
Algorithms, Data Structures, and Problem
Solving

Masoumeh Taromirad

Hamlstad University

DA4002, Fall 2016

Motivating Example

for (len = 100; len < 10000; len *= 2) {
 int * data = random_number_array (len);
 clock_t t0, t1;
 t0 = clock ();
 insertion_sort (data);
 t1 = clock ();
 printf (“%d\t%lu”, len, (t1 - t0));
 free (data);
}

how does problem size influence an algorithm?
for example insertion sort

100 1
150 1
225 1
338 2
507 0
761 17
1142 3
1713 6
2570 14
3855 31
5783 71
8675 166

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

ru
nn

in
g

tim
e

[m
s]

array size

running time measurement

insertion sort

how does problem size influence an algorithm?
for example insertion sort

len t1-t0

Motivating Example

do the same for other sorting algorithms...

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

ru
nn

in
g

tim
e

[m
s]

array size

running time measurement

insertion sort
merge sort
bubble sort

Motivating Example

do the same for other sorting algorithms...

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

ru
nn

in
g

tim
e

[m
s]

array size

running time measurement

insertion sort
merge sort
bubble sort

complexity analysis:
classify algorithms based on
the shape of their time-growth

Motivating Example

Complexity Analysis

• estimating performance as a function of problem size
• running time
• memory requirement

• not interested in precise predictions

‣ upper-bound for the worst-case growth rate

• estimating performance as a function of problem size
• running time
• memory requirement

• not interested in precise predictions

‣ upper-bound for the worst-case growth rate

we’ll ignore memory in this course

Complexity Analysis

Foundations of
Computational

Complexity

Math Refresher

polynomials logarithms

Polynomials

p(x) =
nX

i=0

a

i

x

i (1)

= a0 + a1x+ a2x
2 + · · ·+ a

n

x

n (2)

lim
x!1

p(x) = a

n

x

n (3)

1

in complexity analysis, we can simplify:

p(x) =
nX

i=0

aix
i (1)

= a0 + a1x+ a2x
2 + · · ·+ anx

n (2)

p(x) ⌃ anx
n ⌦x > xlarge (3)

x = by � y = logb(x) (4)

logN = log2(N) (5)

P = 2R � R = logP (6)

N = 2H+1 � 1� H = log(N + 1)� 1 (7)

c (8)

logN (9)

log2 N (10)

N (11)

N logN (12)

N2 (13)

N3 (14)

2N (15)

O(17.9 + 3.5⇤N + 0.1⇤N2) = O(N2) (16)

O(10000⇤N3 + 0.00001⇤ 2N) = O(2N) (17)

T (N) O(F (N)) (18)

� (19)

↵ c,N0 > 0⌥ T (N) ⌅ cF (N) ⌦ N ⇧ N0 (20)

1

Logarithms

p(x) =

nX

i=0

a

i

x

i

(1)

= a

0

+ a

1

x+ a

2

x

2

+ · · ·+ a

n

x

n

(2)

lim

x!1
p(x) = a

n

x

n

(3)

log

b

(b

x

) = x , b

logb
(y) = y (4)

logN = log

2

(N) (5)

1

logarithms invert an exponential:

we will use b=2 and simply write

p(x) =

nX

i=0

a

i

x

i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ a

n

x

n

(2)

lim

x!1
p(x) = a

n

x

n

(3)

x = b

y , y = log

b

(x) (4)

logN = log2(N) (5)

1

what is the value of y?

(Why do we need logarithms?)

• example: binary search
• how long will the loop run?
• each step cuts the problem size in half

• example: binary trees
• how high is a tree that fits N nodes?

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

1

problem size
number of times it can be cut in half

Commonly Encountered Functions

constant

logarithmic

log-squared

linear

N log N

quadratic

cubic

exponential

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

slowest-growing

fastest-growing

constant

logarithmic

log-squared

linear

N log N

quadratic

cubic

exponential

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

1

slowest-growing

fastest-growing

fast algorithms

slow algorithms

Commonly Encountered Functions

Growth Rates

definition
“Big-Oh” indicates how the upper bound

 on execution time changes with problem size

formally, it is written O(F(N))
and defined mathematically like this:

Upper Bound: “Big-Oh” Notation

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

O(17.9 + 3.5⇥N + 0.1⇥N2
) = O(N2

) (16)

O(10000⇥N3
+ 0.00001⇥ 2

N
) = O(2

N
) (17)

T (N) 2 O(F (N)) (18)

, (19)

9 c,N0 > 0) T (N) cF (N) 8 N � N0 (20)

1

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

O(17.9 + 3.5⇥N + 0.1⇥N2
) = O(N2

) (16)

O(10000⇥N3
+ 0.00001⇥ 2

N
) = O(2

N
) (17)

T (N) 2 O(F (N)) (18)

, (19)

9 c,N0 > 0) T (N) cF (N) 8 N � N0 (20)

1

execution time T in function of problem size N

complexity class [example: O(log N)]

it’s an upper bound

valid for
sufficiently

large problems

Upper Bound: “Big-Oh” Notation

Big-Oh Simplification Rules

• only keep the fastest-growing additive terms
• remove constants

• examples:

p(x) =
nX

i=0

aix
i

(1)

= a0 + a1x+ a2x
2
+ · · ·+ anx

n
(2)

lim

x!1
p(x) = anx

n
(3)

x = by , y = logb(x) (4)

logN = log2(N) (5)

P = 2

R , R = logP (6)

N = 2

H+1 � 1 , H = log(N + 1)� 1 (7)

c (8)

logN (9)

log

2 N (10)

N (11)

N logN (12)

N2
(13)

N3
(14)

2

N
(15)

O(17.9 + 3.5⇥N + 0.1⇥N2
) = O(N2

) (16)

O(10000⇥N3
+ 0.00001⇥ 2

N
) = O(2

N
) (17)

1

Big-Oh Intuition
when the problem size N grows to N’

the execution time T grows to T’
according to the term “inside” the Big-Oh

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)

{Ai ⇧ N} = {A1, A2, . . . , AN} (32)
jX

k=i

Ak (33)

Big-Oh N � = 2NN � = 2NN � = 2N N � = 10NN � = 10NN � = 10N
c T � = T T � = T
logN T � = T + c T � = T + 3.32c
log2 N T � = T + (1 + 2 logN)c T � = T + 3.32(1 + 2 logN)c
N T � = 2T T � = 10T
N logN T � = 2(Nc+ T) T � = 10(3.32Nc+ t)
N2 T � = 4T T � = 100T
N3 T � = 8T T � = 1000T
2N T � =

↵
cT 2 T � = 10

↵
cT 10

2

Complexity of
Iterative Algorithms

for (ii = 0; ii < length; ++ii) {
 if (array[ii] == x) {
 return ii;
 }
}
return -1;

Example: Linear Search

for (ii = 0; ii < length; ++ii) {
 if (array[ii] == x) {
 return ii;
 }
}
return -1;

N = array length

worst case A
 x is the last element: N iterations
worst case B
 x is not in the array: N iterations
average case
 x lies in the middle: N/2 iterations

Example: Linear Search

worst case A
 x is the last element: N iterations
worst case B
 x is not in the array: N iterations
average case
 x lies in the middle: N/2 iterations

“Big-Oh” complexity is O(N)

Example: Linear Search

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < N; ++jj)

++sum;

Example: Nested Loops

int low = 0;
int high = length - 1;
while (low <= high) {
 int mid = (low + high) / 2;
 if (array[mid] < x) {
 low = mid + 1;
 }
 else if (array[mid] > x) {
 high = mid - 1;
 }
 else {
 return mid;
 }
}
return -1;

Example: Binary Search

Example: Binary Search

cut the problem in half

how often do we have to cut?

the opposite question is easier:
if we cut x times, then how
long can the array be at most?

int low = 0;
int high = length - 1;
while (low <= high) {
 int mid = (low + high) / 2;
 if (array[mid] < x) {
 low = mid + 1;
 }
 else if (array[mid] > x) {
 high = mid - 1;
 }
 else {
 return mid;
 }
}
return -1;

int low = 0;
int high = length - 1;
while (low <= high) {
 int mid = (low + high) / 2;
 if (array[mid] < x) {
 low = mid + 1;
 }
 else if (array[mid] > x) {
 high = mid - 1;
 }
 else {
 return mid;
 }
}
return -1;

Example: Binary Search

cut the problem in half

how often do we have to cut?
the opposite question is easier:

if we cut x times, then how long can the array be?

...to invert the exponential, we use the logarithm:

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)

2

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

Nmax = 2x (29)

x = log2 Nmax (30)

x � logN (31)

2

Example: Binary Search

cut the problem in half

O(log N)

int low = 0;
int high = length - 1;
while (low <= high) {
 int mid = (low + high) / 2;
 if (array[mid] < x) {
 low = mid + 1;
 }
 else if (array[mid] > x) {
 high = mid - 1;
 }
 else {
 return mid;
 }
}
return -1;

for (ii = 0; ii < N; ++ii)
sum++;

for (jj = 1; jj <= N; jj *= 2)
sum++;

Example: Sequence of For Loops

Insertion Sort
Group Activity

extracting execution time formulas from source code

Merge Sort
Group Activity

review function call mechanism, and
analyze recursive execution time expressions

Complexity of
Recursive Algorithms

Merge sort is a “Divide and Conquer” algorithm.
There is a nice general formula for those.

Complexity of
Divide & Conquer Algorithms

Complexity Analysis of
Divide & Conquer Algorithms

• theoretical runtime expressions are recursive

• rather tricky in general

• but there is a recipe that can be used in most
situations encountered in practice

• Wikipedia calls it “Master Theorem”
http://en.wikipedia.org/wiki/Master_theorem

http://en.wikipedia.org/wiki/Master_theorem
http://en.wikipedia.org/wiki/Master_theorem

Complexity Analysis of
Divide & Conquer Algorithms

procedure someDnC(N) :
 if N < 1 then exit

 Do work of amount f(N)

 someDnC(N/B)
 ...A times...
 someDnC(N/B)
 end procedure

recursion
(smaller sub-problems)

overhead
(divide + reassamble)

T (N) = A · T
✓
N

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

T (N) 2 O(N logN)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
N

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

V (x
0

) = max

a0,a1,··· ,aN

NX

n=0

F (xn, an)

xn 2 X

an 2 A(xn)

xn+1

= T (xn, an)

. . .

V (x
0

) = max

a0

�
F (x

0

, a
0

) + V (x
1

)

�

x
1

= T (x
0

, a
0

)

1

void msort (char ** strv, char ** tmp,
 int begin, int end)
{
int length, middle;
length = end - begin;
if (length <= 1)
return;

middle = begin + length / 2;
msort (strv, tmp, begin, middle);
msort (strv, tmp, middle, end);
merge (strv, tmp, begin, middle, end);

}

Apply this to Merge Sort
recurse twice
with N’=N/2

overhead:
 divide: O(c)
 merge: O(N)
total: O(N)

procedure someDnC(N) :
 if N < 1 then exit

 Do work of amount f(N)

 someDnC(N/B)
 ...A times...
 someDnC(N/B)
 end procedure

overhead:
 divide: O(c)
 merge: O(N)
total: O(N)T (N) = A · T

✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

N

2

◆
+O(N)

T (N) = A · T
✓
A

B

◆
+O(Nk)

1

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

N

2

◆
+O(N)

T (N) = A · T
✓
A

B

◆
+O(Nk)

1

recurse twice
with N’=N/2

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

1

Apply this to Merge Sort

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

1

Apply this to Merge Sort

• T(N) is defined the recursively

• illustrate this case on the whiteboard...

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

1

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

T (N) 2 O(N logN)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

1

Apply this to Merge Sort

• T(N) is defined the recursively

• illustrate this case on the whiteboard...

General values for
A, B, and f(N)

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+O(N)

A � 1

B > 1

f(N) 2 O(Nk)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk =
�
BM

�k
=

�
Bk

�M

T (N) = A · T
✓
A

B

◆
+O(Nk)

1

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+O(N)

A � 1

B > 1

f(N) 2 O(Nk)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk =
�
BM

�k
=

�
Bk

�M

T (N) = A · T
✓
A

B

◆
+O(Nk)

1

T (N) = A · T
✓
N

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

T (N) 2 O(N logN)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
N

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

V (x
0

) = max

a0,a1,··· ,aN

NX

n=0

F (xn, an)

xn 2 X

an 2 A(xn)

xn+1

= T (xn, an)

. . .

V (x
0

) = max

a0

�
F (x

0

, a
0

) + V (x
1

)

�

x
1

= T (x
0

, a
0

)

1

• conditions and assumptions:

• resulting general form:

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+O(N)

A � 1

B > 1

f(N) 2 O(Nk)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk =
�
BM

�k
=

�
Bk

�M

T (N) = A · T
✓
A

B

◆
+O(Nk)

1

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+O(N)

A � 1

B > 1

f(N) 2 O(Nk)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk =
�
BM

�k
=

�
Bk

�M

T (N) = A · T
✓
A

B

◆
+O(Nk)

1

sloppy notation
(mixes function with bound)

T (N) = A · T
✓
N

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

T (N) 2 O(N logN)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
N

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

V (x
0

) = max

a0,a1,··· ,aN

NX

n=0

F (xn, an)

xn 2 X

an 2 A(xn)

xn+1

= T (xn, an)

. . .

V (x
0

) = max

a0

�
F (x

0

, a
0

) + V (x
1

)

�

x
1

= T (x
0

, a
0

)

1

• conditions and assumptions:

• resulting general form:

General values for
A, B, and f(N)

• given a runtime estimate of the recursive form:

• its Big-Oh complexity is given by:

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+O(N)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

1

T (N) = A · T
✓
N

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

T (N) 2 O(N logN)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM)
(

N
B = BM�1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
N

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
(A > Bk

O
�
Nk

logN
�

(A = Bk

O
�
Nk

�
(A < Bk

V (x
0

) = max

a0,a1,··· ,aN

NX

n=0

F (xn, an)

xn 2 X

an 2 A(xn)

xn+1

= T (xn, an)

. . .

V (x
0

) = max

a0

�
F (x

0

, a
0

) + V (x
1

)

�

x
1

= T (x
0

, a
0

)

1

“Master Theorem”

Matching Theory to Reality
is true?

‣ check whether T(N)/F(N) converges
• if it goes to zero,

F(N) grows too fast
• if it goes to infinity,

F(N) grows too slowly
• if it converges to a constant,

we found the correct answer

example: is merge sort O(N*N)? or
O(log N)? or O(N log N)?

T (N) ⇧ O(F (N)) (21)

⌅ ⌥ c,N0 > 0 ⇤ T (N) � cF (N) ⌃ N ⇥ N0 (22)

T (N) ⇧ ⇥(F (N)) (23)

⌅ ⌥ c,N0 > 0 ⇤ T (N) ⇥ cF (N) ⌃ N ⇥ N0 (24)

T (N) ⇧ �(F (N)) (25)

⌅ T (N) ⇧ O(F (N)) � T (N) ⇧ ⇥(F (N)) (26)

T (N) ⇧ o(F (N)) (27)

⌅ T (N) ⇧ O(F (N)) � T (N) /⇧ ⇥(F (N)) (28)

2

Matching Theory to Reality

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

T(
N

) /
 F

(N
) [

u]

input length [k]

sorting time / O(N*N)

merge sort A
merge sort B
merge sort C

is it O(N*N)?

Matching Theory to Reality

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

T(
N

) /
 F

(N
)

input length [k]

sorting time / O(log N)

merge sort A
merge sort B
merge sort C

is it O(log N)?

Matching Theory to Reality

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

T(
N

) /
 F

(N
) [

k]

input length [k]

sorting time / O(N log N)

merge sort A
merge sort B
merge sort C

is it O(N log N)?

Matching Theory to Reality

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

T(
N

) /
 F

(N
) [

k]

input length [k]

sorting time / O(N log N)

merge sort A
merge sort B
merge sort C

it converges for O(N log N)

which matches the theoretical analysis

Take-Home Message

• find the shape of an upper bound on
computation time (Big-Oh notation)

• relatively easy for most iterative cases

• general formula for divide & conquer

• Big-Oh needs to be complemented by
empirical data in practice

