked]

Fig. 3 Command states in the personalised life cycle state

Applet Personalised Applet Dead

Applet Locked

Selected/User Administrationselect

updateUserPIN[MasterPINOK]

verifyMasterPIN, updateUserPIN

deselect, cardReset

verifyMasterPIN[Blocked]

Fig. 4 Command states in the locked life cycle state

* @param apdu the incoming APDU message

* to dispatch

*/

public void dispatchUpdateUserPin(APDU apdu) {

updateCommandState(UPDATE_USER_PIN);

switch (curr_applet_state) {

case AS_INITIALISED: break;

case AS_PERSONALISED: checkPIN(); break;

case AS_LOCKED: checkMasterPIN(); break;

}

readInput(apdu, (short)28); // puts input in temp

verifyInput((short)8);

userPIN.update(temp, (short)0, (byte)8);

if (curr_applet_state == AS_LOCKED) {

setAppletState(UPDATE_USER_PIN,

AS_PERSONALISED);

}

}

Systematic Development of JAVA CARD Applets 9

Name Input Length Integ. APDU

authenticateUser User ID, 1+256 No Many
challenge

updateUserPIN New PIN 8 Yes 1
setMasterPIN PIN 16 Yes 1
verifyUserPIN PIN 8 Yes 1
verifyMasterPIN PIN 16 Yes 1
generateKeyPair User ID 1 No 1
deleteKeyPair User ID 1 No 1
getPublicKey User ID 1 No 1
disableUser User ID 1 No 1
enableUser User ID 1 No 1
getKeysInfo None 0 No 1

Table 2 Command parameters

Name Response Length Integ.

authenticateUser SHA1 code 20 No
updateUserPIN None 0 No
setMasterPIN None 0 No
verifyUserPIN None 0 No
verifyMasterPIN None 0 No
generateKeyPair None 0 No
deleteKeyPair None 0 No
getPublicKey Public key 131 Yes
disableUser None 0 No
enableUser None 0 No
getKeysInfo User IDs #Users No

Table 3 Command responses

The call to updateCommandState makes sure that the
command is invoked according to the protocol. The
updateCommandState implements a state machine that
follows the diagrams shown before. The switch state-
ment performs the conditional PIN check (the AS prefix
stands for applet state). Then the input is read, which
has to be 8 bytes long plus 20 bytes for the SHA1 code
for data integrity verification. After the data is retrieved
from the APDU message it is stored in the temp array.
The temp array is allocated once during applet installa-
tion and is sufficiently big to serve all command dispatch-
ing methods, thus keeping memory consumption fixed.
The method verifyInput performs the actual verifica-
tion of the data stored in the temp array. Then the actual
user PIN update happens. If the applet happens to be
in locked life cycle state then it switches back to person-
alised state after successful update (setAppletState).

Let us take a look at getPublicKey now. This com-
mand does not require any PIN checks, it expects one
byte of input data without integrity verification, and
sends back 131 bytes of response plus an additional 20
bytes of SHA1 code for integrity verification on the ter-
minal side. We skip the actual key retrieval code as it is
not relevant at this point. Here is the code:

/**

* @param apdu the incoming APDU message

* to dispatch

*/

public void dispatchGetPublicKey(APDU apdu) {

updateCommandState(GET_PUBLIC_KEY);

readInput(apdu, (short)1);

// retrieve the key, prepare the response data

// in temp

integrifyOutput((short)131);

sendResponse(apdu, (short)151);

}

The sendResponse method simply sends the data pre-
pared in the temp array back to the terminal.

Let us take a look at authenticateUser now. This com-
mand is the only one that requires multiple APDU mes-
sages. No PIN check or input data integrity verification
is required. The response is 20 bytes of SHA1 code calcu-
lated from the received message. Here is the implemen-
tation:

/**

* @param apdu the incoming APDU message

* to dispatch

*/

public void dispatchAuthUser(APDU apdu) {

updateCommandState(AUTH_USER);

readBigInput(apdu, (short)257);

if (multiple_package == (byte)0) {

// everything read, process bigtemp,

// prepare the response in temp

sendResponse(apdu, (short)20);

}

}

The methods readBigInput and updateCommandState
make sure that the data contained in different APDU
messages are sent in the correct order and are not in-
terleaved by any other commands. This is done by using
global applet variables and requiring the multiple APDU
messages sent over to the applet to be properly marked
as we will show shortly.

Now we give some more details about the auxiliary
methods that are used by command dispatching meth-
ods. The readInput method reads the input from the
incoming APDU into the temp array in a standard way,
reporting to the terminal any possible data length in-
consistencies by throwing an appropriate exception:

/**

* @param apdu the incoming apdu to read data from

* @param expectedLength the expected data length

* to read

*/

public void readInput(APDU apdu,

short expectedLength) {

byte buffer[] = apdu.getBuffer();

short apduDataOffset = 0;

short dataLength = unsigned(

buffer[ISO7816.OFFSET_LC]);

if (dataLength != expectedLength) {

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

}

short bytesRead = apdu.setIncomingAndReceive();

10 Wojciech Mostowski

while (bytesRead > 0) {

if ((short)(bytesRead + apduDataOffset) >

expectedLength) {

ISOException.throwIt(

ISO7816.SW_WRONG_LENGTH);

}

Util.arrayCopy(buffer, ISO7816.OFFSET_CDATA,

temp, apduDataOffset,

bytesRead);

apduDataOffset += bytesRead;

bytesRead = apdu.receiveBytes(

ISO7816.OFFSET_CDATA);

}

}

The methods setAppletState, updateCommandSta-
te, and readBigInput are more interesting. The first
one is responsible for changing the applet life cycle state.
It is the calling method’s responsibility to ensure that
the condition for changing this state is satisfied (for
example, that master PIN has been verified when up-
dateUserPIN changes the state from locked to person-
alised). The method manipulates the global applet vari-
able called curr applet state. Here is a small part of
setAppletState:

/**

* @param command the code of the command changing

* the state

* @param newstate the new state to be set

*/

public void setAppletState(byte command,

short newstate) {

switch (command) {

// ...

case UPDATE_USER_PIN:

// ’masterPIN.isValidated() == true’

// should hold here

if (curr_applet_state == AS_LOCKED) {

curr_applet_state = newstate;

curr_command_state = CS_START;

}

break;

// ...

}

}

The updateCommandState and readBigInput methods
share some global applet variables to ensure that the pro-
tocol is followed. The global variable multiple package
indicates whether a command spread over multiple
APDU messages is being processed—when equal to 0
the currently processed command is a single APDU com-
mand, when greater than 0 it is equal to the identifier
of the multiple APDU command being processed. The
method updateCommandState first checks if the life cycle
state of the applet is the dead state and if so, it throws
an exception interrupting the communication. Then it
checks if there is multiple APDU processing in progress.
If so, it further checks whether the current command
belongs to the sequence of currently processed multiple

APDU messages, an exception is thrown if there is a mis-
match. Finally, the method checks if the command invo-
cation is according to the protocol defined. The global
applet variable curr command state stores the current
command state (selected, application, user administration
or system administration). The code follows the diagrams
shown before, throwing an exception if the command is
not invoked according to the protocol:

/**

* @param command the code of the invoking

* command

*/

public void updateCommandState(byte command) {

if (curr_applet_state == AS_DEAD) {

ISOException.throwIt(SW_APPLET_DEAD);

}

if (multiple_package != (byte)0 &&

command != multiple_package) {

ISOException.throwIt(

SW_COMMAND_OUT_OF_SEQUENCE);

}

switch (command) {

case VERIFY_USER_PIN:

if (curr_applet_state != AS_PERSONALISED) {

ISOException.throwIt(

SW_COMMAND_OUT_OF_SEQUENCE);

} else {

if (curr_command_state == CS_APPLICATION) {

ISOException.throwIt(

SW_COMMAND_OUT_OF_SEQUENCE);

} else {

// do nothing, there is no state change

}

}

break;

case UPDATE_USER_PIN:

// ...

}

}

The readBigInput method uses both global variables
and the form of the APDU to control the multiple APDU
communication. The p2 header byte of the incoming
APDU indicates the total number of APDU messages to
come, the p1 header byte indicates which APDU mes-
sage is being received (“p1-th out of p2 messages”). The
global variables multiple curr and multiple total
are used to keep track of this. Whenever a multiple
APDU message is received p1 and p2 are checked against
global variables to verify that the proper sequence is
maintained. Then the data from the APDU is appended
to the bigtemp array which collects the data from the
multiple APDU messages. The code for readBigInput
is:

/**

* @param apdu the incoming apdu to read data from

* @param expectedLength the expected data length

* to read

*/

public void readBigInput(APDU apdu,

Systematic Development of JAVA CARD Applets 11

short expectedLength) {

byte buffer[] = apdu.getBuffer();

byte ins = buffer[ISO7816.OFFSET_INS];

byte p1 = buffer[ISO7816.OFFSET_P1];

byte p2 = buffer[ISO7816.OFFSET_P2];

if (p1 == (byte)0 && multiple_total == (byte)0) {

multiple_total = p2;

multiple_package = ins;

} else {

if (p1 >= p2 || p2 != multiple_total ||

p1 != (byte)(multiple_curr + (byte)1)) {

ISOException.throwIt(ISO7816.SW_WRONG_DATA);

}

}

multiple_curr = p1;

// append the data from APDU to bigtemp array

multiple_readnum = apduDataOffset;

if ((byte)(multiple_curr + (byte)1) ==

multiple_total) {

resetMultiple(); // data in bigtemp ready

}

}

5 The Framework

We did not discover any problems during extensive test-
ing of the resulting, re-engineered applet. In particular,
the card tear problem is no longer present. This was
achieved mostly by enforcing the applet to follow strict
command exchange protocol we defined during the de-
sign. Thus, the most important guideline in our frame-
work is to define the applet life cycle and communica-
tion protocols with UML state diagrams and enforce the
applet to adhere to these protocols by embedding corre-
sponding state machines into the applet itself. Moreover,
the actual command processing (types of parameters, re-
sponses, etc.) should be defined and implemented in a
strict way. To achieve that, we used dedicated methods
(readInput, sendResponse, etc.) in our applet respon-
sible for reading the input and sending the output. Such
methods are largely independent of the actual applet and
can be used in other applications.

One artifact of the design is the semi-formal doc-
umentation that makes understanding the workings of
the applet much easier for the developers and prospec-
tive users of the applet. Further support for the devel-
opers can be provided by the CASE tool, the Global
Platform framework and JAVA CARD RMI, and the use
of formal specification and verification techniques. We
discuss these possibilities in the following sections.

5.1 Support from the CASE Tool

We used the support of the Together Control Center tool
in many places. For the low level tasks, such as compil-
ing, installing and testing the applet, we used an exten-
sion module we wrote ourselves [27]. Some parts of the

applet were created with the same module by using JAVA

CARD specific code patterns, which were used to intro-
duce skeletons of the command dispatching methods au-
tomatically. Furthermore, the KeY extensions were used
to introduce formal specifications into the design and to
perform formal verification (see next subsections). The
remaining code was written “by hand”, however we still
see possibilities to introduce further automation to the
process with the support of a CASE tool in the following
ways:

– Having methods like readInput, readBigInput,
verifyInput, etc. among the standard set of JAVA

CARD helper methods. This can easily be supported
by the Together Control Center.

– Generating (possibly with a little of developers help)
the code for setAppletState and updateCommand-
State methods from the state diagrams also incor-
porating formal specifications for verification. A tool
(AutoJML) that does exactly this, only it produces
JML specifications instead of OCL ones, is described
in [16]. Such a tool should be easily pluggable into
the Together Control Center, for example Together
Control Center can automatically create code from
sequence diagrams and vice versa.

– The PIN check routine seem to be a good candidate
for a pattern, too, as it is done in a very similar
way in every JAVA CARD applet. There is a global
applet object representing the PIN and there is one
APDU command that verifies the delivered PIN, sets
the validation flag of the PIN object for the current
terminal session, and returns the result of PIN ver-
ification back to the terminal. Then any command
requiring PIN authentication can refer to the PIN
object by a single method call. This scheme seems to
be very basic and there is only one simple class in
the JAVA CARD API that provides PIN functionality.
However, the problems we discovered in the original
SafeApplet (Section 3) show that even such simple
ideas can be easily misinterpreted. Thus, a simple
software pattern can take the responsibility to create
a correct PIN check mechanism in the applet.

5.2 Support from the Global Platform Framework and
JAVA CARD RMI

The Global Platform framework [14] provides a stan-
dard on-card API to control some of the aspects of ap-
plet management, including applet life cycle states. In
principle there is no obstacle to use the standard Global
Platform API to control applet life cycle states in the
context of our work. We do, however, see two shortcom-
ings of this approach:

– the set of life cycle states in Global Platform is pre-
defined (for example, there is no distinction between
locked applet and dead/terminated applet). Thus the

12 Wojciech Mostowski

use of Global Platform API may not always give the
required flexibility to control applet life cycle states,

– state transitions between different life cycle states are
hard-coded into the API without the (source code)
implementation being available. So, it is impossible
to verify the correctness of the transitions with re-
spect to the specification, represented by the UML
state diagram or expressed in OCL. In such case, it is
only possible to rely on the natural language descrip-
tion of the state transitions that the Global Platform
documentation [14] provides.

Other facilities that the Global Platform framework
provides are mechanisms to control the integrity and
confidentiality of the APDU messages sent to the card.
So, by using the Global Platform framework, it is not
necessary to implement methods like verifyInput; in-
stead Global Platform functionality can be used. We did
not do this in our case study, because iButtons do not
support Global Platform framework.

Finally, we should mention the Remote Method In-
vocation framework for JAVA CARD offered by the most
recent JAVA CARD standard (2.2.1) [31]. RMI greatly re-
duces applet complexity and considerably eases the ap-
plet design and development process. The use of RMI
would be a perfect solution to many problems we have
described, but unfortunately, there is still only a handful
of smart cards on the market that support the new JAVA

CARD standard with RMI.

5.3 Formal Specification and Verification

For most of the methods of our applet, it is very clear
from looking at the code that they correctly implement
the semi-formal specifications given by the state dia-
grams. The setAppletState, updateCommandState and
readBigInput and possibly readInput methods require
a bit more attention and this is where we turn to formal
specification and verification.

First, we can define the behaviour described by state
diagrams more formally by giving OCL specifications.
We can use OCL invariants to express the required rela-
tion between the applet life cycle state and other aspects
of the applet’s state, for example:

context SafeApplet

inv: self.curr_applet_state = AS_LOCKED implies

self.userPIN.getTriesRemaining() = 0

inv: self.curr_applet_state = AS_DEAD implies

self.masterPIN.getTriesRemaining() = 0

Next we can limit a set of possible command states in a
given life cycle state by invariants such as:

context SafeApplet

inv: self.curr_applet_state = AS_LOCKED implies

self.curr_command_state = CS_START or

self.curr_command_state = CS_SELECTED

Finally, we can formally specify methods such as set-
AppletState and updateCommandState with pre- and
postconditions, for example:

context SafeApplet::setAppletState(

command : Integer, newstate : Integer)

pre: command = UPDATE_USER_PIN and

newstate = AS_PERSONALISED implies

self.masterPIN.isValidated() and

self.curr_applet_state = AS_LOCKED

post: self.curr_applet_state = AS_PERSONALISED and

self.curr_command_state = CS_START

context SafeApplet::updateCommandState(

command : Integer)

post: command = VERIFY_USER_PIN

and

self.curr_applet_state@pre = AS_PERSONALISED

and

self.curr_command_state@pre <> CS_APPLICATION

and

self.curr_command_state@pre <> CS_START

implies

self.curr_command_state =

self.curr_command_state@pre

These specifications precisely specify the constraints ex-
pressed by state diagrams and it should be possible to
just generate them automatically, possibly with a little
bit of user intervention [16].

The second set of specifications makes sure that
the readInput and readBigInput methods behave in
a consistent way. The following OCL invariants express
the consistency conditions that the global applet vari-
ables (multiple package and multiple readnum) used
by the read methods should satisfy:

context SafeApplet

inv: self.multiple_readnum <= self.bigtemp->size()

inv: self.multiple_package <> 0 implies

self.multiple_curr < self.multiple_total

inv: self.multiple_package = 0 or

self.multiple_package = AUTH_USER

inv: self.multiple_total > 0 implies

self.multiple_package <> 0

Here we also stated that the authenticateUser command
is the only one that can spread over multiple APDU
messages.

The next are two preconditions that make sure the
read methods do not exceed the temporary array space
they operate on:

context SafeApplet::readInput(

apdu : APDU, expectedLength : short)

pre: self.temp <> null and

expectedLength <= self.temp->size()

context SafeApplet::readBigInput(

apdu : APDU, expectedLength : short)

pre: self.bigtemp <> null and

expectedLength <= self.bigtemp->size()

Systematic Development of JAVA CARD Applets 13

The JAVA CARD pattern for read methods discussed in
Section 5.1 should not just produce the code for such
methods, but also these associated specifications.

Of course one may want to give some more detailed
specifications of the applet describing its functionality or
some safety properties [25]. In the next section we show
how existing features of the KeY system can be used
to produce such a specification. Here we briefly discuss
other situations where formal specification can prove it-
self helpful.

Suppose we would like to extend our applet to keep
track of unsuccessful authentication attempts and dis-
able the access once a certain number of unsuccess-
ful attempts has been reached (similarly to PIN veri-
fication). This is quite straightforward to program—a
counter variable needs to be increased after each failed
attempt and once some threshold value is reached the
following access attempts are rejected. However, when
coded uncarefully, the counter may be increased during
rejected attempts as well. Then after reaching the max-
imal value for a data type used (say byte) it will leap
back to −128, meaning we end up in an undesired state,
breaching security. A typical security related specifica-
tion idiom that could be used here would be that a card
stays blocked after the maximum number of tries has
been reached until it is explicitly released, for example,
by giving the master PIN. To verify such a property
one needs formalisation of JAVA integer arithmetics that
handles properly the overflow behaviour of JAVA integer
types. The KeY system both supports the specification
idioms [13] and contains formalisation of JAVA integer
arithmetics as part of the KeY specification library [4].

A very tricky aspect of smart card programs is en-
suring data consistency in the case when the applet’s ex-
ecution terminates abnormally by tearing the card out
of the reader. Here we can also turn to formal methods.
It is not sufficient to express such constraints on data
consistency as invariants; invariants may be temporar-
ily broken when a method executes, but a card tear at
such a point in time would break data consistency. In-
stead we need a stronger notion of invariant, which has
to hold throughout program execution. This cannot be
expressed in plain OCL, but the Dynamic Logic for JAVA

CARD used in the KeY system can express such proper-
ties (strong invariants) [3].

The OCL specifications discussed above—and the
additional data consistency constraints expressed in Dy-
namic Logic—have been formally verified using the KeY
system. Verification of other, more advanced properties
can also be performed relatively easily with the KeY sys-
tem [15,28]. As we noted in Section 1.3, other tools can
be used for verification as well—[18] discusses verifica-
tion of similar protocol properties with the LOOP tool.

Fig. 5 Applying specification patterns in the KeY system

5.4 Employing the KeY System

Here we show how the KeY system can be used to sup-
port creation of the formal specifications. Recall that
one of the problems we found in SafeApplet was that a
single user ID can be registered more than once in the
applet. First let us look at the class representing a single
user record in the applet:
public class User {

boolean empty = true;

boolean enabled = true;

byte userID = (byte)0;

KeyData keydata = null;

}

We would like to specify that there should not exist two
(non empty) objects of this class in our applet having the
same user ID. Then it can be verified formally that any
code that operates on those records does not violate this
condition. The condition just mentioned is a slight mod-
ification of a standard specification pattern in the KeY
system called AttributeHasKeyProp, shown in Figure 5.
After the pattern is applied, the following invariant is
produced for the User class:
context User:

inv: User.allInstances->forAll(c1, c2 |

c1.userID = c2.userID implies c1 = c2)

After a small modification we get what we want:
context User:

inv: User.allInstances->forAll(c1, c2 |

not c1.empty and not c2.empty and

c1.userID = c2.userID implies c1 = c2)

The KeY system provides a whole library of such spec-
ification patterns (some also based on the GoF pat-
terns [12,2]) applicable to any JAVA CARD program and,
more generally, any JAVA program.

6 Summary

Based on the SafeApplet example we presented our ap-
proach to the systematic development of JAVA CARD ap-
plets. We have shown how UML can be used to spec-
ify an applet behaviour, using state diagrams, and how

14 Wojciech Mostowski

such specifications can be translated into actual code.
We have also shown how we can apply formal specifica-
tion and verification in JAVA CARD development. A mod-
ern CASE tool plays an important role in our approach:
it supports UML specifications, software patterns, for-
mal verification (KeY system), and, last but not least,
easy testing of JAVA CARD applets through the CASE
tool extension module. Large parts of the code we have
shown were developed by hand, but we were precisely
following the UML state diagrams. Consequently, the
coding was quite straightforward and almost a one pass
process—we made the applet work in the expected way
in a very short time and extensive testing revealed no
problems in the applet. Further research [15,28] showed
that formal verification of JAVA CARD applets is feasible
and can formally ensure robustness of the applet.

Acknowledgements We would like to thank anonymous
reviewers for their helpful comments, and Erik Poll for
his insights and involvement in improving this article.

References

1. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert,
Richard Bubel, Martin Giese, Reiner Hähnle, Wolfram
Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool. Soft-
ware and Systems Modeling, 4(1):32–54, February 2005.

2. Thomas Baar, Reiner Hähnle, Theo Sattler, and Pe-
ter H. Schmitt. Entwurfsmustergesteuerte Erzeugung
von OCL-Constraints. In K. Mehlhorn and G. Snelt-
ing, editors, Informatik 2000, 30. Jahrestagung der
Gesellschaft für Infomatik, pages 389–404. Springer,
September 2000.

3. Bernhard Beckert and Wojciech Mostowski. A program
logic for handling JAVA CARD’s transaction mechanism.
In Mauro Pezzè, editor, Proceedings, Fundamental Ap-
proaches to Software Engineering (FASE) Conference,
Warsaw, Poland, volume 2621 of LNCS, pages 246–260.
Springer, April 2003.

4. Bernhard Beckert and Steffen Schlager. Software ver-
ification with integrated data type refinement for inte-
ger arithmetic. In Eerke A. Boiten, John Derrick, and
Graeme Smith, editors, Proceedings, International Con-
ference on Integrated Formal Methods, Canterbury, UK,
volume 2999 of LNCS, pages 207–226. Springer, April
2004.

5. Dominique Bolignano, Daniel Le Métayer, and Claire
Loiseaux. Formal methods in practice: the missing link.
a perspective from the security area. In Franck Cassez,
Claude Jard, Brigitte Rozoy, and Mark Dermot Ryan,
editors, Modeling and Verification of Parallel Processes,
4th Summer School, MOVEP 2000, Nantes, France, June
19–23, 2000, volume 2067 of LNCS. Springer, 2001.

6. Dierk Bolten. PAM authentication with an iButton.
http://www-users.rwth-aachen.de/dierk.bolten/

pam_ibutton.html.
7. Robert Boyer. Proving theorems about JAVA and the

JVM with ACL2. In M. Broy and M. Pizka, editors, Mod-
els, Algebras and Logic of Engineering Software, pages
227–290. IOS Press, Amsterdam, 2003.

8. Richard Brinkman and Jaap-Henk Hoepman. Secure
method invocation in JASON. In 5th USENIX Smart
Card Research and Advanced Application Conference,
San Jose, CA, U.S.A., pages 29–40, 2002.

9. Lilian Burdy, Antoine Requet, and Jean-Louis Lanet.
JAVA applet correctness: A developer-oriented approach.
In Proceedings, Formal Methods Europe 2003, volume
2805 of LNCS, pages 422–439. Springer, 2003.

10. Zhiqun Chen. JAVA CARD Technology for Smart Cards.
Addison Wesley, June 2000.

11. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Ex-
tended static checking for JAVA. In Proc. ACM SIG-
PLAN 2002 Conference on Programming Language De-
sign and Implementation, Berlin, pages 234–245. ACM
Press, 2002.

12. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison Wesley, 1999.

13. Martin Giese, Reiner Hähnle, and Daniel Larsson. Rule-
based simplification of OCL constraints. In Octavian Pa-
trascoiu et al., editor, Workshop on OCL and Model
Driven Engineering at UML2004, Lisbon, pages 84–98,
2004.

14. Global Platform Organization. Card Specification, Ver-
sion 2.2.1, March 2003. http://www.globalplaform.

org.

15. Reiner Hähnle and Wojciech Mostowski. Verification
of safety properties in the presence of transactions. In
Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-
Louis Lanet, and Traian Muntean, editors, Proceedings,
Construction and Analysis of Safe, Secure and Interoper-
able Smart devices (CASSIS’04) Workshop, volume 3362
of LNCS, pages 151–171. Springer, 2005.

16. Engelbert Hubbers and Martijn Oostdijk. Generating
JML specifications from UML state diagrams. In Pro-
ceedings of the Forum on specification & Design Lan-
guages (FDL 2003), pages 263–273. University of Frank-
furt, 2003. Proceedings appeared as CD-Rom with ISSN
1636-9874.

17. Engelbert Hubbers, Martijn Oostdijk, and Erik Poll. Im-
plementing a formally verifiable security protocol in JAVA

CARD. In Proceedings of the 1st International Confer-
ence on Security in Pervasive Computing, volume 2802
of LNCS, pages 213–226. Springer, 2004.

18. Bart Jacobs, Martijn Oostdijk, and Martijn Warnier.
Source code verification of a secure payment applet.
Journal of Logic and Algebraic Programming, 58(1-
2):107–120, 2004.

19. Bart Jacobs and Erik Poll. JAVA program verification
at Nijmegen: Developments and perspective. In Soft-
ware Security – Theories and Systems: Second Mext-
NSF-JSPS International Symposium, ISSS 2003, Tokyo,
Japan, November 4–6, 2003, volume 3233 of LNCS, pages
134–153. Springer, 2004.

20. Ivar Jacobson, Grady Booch, and James Rumbaugh. The
Unified Software Development Process. Addison Wesley,
1999.

21. Jan Jürjens. Towards development of secure systems
using UMLsec. In Heinrich Hußmann, editor, Proceed-
ings, Fundamental Approaches to Software Engineering
(FASE) Conference, volume 2029 of LNCS, pages 187–
200. Springer, 2001.

Systematic Development of JAVA CARD Applets 15

22. Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design. Kluwer Academic
Publishers, 1999.

23. Claude Marché, Christine Paulin-Mohring, and Xavier
Urbain. The Krakatoa tool for certification of
JAVA/JAVA CARD programs annotated in JML. Journal of
Logic and Algebraic Programming, 58(1–2):89–106, 2004.

24. Renaud Marlet and Cédric Mesnil. Demoney: A demon-
strative electronic purse – Card specification. Technical
Report SECSAFE-TL-007, Trusted Logic S.A., Novem-
ber 2002.

25. Renaud Marlet and Daniel Le Métayer. Security prop-
erties and JAVA CARD specificities to be studied in the
SecSafe project. Technical Report SECSAFE-TL-006,
Trusted Logic S.A., August 2001.

26. Jörg Meyer and Arnd Poetzsch-Heffter. An architec-
ture for interactive program provers. In S. Graf and
M. Schwartzbach, editors, Tools and Algorithms for the
Construction and Analysis of Systems: 6th International
Conference, TACAS 2000, Berlin, Germany, volume
1785 of LNCS, pages 63–77. Springer, April 2000.

27. Wojciech Mostowski. JAVA CARD tools for Together
Control Center. http://www.cs.chalmers.se/~woj/

papers/jctools.pdf.
28. Wojciech Mostowski. Formalisation and verification of

JAVA CARD security properties in Dynamic Logic. In
Maura Cerioli, editor, Proceedings, Fundamental Ap-
proaches to Software Engineering (FASE) Conference,
Edinburgh, Scotland, volume 3442 of LNCS, pages 357–
371. Springer, April 2005.

29. Object Modeling Group. Unified Modelling Language
Specification, version 2.0, October 2004.

30. Open Card homepage. http://www.opencard.org/.
31. Sun Microsystems, Inc., Santa Clara, California, USA.

JAVA CARD 2.2.1 Application Programming Interface,
October 2003.

32. Jos Warmer and Anneke Kleppe. The Object Constraint
Language, Second Edition: Getting Your Models Ready
for MDA. Object Technology Series. Addison-Wesley,
Reading/MA, 2003.

