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Rex Page, University of Oklahoma
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Digital circuit design verification
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Commercial success for theorem provers
 AMD, Centaur Tech: ACL2
 Hewlett-Packard (in the engineering days): Isabelle
 Intel: Forte (model checking, lightweight HOL)
Digital circuits have specs
 facilitates use of formal methods
 software bug or feature?
Circuit verification
 VLSI design (eg, VHDL) – testing and fabrication
 formal model (eg, ACL2) – testing and verification
 design  model ? 
Small example: ripple-carry adder
 to illustrate the general idea

Binary numerals

 Converting between numerals and numbers
Definitional properties
(bits  0)  nil {bits0}
(bits (n+1)  (cons (mod (n+1) 2) (bits(floor (n+1) 2))) {bits1}
(numb nil)  0 {nmb0}
(numb(cons x xs))  x + 2(numb xs) {nmb1}

Derivable property: numb inverts bits
(numb(bits n)) = n when n is a non-negative integer {bits-id}

 Conventional rendering
xn xn-1 … x2 x1 x0
where each xk is a binary digit (0 or 1)
xn is high-order bit, x0 is low-order bit

 Formal representation for our models
[x0 x1 x2 … xn]
bit-sequence in reverse order: low-order bit first, high-order last
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Half-adder circuit and formal model
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correctness property
((numb(halfadder x y))  (x + y))
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(defun and-gate (x y)
(if (and (= x 1) (= y 1)) 1 0))

(defun or-gate (x y)
(if (or (= x 1) (= y 1)) 1 0))

(defun xor-gate (x y)
(if (and (= x 1) (= y 1))

0
(or-gate x y)))

(defun half-adder (x y)
(list (xor-gate x y) (and-gate x y)))

half-adder m
odel

Adding binary numerals

01011101

+ 11010101

0

1
carry

1

0

0

1

0

1

1

1

1

0

0

1

0

1

Half-adder is not enough
Need 3 inputs at each stage
 2 bits from addends
 carry bit from previous position
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in: 3 bits
out: 2-bit numeral

Full-adder circuit
x y

full
adder

s

ccin

correctness property
(numb(fullAdder  cin  x y)  (cin + x + y))

full-adder
cin+x+y cs
0+0+0 00
0+0+1 01
0+1+0 01
0+1+1 10
1+0+0 01
1+0+1 10
1+1+0 10
1+1+1 11

full-adder model
(defun full-adder (c-in x y)
(let* ((h1 (half-adder x y))

(s1 (first h1))
(c1 (second h1))
(h2 (half-adder s1 c-in))
(s  (first h2))
(c2 (second h2))
(c  (or-gate c1 c2)))

(list s c)))
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w-bit ripple-carry adder
(adder c0 [x0 x1 … xw-1] [y0 y1 … yw-1]) = [[s0 s1 … sw-1] c]

full
adder

x1 y1

s1

c2full
adder

x0 y0

s0

c1c0
full

adder

xw-1 yw-1

sw-1

ccw-1

adder

(defun adder (c0 x y)  ; in: carry-bit and two w-bit numerals
(if (consp x)

(let* ((x0 (first x)) (xs (rest x)) (y0 (first y)) (ys (rest y))
(a0 (full-adder c0 x0 y0)) (s0 (first a0)) (c1 (second a0))
(a  (adder c1 xs ys)) (ss (first a)) (c (second a)))

(list (cons s0 ss) c)) ; {add1} ; out: w-bit numeral and carry
(list nil c0)))          ; {add0}

w-bit adder model (inductive)
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correctness property
(numb(append [s0 s1 … sw-1] [c]))

(numb[x0 x1 … xw-1]) + (numb[y0 y1 … yw-1]) + c0
where [[s0 s1 … sw-1] c]  (adder c0 [x0 x1 … xw-1] [y0 y1 … yw-1])

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = ?? {add1nil}

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

; (add-1 (cons 0 x)) = ?? {add10}

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x)                 {add10}

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x)                 {add10}

; (add-1 (cons 1 x)) = ?? {add11}

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x)                 {add10}

; (add-1 (cons 1 x)) = (cons 0 (add-1 x))         {add11}

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x)                 {add10}

; (add-1 (cons 1 x)) = (cons 0 (add-1 x))         {add11}

(defun add-1 (x)

(if (and (consp x) (= (first x) 1))

(cons 0 (add-1 (rest x))) ; add11

(cons 1 (rest x))))       ; add10

Bignum adder numerals of unbounded length
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Simple problem to start: increment by 1
; (add-1 x) = numeral for (+ 1 (numb x)))

; (add-1 nil) = (list 1)                        {add1nil}

; (add-1 (cons 0 x)) = (cons 1 x)                 {add10}

; (add-1 (cons 1 x)) = (cons 0 (add-1 x))         {add11}

(defun add-1 (x)

(if (and (consp x) (= (first x) 1))

(cons 0 (add-1 (rest x))) ; add11

(cons 1 (rest x))))       ; add10

Now, add a carry bit c to a numeral
; (add-c c x) = numeral for (+ c (numb x)))

(defun add-c (c x)

(if (= c 1)

(add-1 x)  ; addc1

x))        ; addc0

Bignum adder numerals of unbounded length
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Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

Bignum adder numerals of unbounded length
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Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y)                                   ; add0y

(if (not(consp y))

(add-c c0 x)                               ; addx0y

Bignum adder numerals of unbounded length

… other properties (x and y non-nil) …
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Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y)                                   ; add0y

(if (not(consp y))

(add-c c0 x)                               ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a  (full-adder c0 x0 y0))

(s0 (first a))

(c1 (second a)))

Bignum adder numerals of unbounded length
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Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y)                                   ; add0y

(if (not(consp y))

(add-c c0 x)                               ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a  (full-adder c0 x0 y0))

(s0 (first a))

(c1 (second a)))

(cons s0 (add c1 (rest x) (rest y))))))) ; addxy

Bignum adder numerals of unbounded length

insert low-order sum-bit into numeral
for carry added to high-order bits 
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Add with carry – definitional properties
; adder with unbounded precision

; (add c0 x y) = numeral for (+ c0 (numb x) (numb y))

; Note: (len x) may be different from (len y)

(defun add (c0 x y)

(if (not(consp x))

(add-c c0 y)                                   ; add0y

(if (not(consp y))

(add-c c0 x)                               ; addx0y

(let* ((x0 (first x)) ; x is not nil

(y0 (first y)) ; y is not nil

(a  (full-adder c0 x0 y0))

(s0 (first a))

(c1 (second a)))

(cons s0 (add c1 (rest x) (rest y))))))) ; addxy

Bignum adder numerals of unbounded length

correctness property
(numb(add c0 x y)) = c0 + (numb x) + (numb y)
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Mechanization Is Necessary
without it, all is lost in the details

Even simple properties lead to big proofs
 millions of details in proofs of software properties

People can’t keep track of millions of details
Besides, a proof at least is as likely to be wrong as a program

Fourth Halmstad Summer School on Testing  June 9-12, 2014

 people formulate properties … computers push details
proof organized into lemmas — similar to software components

rigorous, but not fully formal
like a paper-and-pencil proof, as done by mathematicians

some lemma architectures are better than others
like modular decomposition of software … design matters

formulation of properties is a big task
experience/judgment required … as in software development

24

When is theorem-proving practical?

Mission-critical: defect would be a catastrophe
Intel Pentium bug in floating-point division

- convinced AMD to spend 12 weeks with ACL2 team
- AMD test suite for that circuit had 80-million cases
- gazillions of potential cases (215+64  215+64 = 2158)
- physically impossible to do that many tests

NSA apparently willing to make large investments 
to eliminate the possibility of certain outcomes

Resources
 VLSI design: add 10% to project budget/schedule
 software: double, triple, … or more
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Specifiable properties
 Catastrophe avoided when Boolean formula holds
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Exercises - bignum multiplier
4. Verify: numb inverts bits
5. Write defining properties for a multiplication operator 

for binary numerals of unbounded length
6. Define a correctness property of your multiply op 
7. Use Proof Pad to run tests of the property you defined
8. Verify that the property holds for all binary numerals
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Install Proof Pad: http://proofpad.org
Notes: http://ceres.hh.se/mediawiki/index.php/HSST_2014

shift and add
x0 + 2(numb x) = (numb(cons x0 x))
x is even
 x = 2x/2
 xy = 2 x/2 y

x is odd
 x = 1 + 2x/2
 xy = (mod y 2) + 2(y/2 + x/2 y)

hints
natural numbers

(natp x) 
x  {0, 1, 2, …} 

The End

June 12, 2014
11:00-12:30 session


