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Motivating Example

for (len = 100; len < 10000; len *= 2) {
 int * data = random_number_array (len);
 clock_t t0, t1;
 t0 = clock ();
 insertion_sort (data);
 t1 = clock ();
 printf (“%d\t%lu”, len, (t1 - t0));
 free (data);
}

how does problem size influence an algorithm?
for example insertion sort
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how does problem size influence an algorithm?
for example insertion sort

len  t1-t0

Motivating Example



do the same for other sorting algorithms...
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complexity analysis:
classify algorithms based on
the shape of their time-growth

Motivating Example



Complexity Analysis

• estimating performance as a function of problem size
• running time
• memory requirement

• not interested in precise predictions

‣ upper-bound for the worst-case growth rate



• estimating performance as a function of problem size
• running time
• memory requirement

• not interested in precise predictions

‣ upper-bound for the worst-case growth rate

we’ll ignore memory in this course

Complexity Analysis
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Math Refresher

polynomials logarithms



Polynomials
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in complexity analysis, we can simplify:
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Logarithms
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logarithms invert an exponential:

we will use b=2 and simply write
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what is the value of y?



(Why do we need logarithms?)

• example: binary search
• how long will the loop run?
• each step cuts the problem size in half

• example: binary trees
• how high is a tree that fits N nodes?
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problem size
number of times it can be cut in half



Commonly Encountered Functions

constant

logarithmic

log-squared

linear

N log N

quadratic

cubic

exponential
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Growth Rates



definition
“Big-Oh” indicates how the upper bound

 on execution time changes with problem size

formally, it is written O(F(N))
and defined mathematically like this:

Upper Bound: “Big-Oh” Notation
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Upper Bound: “Big-Oh” Notation



Big-Oh Simplification Rules

• only keep the fastest-growing additive terms
• remove constants

• examples:
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Big-Oh Intuition
when the problem size N grows to N’

the execution time T grows to T’
according to the term “inside” the Big-Oh

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)
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Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)

{Ai ⇧ N} = {A1, A2, . . . , AN} (32)
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Big-Oh N � = 2NN � = 2NN � = 2N N � = 10NN � = 10NN � = 10N
c T � = T T � = T
logN T � = T + c T � = T + 3.32c
log2 N T � = T + (1 + 2 logN)c T � = T + 3.32(1 + 2 logN)c
N T � = 2T T � = 10T
N logN T � = 2(Nc+ T ) T � = 10(3.32Nc+ t)
N2 T � = 4T T � = 100T
N3 T � = 8T T � = 1000T
2N T � =

↵
cT 2 T � = 10

↵
cT 10
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Complexity of
Iterative Algorithms



for (ii = 0; ii < length; ++ii) {
 if (array[ii] == x) {
  return ii;
 }
}
return -1;

Example: Linear Search



for (ii = 0; ii < length; ++ii) {
 if (array[ii] == x) {
  return ii;
 }
}
return -1;

N = array length

worst case A
      x is the last element: N iterations
worst case B
      x is not in the array: N iterations
average case
      x lies in the middle: N/2 iterations

Example: Linear Search



worst case A
      x is the last element: N iterations
worst case B
      x is not in the array: N iterations
average case
      x lies in the middle: N/2 iterations

“Big-Oh” complexity is O(N)

Example: Linear Search



for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < N; ++jj)

++sum;

Example: Nested Loops



int low = 0;
int high = length - 1;
while (low <= high) {
  int mid = (low + high) / 2;
  if (array[mid] < x) {
    low = mid + 1;
  }
  else if (array[mid] > x) {
    high = mid - 1;
  }
  else {
    return mid;
  }
}
return -1;

Example: Binary Search



Example: Binary Search

cut the problem in half

how often do we have to cut?

the opposite question is easier:
if we cut x times, then how 
long can the array be at most?

int low = 0;
int high = length - 1;
while (low <= high) {
  int mid = (low + high) / 2;
  if (array[mid] < x) {
    low = mid + 1;
  }
  else if (array[mid] > x) {
    high = mid - 1;
  }
  else {
    return mid;
  }
}
return -1;



int low = 0;
int high = length - 1;
while (low <= high) {
  int mid = (low + high) / 2;
  if (array[mid] < x) {
    low = mid + 1;
  }
  else if (array[mid] > x) {
    high = mid - 1;
  }
  else {
    return mid;
  }
}
return -1;

Example: Binary Search

cut the problem in half

how often do we have to cut?
the opposite question is easier:

if we cut x times, then how long can the array be?

...to invert the exponential, we use the logarithm:
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T (N) ⇧ o(F (N)) (27)
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Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)
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Example: Binary Search

cut the problem in half

O(log N)

int low = 0;
int high = length - 1;
while (low <= high) {
  int mid = (low + high) / 2;
  if (array[mid] < x) {
    low = mid + 1;
  }
  else if (array[mid] > x) {
    high = mid - 1;
  }
  else {
    return mid;
  }
}
return -1;



for (ii = 0; ii < N; ++ii)
sum++;

for (jj = 1; jj <= N; jj *= 2)
sum++;

Example:  Sequence of For Loops



Insertion Sort
Group Activity

extracting execution time formulas from source code



Merge Sort
Group Activity

review function call mechanism, and
analyze recursive execution time expressions



Complexity of
Recursive Algorithms

Merge sort is a “Divide and Conquer” algorithm.  
There is a nice general formula for those.

Complexity of
Divide & Conquer Algorithms



Complexity Analysis of
Divide & Conquer Algorithms

• theoretical runtime expressions are recursive

• rather tricky in general

• but there is a recipe that can be used in most 
situations encountered in practice

• Wikipedia calls it “Master Theorem”                
http://en.wikipedia.org/wiki/Master_theorem

http://en.wikipedia.org/wiki/Master_theorem
http://en.wikipedia.org/wiki/Master_theorem


Complexity Analysis of
Divide & Conquer Algorithms

procedure someDnC( N ) :
   if N < 1 then exit

   Do work of amount f(N)

   someDnC(N/B)
   ...A times...
   someDnC(N/B)
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recursion
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void msort (char ** strv, char ** tmp,
            int begin, int end)
{
int length, middle;
length = end - begin;
if (length <= 1)
return;

middle = begin + length / 2;
msort (strv, tmp, begin, middle);
msort (strv, tmp, middle, end);
merge (strv, tmp, begin, middle, end);

}

Apply this to Merge Sort
recurse twice
with N’=N/2

overhead:
   divide: O(c)
   merge: O(N)
total: O(N)



procedure someDnC( N ) :
   if N < 1 then exit

   Do work of amount f(N)

   someDnC(N/B)
   ...A times...
   someDnC(N/B)
 end procedure

overhead:
   divide: O(c)
   merge: O(N)
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recurse twice
with N’=N/2

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM )
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
( A > Bk

O
�
Nk

logN
�

( A = Bk

O
�
Nk

�
( A < Bk

1

Apply this to Merge Sort
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Apply this to Merge Sort

• T(N) is defined the recursively

• illustrate this case on the whiteboard...
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Apply this to Merge Sort

• T(N) is defined the recursively

• illustrate this case on the whiteboard...



General values for
A, B, and f(N)
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• conditions and assumptions:

• resulting general form:
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sloppy notation
(mixes function with bound)
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• conditions and assumptions:

• resulting general form:

General values for
A, B, and f(N)



• given a runtime estimate of the recursive form:

• its Big-Oh complexity is given by:
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“Master Theorem”



Matching Theory to Reality
is                              true?

‣ check whether T(N)/F(N) converges
• if it goes to zero,                                    

F(N) grows too fast
• if it goes to infinity,                                 

F(N) grows too slowly
• if it converges to a constant, 

we found the correct answer

example: is merge sort O(N*N)? or 
O(log N)? or O(N log N)?

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

2



Matching Theory to Reality
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Matching Theory to Reality

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  10  20  30  40  50  60  70  80  90  100

T(
N

) /
 F

(N
) [

k]

input length [k]

sorting time / O(N log N)

merge sort A
merge sort B
merge sort C

is it O(N log N)?



Matching Theory to Reality
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it converges for O(N log N)

which matches the theoretical analysis



Take-Home Message

• find the shape of an upper bound on 
computation time (Big-Oh notation)

• relatively easy for most iterative cases

• general formula for divide & conquer

• Big-Oh needs to be complemented by 
empirical data in practice




