Fourth Halmstead Summer School on 6/10/2014
Testing June 2014

Half-adder circuit and formal model

Fourth Halmstad Summer School on Testing numerals in carry bit sum bit
June 9-12, 2014 numerals out truth table truth table
TS e e T D
0 [oo|o1 00 |0 00 |0
1]o1]10 o1 |0 o1 |1
Y/ Nsumbit 100 fo |1
carry bit of x+y 1 |1 1 |o
of x+y

Testing and Verification in ACL2
Rex Page, University of Oklahoma
June 12, 11:00 - 12:30

(defun and-gate (x y)
x) c (if (and (= x 1) (y 1)) 1 0)
(defun or-gate (x Y.
(if (or (= x 1) (y 1)) 10)

(defun xor-gate (X y)
) s (if (and = x 1) Gy 1))
0]

(or-gate x y)))
(defun_half-adder—xy)————
(xor gate x y) (and- gate X y

half-adder
circuit

/ |apow J2ppD-}|0Y

correctness property
((humb(halfadder x y)) = (x+y)) TS, pit numeral &

Fourth Halmstad Summer School on Testing June 9-12, 2014 4

Adding binary numerals

Digital circuit design verification carry
/

Commercial success for theorem provers
v AMD, Centaur Tech: ACL2

v Hewlett-Packard (in the engineering days): Isabelle 01011101 Half-adder is not enough
v Intel: Forte (model checking, lightweight HOL) + 11010101 Need 3 inputs at each stage
v 2 bits from addends

Digital circuits have specs
v facilitates use of formal methods 00110010
v software bug or feature? addends —
Circuit verification)|(5|/
v VLSI design (eg, VHDL) - testing and fabrication .

v formal model (eg, ACL2) - testing and verification previous c.— _ful
v design = model ? carry in | adder
Small example: ripple-carry adder
v to illustrate the general idea

¥' carry bit from previous position

—C <—carry bit

S ~——sum bit

Fourth Halmstad Summer School on Testing - June 9-12, 2014 2 Fourth Halmstad Summer School on Testing June 9-12, 2014 5
full-adder
H I . . Ty s half-adder
Binary numerals Full-adder circuit Sarxty s -
0+0+0 | 00 4
v Conventional rendering xy 0.0+ | 01 00 | 00
Xp X1 . X2 X1 Xg | | 0+1:0 | 01 01| o1
where each x, is a binary digit (0 or 1) full 0+1+1 | 10 0 | ot
X, is high-order bit, X is low-order bit €in— adder [¢ 1:0+0 | 01] 10
v Formal representation for our models | 1:0+1 [10 O e
[Xo X3 Xz . Xy] L 110 |10 y
bit-sequence in reverse order: low-order bit first, high-order last Xy full-add . i | U1
; ull-adder circuit full-adder model
v Converting between qumemls and numbers (defun full-adder (c-in x y)
Definitional properties (let* ((h1 (half-addet x v))
prop
(bits 0) = nil {bits0} re 251 gf'rStdhﬁB
s . .. C. secon J
(bits (nfl) = (cons (mod (n+1) 2) (bits(floor (n+1) 2))) {bits1} (2 (half—adder?sl c-in))
(numb nil) =0 {nmb0} (s (First h2))|
(humb(cons x xs)) = x + 2#(humb xs) {nmb1} (c2 (second h2))

. . . te c1c2
Derivable property: numb inverts bits (..st“; c§‘)’; gate cl £2))
(numb(bits n)) = n when n is a hon-negative integer {bits-id} correctness property . in: 3 bits

(numb(fullAdder ¢, xy)= (c," +x+y)) “out: 2-bit numeral
Fourth Halmstad Summer School on Testing June 9-12, 2014 3 Fourth Halmstad Summer School on Testing June 9-12, 2014 6

Rex Page — Univ of Oklahoma

Fourth Halmstead Summer School on

June 2014

w-bit ripple-carry adder
(adder ¢q [Xo X1 - Xy1] [Yo Y1 - Ywal) = [[So St - Syl €]

o Yo o b Xoety Ywel
¢ full C full C) Cyw.1 full || c
0 = [eoe
adder adder adder
I I adder I
S cee Sw-1

So
w-bit adder model (inductive)
(defun adder (cO x y) ; in: carry-bit and two w-bit numerals
(if (consp x)
(let* ((x0 (First x)) (xs (rest x)) (yO (first y)) (ys (rest y))
(a0 (full-adder cO x0 y0)) (sO (first a0)) (cl (second a0))
(a (adder cl xs ys)) (ss (first a)) (c (second a)))
(list (cons sO ss) c)) ; {addl} ; out: w-bit numeral and carry

(list nil c0))) ; {addo}
correctness property b
(numb(append [s; S ... Sy.1] [€])) dex&\o

= (numb[Xo X; ... X,.4]) + (numblyo yy ... Yya]) * Co

where [[sy s; ... S,,4] €] = (adder ¢, [Xo X; ... X,1] [Yo Y1 - Yu-1])
Fourth Halmstad Summer School on Testing June 9-12, 2014 7

6/10/2014

Bignum adder numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb Xx)))
; (add-1 nil) = 22 {add1nil}

Fourth Halmstad Summer School on Testing June 9-12, 2014 10

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 8

Bignum adder numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))
; (add-1 nil) = (list 1) {add1nil}

Fourth Halmstad Summer School on Testing June 9-12, 2014 11

Bignum adder

numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

Fourth Halmstad Summer School on Testing June 9-12, 2014 9

Rex Page — Univ of Oklahoma

Bignum adder

numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb Xx)))

; (add-1 nil) = (list 1) {add1nil}
; (add-1 (cons 0 x)) = ?? {add10}
Fourth Halmstad Summer School on Testing June 9-12, 2014 12

Fourth Halmstead Summer School on

Testing

June 2014

Bignum adder

numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1inil}
; (add-1 (cons 0 x)) = (cons 1 x) {add10}
Fourth Halmstad Summer School on Testing June 9-12, 2014 13

6/10/2014

Bignum adder numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb Xx)))

; (add-1 nil) = (list 1) {add1nil}
; (add-1 (cons 0 x)) = (cons 1 x) {add10}
; (add-1 (cons 1 x)) = (cons 0 (add-1 x)) {add11}

(defun add-1 (x)
(if (and (consp x) (= (First x) 1))
(cons 0 (add-1 (rest x))) ; addil
(cons 1 (rest x)))) ; add10

Fourth Halmstad Summer School on Testing June 9-12, 2014 16

Bignum adder numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}
; (add-1 (cons 0 x)) = (cons 1 x) {add10}
; (add-1 (cons 1 x)) = ?? {add11}

Fourth Halmstad Summer School on Testing June 9-12, 2014 14

Bignum adder numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}
; (add-1 (cons 0 x)) = (cons 1 x) {add10}
; (add-1 (cons 1 x)) = (cons 0 (add-1 x)) {add11}

(defun add-1 (x)
(if (and (consp x) (= (First x) 1))
(cons 0 (add-1 (rest x))) ; addll
(cons 1 (rest x)))) ; addio

Now, add a carry bit ¢ to a numeral
; (add-c ¢ x) = numeral for (+ ¢ (numb x)))
(defun add-c (¢ x)

(f (=c1)
(add-1 x) ; addcl
x)) ; addcO
Fourth Halmstad Summer School on Testing June 9-12, 2014 17

Bignum adder

numerals of unbounded length

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}
; (add-1 (cons 0 x)) = (cons 1 x) {add10}
; (add-1 (cons 1 x)) = (cons 0 (add-1 x)) {add11}

Fourth Halmstad Summer School on Testing June 9-12, 2014 15

Rex Page — Univ of Oklahoma

Bignum adder numerals of unbounded length
Add with carry - definitional properties

; adder with unbounded precision
; (add cO0 x y) = numeral for (+ cO (numb x) (numb y))
; Note: (len x) may be different from (len y)

Fourth Halmstad Summer School on Testing June 9-12, 2014 18

Fourth Halmstead Summer School on

Testing

June 2014

6/10/2014

Bignum adder numerals of unbounded length
Add with carry - definitional properties

; adder with unbounded precision
; (add cO0 x y) = numeral for (+ cO (nhumb x) (numb y))
; Note: (len x) may be different from (len y)
(defun add (cO x y)
- whentt
(if (not(consp x)) ties fhat ho\d e emP‘W
(add-c c0 y) roper’ numgrq\s‘ ;
(if (not(consp y)) one of the
(add-c c0 x) ; addx0y

.. other properties (x and y non-nil) ...

addoy

Fourth Halmstad Summer School on Testing June 9-12, 2014 19

Bignum adder numerals of unbounded length
Add with carry - definitional properties

; adder with unbounded precision
; (add cO0 x y) = numeral for (+ cO (numb Xx) (numb y))
; Note: (len x) may be different from (len y)
(defun add (cO x y)
(if (not(consp x))

(add-c c0 y) ; addoy
(if (not(consp y))
(add-c c0 x) ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a (full-adder cO x0 y0))

(s0 (first a))

(cl (second a)))

(cons sO (add cl (rest x) (rest y))))))) ; addxy
correctness property 1
(numb(add c0 x y)) = cO + (numb x) + (numb y) ée,«\"

Fourth Halmstad Summer School on Testing June 9-12, 2014 22

Bignum adder numerals of unbounded length
Add with carry - definitional properties

; adder with unbounded precision
; (add cO x y) = numeral for (+ cO (numb x) (numb y))
; Note: (len x) may be different from (len y)
(defun add (cO x y)
(if (not(consp x))

(add-c c0 y) ; addoy
(if (not(consp y))
(add-c c0 x) ; addx0y
(let* ((x0 (first x)) ; x is not nil
(y0 (first y)) ; y is not nil dodd“\zm
(a (full-adder cO x0 y0)) \o“s o
(sO (First a)) rdex

(cl (second a)g)(‘\“"d \o\N—O

Fourth Halmstad Summer School on Testing June 9-12, 2014 20

Mechanization Is Necessary
without it, all is lost in the details

Even simple properties lead to big proofs
v millions of details in proofs of software properties
People can't keep track of millions of details
Besides, a proof at least is as likely to be wrong as a program
v people formulate properties ... computers push details
proof organized into lemmas — similar to software components
rigorous, but not fully formal
like a paper-and-pencil proof, as done by mathematicians
some lemma architectures are better than others
like modular decomposition of software ... design matters
formulation of properties is a big task
experience/ judgment required ... as in software development

Fourth Halmstad Summer School on Testing June 9-12, 2014 23

Bignum adder numerals of unbounded length
Add with carry - definitional properties

; adder with unbounded precision
; (add cO x y) = numeral for (+ cO (numb x) (numb y))
; Note: (len x) may be different from (len y)
(defun add (cO x y)
(if (not(consp x))

(add-c c0 y) ; addoy
(if (not(consp y))
(add-c c0 x) ; addx0y

(let* ((x0 (First x)) ; x is not nil
(y0 (first y)) ; y is not nil
(a (full-adder cO x0 y0))
(s0 (first a))
(cl (second a)))
(cons sO (add cl (rest x) (rest y))))))) ; addxy
insert low-order sum-bit into numeral
for carry added to high-order bits

Fourth Halmstad Summer School on Testing June 9-12, 2014 21

When is theorem-proving practical?

Mission-critical: defect would be a catastrophe
v Intel Pentium bug in floating-point division

- convinced AMD o spend 12 weeks with ACL2 team
- AMD ftest suite for that circuit had 80-million cases

- gazillions of potential cases (21564 x 215+64 = 2158)
- physically impossible to do that many tests
v'NSA apparently willing to make large investments
to eliminate the possibility of certain outcomes
Specifiable properties
v Catastrophe avoided when Boolean formula holds
Resources

v/ VLSI design: add 10% to project budget/schedule
v software: double, triple, ... or more

Fourth Halmstad Summer School on Testing June 9-12, 2014 24

Rex Page — Univ of Oklahoma

Fourth Halmstead Summer School on
Testing June 2014

Exercises - bignum multiplier

Verify: numb inverts bits
Wereite defining properties for a multiplication operator
for binary numerals of unbounded length

o~

6. Define a correctness property of your multiply op
7. Use Proof Pad to run tests of the property you defined
8. Verify that the property holds for all binary numerals
- hints

shift and add natural numbers

v'Xo + 2*%(numb x) = (humb(cons x4 X)) (natp x) =

X is even X is odd xef{0,1,2,.}

v x=2x/2] v x=1+2x/2]

v xy=2lx/2ly v xy = (mody 2)+2(Ly/2] +[x/2]y)

Notes: http://ceres.hh.se/mediawiki/index.php/HSST_2014
Install Proof Pad: http://proofpad.org

Fourth Halmstad Summer School on Testing June 9-12, 2014 25

The End

June 12, 2014
11:00-12:30 session

Rex Page — Univ of Oklahoma

6/10/2014

