
Abstract—This paper addresses the issue of
separation of concerns in the design and
implementation of distributed real-time systems. It
gives an overview on the activities done in the
theoretical and practical domains of the SACC
(Software Architecture = Components + Coordination)
project in order to provide a support for this idea.

Keywords—Distributed Real-time Systems;
Middleware; Formal Specification; Aspect Orientation

I. INTRODUCTION
The design of distributed real-time systems is a

complex and difficult task. For such systems many
functional and non-functional quality requirements
(reliability, timeliness, efficiency, and flexibility) need
to be reconciled simultaneously. The difficulty arises
from the fact that a solution for one of these
requirements seems to complicate meeting other
requirements. Hence the interaction between different
partial solutions to the requirements is one important
cause of the complexity of designing such systems.

To simplify the design of such systems, we propose
a method that has the following novel features:
•

•

•

In order to realize this goal in our project, we

develop a suite of specification languages as well as
middleware that supports the separation of concerns in
the implementation level. An automatic translation
from the specification formalisms to the
implementation languages will bridge the gap between
the two domains. Thus, the project is organized along
two themes: theory concerning specification techniques
and practice involved with an implementation
framework.

In this paper, after the introduction, Section 2
focuses on the current state of the theoretical part and
Section 3 describes the main ideas of the
implementation theme. Finally, Section 4 gives the
concluding remarks and presents the future research
directions.

II. CONCEPTS AND THEORY

In this section we give a brief introduction to the
model that we use for system design. We explain why
it provides better support for separation of concerns
than traditional software programming and modeling
languages.

A. GAMMA: A Computational Model for
Separation of Concerns
GAMMA is an abstract language, based on multiset

rewriting on a shared data-space. It is designed to
support parallel execution of a program on a parallel
and/or distributed architecture [1]. The basic and
atomic piece of functionality in GAMMA is the rule.
The calculus of GAMMA [2] contains some
composition operators to compose rules into programs.
However, in our approach, we eliminate all structuring
decisions at the level of GAMMA programs, and use
the abstract theory as our basic model of component
functionality. Since GAMMA rules can interact with

Separation of Quality Concerns in the
Development of Distributed Real-time Systems

MohammadReza Mousavi, Giovanni Russello,
Michel Chaudron, Twan Basten, Michel Reniers

the shared data space independently, the models allows
for temporal and spatial decoupling (see Figure 1).
Henceforth, our GAMMA model is only concerned
with independent basic functionalities of a design and
abstracts from several other concerns such as: relative
ordering of functionalities, timing, distribution,
hardware resources and the level of true concurrency.

Shared Data Space
(M ultiset)

C om ponent
(Rule)

C om ponent
(Rule)

C om ponent
(Rule)

Figure 1. GAMMA shared data space model

B. Other Concerns: Timing, Coordination, and
Distribution
In our design method, non-functional aspects are

specified in their own tailor-made design language.
These non-functional aspects include:
• Coordination: Coordination is concerned with

ordering, concurrency and synchronization of
independent functionalities. In particular, we
take a process algebraic approach for formal
specification of this aspect. Basic processes
(building blocks) of our coordination
expressions are GAMMA rules. Our
coordination language, which is a slightly
modified version of the scheduling language of
[3], contains conditional, sequential, parallel,
and recursion operators. This leads to a
modeling framework that allows changing the
modeling language of each layer and still
exploiting the formal semantics of other layers in
combination.

• Timing: We distinguish between two different
attributes in the timing domain: individual
performance metrics of components vs. end-to-
end requirements of an entire system [4]. To
model individual performance metrics, we relate
single GAMMA rules with their estimated
execution time as intervals. End-to-end
requirements are specified using a real-time
extension of Temporal Logic and are verified

against the combination of aspect designs.
• Distribution: We specify a distribution pattern

as a mapping from data types and rules to
physical locations. The distribution pattern may
be static in time or may dynamically change over
time.

In [5], a general framework for the specification of
these three aspects, together with GAMMA
functionality, is sketched, and the framework is applied
on an elevator case study. In [6], we give a precise
semantics for the (GAMMA + Coordination) + Timing
paradigm.

III. EXPERIMENTAL VALIDATION: ARCHITECTURE OF
AN IMPLEMENTATION

In this section, we describe the current status of the
part of the research that is involved in developing
implementation techniques that support the design
method presented in the preceding sections. The main
goal in the implementation domain is to design and
implement a distributed middleware that can deal with
several aspects of design as orthogonal issues that can
be uploaded according to their respective design
models.

A. Aspects in the Middleware
In the specification / design domain, for each

application several aspects such as functionality,
timing, behavioural pattern (coordination), and the
distribution, are defined. In the implementation domain,
the functionality aspect is mapped into application
components that are distributed (according to some
initial distribution pattern) over available nodes making
up the distributed system. The other aspects are
transformed into policy descriptors that are
downloaded into the middleware where various aspect
managers interpret them at run time.

Aspects can be divided into application-specific and
system-wide. Application-specific aspects are those
concerned with a single application (combination of
functionality, timing, etc.). In contrast, system-wide
aspects effect the execution of all applications
currently active in the middleware. According to this
classification, the middleware itself is divided into two
layers. In the highest layer, application-specific aspect
managers are responsible for interpreting and enforcing

an application’s policies. In the lowest layer, global
aspect managers deal with global policy descriptors

and enforce system-wide policies.

A s p e c t M a n a g e r s

Aspect Speci f icat ion

Appl i ca t ion A App l i ca t ion B

M
id

dl
ew

ar
e

N e t w o r k L a y e r

W e a v i n g P r o c e s s

System-wide Layer

Appl icat ion-Speci f ic Layer

O S

M W

C 2

Func t iona l i ty

T i m i n g

Dis t r ibu t ion

Plat form Layer O S

M W

C 1
C 3

Func t iona l i ty

T i m i n g

Dis t r ibu t ion

M W - A M W - A M W - B

S y s t e m

Secur i ty

S c h e d u l e

System Aspect

Figure 2: An Architectural View of the Implementation Domain

The separation into two layers has the important
advantage that each application can define its own
policies without interfering with policies of other
applications. At the same time, it is still possible to
define global policies to apply to the overall system.

 B. Implementation Architecture
Figure 2 presents the case in which two applications,

A and B, are defined and deployed in our system. We
use light grey blocks for application A and dashed line
blocks for application B. For each application, the set
of aspects is defined. The functionality aspect is
mapped into components C1 and C2 (deployed on
different physical nodes) for application A and
component C3 for application B. The other aspects for
the two applications are downloaded into the
middleware in the application-specific layer, in the
form of policy descriptor. In this way, each application
can define its own policies regarding several aspects
independent from other applications. Also, application-
independent aspects are defined and then downloaded
as policy descriptors in the middleware at the system-
wide layer.

A prototype implementation of this architecture is
done based on the JavaSpace shared data space system.
On top of this prototype middleware, a case-study
about a Traffic Management Pont is analysed by
examining the application of several distribution
policies for different timing and bandwidth constraints.
Details of the prototype implementation and the result
of this analysis are presented in [7]; the results suggest
that the idea of separation of concerns helps adjusting
the best distribution policy to specific application
settings.

I. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented the main directions taken
in the SACC project in order to realize separation of
concerns in the development of distributed real-time
systems. These directions include the development of a
suite of specification languages for functionality
(GAMMA-based) and various non-functional aspects
such as coordination, timing, distribution etc, and an
aspect-oriented distributed middleware to support
separation of concerns in the implementation domain.

The main challenges in the theoretical part of the

project, apart from developing a sound aspect-oriented
theory, include mechanizing the proof system for the
developed theory, and providing a refinement /
synthesis method to extract concrete system
representations from general requirements. In the
practical part, developing an adaptive strategy for
finding and maintaining an optimal distribution policy
is on the list of future work.

The activities in the theoretical track of the project
so far were more focused on timing aspects whilst in
the implementation track the focus was more on
distribution policies. We are aiming at bridging this
gap by both providing a formal semantics of
distribution and implementation support for timing
constraints. Currently, the translation of GAMMA
functionality into implementation components
(JavaSpace programs) is done manually; providing an
automatic translation from specifications to programs
(for functionality as well as other aspects) is another
important issue in the future work. Studying an
industrial case in our framework is another planned
activity to provide a proof of concept for our approach.

REFERENCES
[1] Jean-Pierre Banatre and Daniel Le Metayer,

Programming by Multiset Transformation, Communications
of the ACM (CACM), 36(1):98--111, January 1993.

[2] Chris L. Hankin, Daniel Le Metayer and David Sands, A
Calculus of Gamma Programs, Proceedings of the Fifth
International Workshop on Languages and Compilers for

Parallel Machines, New Haven, Connecticut, Lecture Notes
in Computer Science, vol. 757, pp. 342--355, Springer-
Verlag, Berlin, 1993.

[3] Michel R.V. Chaudron, Separating Computation and
Coordination in the Design of Parallel and Distributed
Programs, PhD thesis, Department of Computer Science,
Rijksuniversiteit Leiden, Leiden, The Netherlands, 1998.

[4] Lynne Blair, Gordon Blair and Anders Andersen,
Separating Functional Behavior and Performance
Constraints: Aspect-Oriented Specification, Technical
Report MPG-98-07, Computing Department, Lancaster
University, May 1998.

[5] MohammadReza Mousavi, Giovanni Russello, Michel
Chaudron, Michel Reniers, Twan Basten, Angelo Corsaro,
Sandeep Shukla, Rajesh Gupta, Douglas C. Schmidt, Using
Aspect-GAMMA in the Design of Embedded Systems, to
appear in the Proceedings of 7th IEEE International
Workshop on High Level Design and Validation, Cannes,
France, IEEE Computer Society Press, 2002.

[6] MohammadReza Mousavi, Twan Basten, Michel Reniers,
Michel Chaudron, Giovanni Russello, Separating
Functionality, Behavior, and Timing in the Design of
Reactive Systems: (GAMMA + Coordination) + Time,
Technical Report, Department of Computer Science,
Eindhoven University of Technology, 2002.

[7] Giovanni Russello, Michel Chaudron, Maarten van Steen,
Separating Distribution Policies in a Shared Data Space
System, Internal Report IR-497, Department of Mathematics
and Computer Science, Vrije Universiteit, June 2002.

