
Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 1

Fourth Halmstad Summer School on Testing
June 9-12, 2014

Testing and Verification in ACL2
Rex Page, University of Oklahoma

June 12, 11:00 – 12:30

Digital circuit design verification

Fourth Halmstad Summer School on Testing - June 9-12, 2014 2

Commercial success for theorem provers
 AMD, Centaur Tech: ACL2
 Hewlett-Packard (in the engineering days): Isabelle
 Intel: Forte (model checking, lightweight HOL)
Digital circuits have specs
 facilitates use of formal methods
 software bug or feature?
Circuit verification
 VLSI design (eg, VHDL) – testing and fabrication
 formal model (eg, ACL2) – testing and verification
 design model ?
Small example: ripple-carry adder
 to illustrate the general idea

Binary numerals

 Converting between numerals and numbers
Definitional properties
(bits 0) nil {bits0}
(bits (n+1) (cons (mod (n+1) 2) (bits(floor (n+1) 2))) {bits1}
(numb nil) 0 {nmb0}
(numb(cons x xs)) x + 2(numb xs) {nmb1}

Derivable property: numb inverts bits
(numb(bits n)) = n when n is a non-negative integer {bits-id}

 Conventional rendering
xn xn-1 … x2 x1 x0
where each xk is a binary digit (0 or 1)
xn is high-order bit, x0 is low-order bit

 Formal representation for our models
[x0 x1 x2 … xn]
bit-sequence in reverse order: low-order bit first, high-order last

Fourth Halmstad Summer School on Testing June 9-12, 2014 3

Half-adder circuit and formal model

+ 0 1
0 00 01
1 01 10

numerals in
numerals out

carry bit
of x+y

sum bit
of x+y

x

y

xy s
00 0
01 1
10 1
11 0

sum bit
truth table

xy c
00 0
01 0
10 0
11 1

carry bit
truth table

ha
lf

-a
dd

er
ci

rc
ui

t

x
y c x

y s

x

y

c

s

s c
2-bit numeral

correctness property
((numb(halfadder x y)) (x + y))

Fourth Halmstad Summer School on Testing June 9-12, 2014 4

(defun and-gate (x y)
(if (and (= x 1) (= y 1)) 1 0))

(defun or-gate (x y)
(if (or (= x 1) (= y 1)) 1 0))

(defun xor-gate (x y)
(if (and (= x 1) (= y 1))

0
(or-gate x y)))

(defun half-adder (x y)
(list (xor-gate x y) (and-gate x y)))

half-adder m
odel

Adding binary numerals

01011101

+ 11010101

0

1
carry

1

0

0

1

0

1

1

1

1

0

0

1

0

1

Half-adder is not enough
Need 3 inputs at each stage
 2 bits from addends
 carry bit from previous position

addends

previous
carry

sum bit

carry bit

x y

s

ccin
full

adder

Fourth Halmstad Summer School on Testing June 9-12, 2014 5

in: 3 bits
out: 2-bit numeral

Full-adder circuit
x y

full
adder

s

ccin

correctness property
(numb(fullAdder cin x y) (cin + x + y))

full-adder
cin+x+y cs
0+0+0 00
0+0+1 01
0+1+0 01
0+1+1 10
1+0+0 01
1+0+1 10
1+1+0 10
1+1+1 11

full-adder model
(defun full-adder (c-in x y)
(let* ((h1 (half-adder x y))

(s1 (first h1))
(c1 (second h1))
(h2 (half-adder s1 c-in))
(s (first h2))
(c2 (second h2))
(c (or-gate c1 c2)))

(list s c)))

cin

half
adder

half
adder

x y

s

c

full-adder circuit

c2
s1

c1

half
adder

x

y s

c

half-adder
x+y cs
0+0 00
0+1 01
1+0 01
1+1 10

Fourth Halmstad Summer School on Testing June 9-12, 2014 6

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 2

w-bit ripple-carry adder
(adder c0 [x0 x1 … xw-1] [y0 y1 … yw-1]) = [[s0 s1 … sw-1] c]

full
adder

x1 y1

s1

c2full
adder

x0 y0

s0

c1c0
full

adder

xw-1 yw-1

sw-1

ccw-1

adder

(defun adder (c0 x y) ; in: carry-bit and two w-bit numerals
(if (consp x)

(let* ((x0 (first x)) (xs (rest x)) (y0 (first y)) (ys (rest y))
(a0 (full-adder c0 x0 y0)) (s0 (first a0)) (c1 (second a0))
(a (adder c1 xs ys)) (ss (first a)) (c (second a)))

(list (cons s0 ss) c)) ; {add1} ; out: w-bit numeral and carry
(list nil c0))) ; {add0}

w-bit adder model (inductive)

Fourth Halmstad Summer School on Testing June 9-12, 2014 7

correctness property
(numb(append [s0 s1 … sw-1] [c]))

(numb[x0 x1 … xw-1]) + (numb[y0 y1 … yw-1]) + c0
where [[s0 s1 … sw-1] c] (adder c0 [x0 x1 … xw-1] [y0 y1 … yw-1])

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 8

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 9

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = ?? {add1nil}

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 10

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 11

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

; (add-1 (cons 0 x)) = ?? {add10}

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 12

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 3

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x) {add10}

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 13

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x) {add10}

; (add-1 (cons 1 x)) = ?? {add11}

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 14

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x) {add10}

; (add-1 (cons 1 x)) = (cons 0 (add-1 x)) {add11}

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 15

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x) {add10}

; (add-1 (cons 1 x)) = (cons 0 (add-1 x)) {add11}

(defun add-1 (x)

(if (and (consp x) (= (first x) 1))

(cons 0 (add-1 (rest x))) ; add11

(cons 1 (rest x)))) ; add10

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 16

Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1) {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x) {add10}

; (add-1 (cons 1 x)) = (cons 0 (add-1 x)) {add11}

(defun add-1 (x)

(if (and (consp x) (= (first x) 1))

(cons 0 (add-1 (rest x))) ; add11

(cons 1 (rest x)))) ; add10

Now, add a carry bit c to a numeral
; (add-c c x) = numeral for (+ c (numb x)))

(defun add-c (c x)

(if (= c 1)

(add-1 x) ; addc1

x)) ; addc0

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 17

Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 18

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 4

Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y) ; add0y

(if (not(consp y))

(add-c c0 x) ; addx0y

Bignum adder numerals of unbounded length

… other properties (x and y non-nil) …

Fourth Halmstad Summer School on Testing June 9-12, 2014 19

Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y) ; add0y

(if (not(consp y))

(add-c c0 x) ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a (full-adder c0 x0 y0))

(s0 (first a))

(c1 (second a)))

Bignum adder numerals of unbounded length

Fourth Halmstad Summer School on Testing June 9-12, 2014 20

Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y) ; add0y

(if (not(consp y))

(add-c c0 x) ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a (full-adder c0 x0 y0))

(s0 (first a))

(c1 (second a)))

(cons s0 (add c1 (rest x) (rest y))))))) ; addxy

Bignum adder numerals of unbounded length

insert low-order sum-bit into numeral
for carry added to high-order bits

Fourth Halmstad Summer School on Testing June 9-12, 2014 21

Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y) ; add0y

(if (not(consp y))

(add-c c0 x) ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a (full-adder c0 x0 y0))

(s0 (first a))

(c1 (second a)))

(cons s0 (add c1 (rest x) (rest y))))))) ; addxy

Bignum adder numerals of unbounded length

correctness property
(numb(add c0 x y)) = c0 + (numb x) + (numb y)

Fourth Halmstad Summer School on Testing June 9-12, 2014 22

23

Mechanization Is Necessary
without it, all is lost in the details

Even simple properties lead to big proofs
 millions of details in proofs of software properties

People can’t keep track of millions of details
Besides, a proof at least is as likely to be wrong as a program

Fourth Halmstad Summer School on Testing June 9-12, 2014

 people formulate properties … computers push details
proof organized into lemmas — similar to software components

rigorous, but not fully formal
like a paper-and-pencil proof, as done by mathematicians

some lemma architectures are better than others
like modular decomposition of software … design matters

formulation of properties is a big task
experience/judgment required … as in software development

24

When is theorem-proving practical?

Mission-critical: defect would be a catastrophe
Intel Pentium bug in floating-point division

- convinced AMD to spend 12 weeks with ACL2 team
- AMD test suite for that circuit had 80-million cases
- gazillions of potential cases (215+64 215+64 = 2158)
- physically impossible to do that many tests

NSA apparently willing to make large investments
to eliminate the possibility of certain outcomes

Resources
 VLSI design: add 10% to project budget/schedule
 software: double, triple, … or more

Fourth Halmstad Summer School on Testing June 9-12, 2014

Specifiable properties
 Catastrophe avoided when Boolean formula holds

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 5

Exercises - bignum multiplier
4. Verify: numb inverts bits
5. Write defining properties for a multiplication operator

for binary numerals of unbounded length
6. Define a correctness property of your multiply op
7. Use Proof Pad to run tests of the property you defined
8. Verify that the property holds for all binary numerals

Fourth Halmstad Summer School on Testing June 9-12, 2014 25

Install Proof Pad: http://proofpad.org
Notes: http://ceres.hh.se/mediawiki/index.php/HSST_2014

shift and add
x0 + 2(numb x) = (numb(cons x0 x))
x is even
 x = 2x/2
 xy = 2 x/2 y

x is odd
 x = 1 + 2x/2
 xy = (mod y 2) + 2(y/2 + x/2 y)

hints
natural numbers

(natp x)
x {0, 1, 2, …}

The End

June 12, 2014
11:00-12:30 session

