Functional Testing

Mohammad Mousavi

Halmstad University, Sweden

http://ceres.hh.se/mediawiki/DT8021_Ed_2015

Testing and Verification of Embedded Systems (DT8021), March 23, 2015

Outline

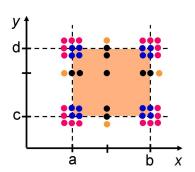
Introduction

Equivalence Class Testing

Decision Tables

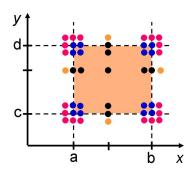
Decision Tables

Classification Trees

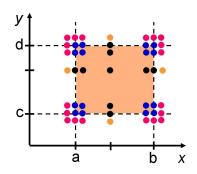

Conclusions

Functional Testing

- functional testing: program is an input from a certain domain to a certain range
- impossible to check all input/output combinations: defining a coverage criterion to choose some some


Boundary Value Testing

 boundary value testing: a test case for each combination of extreme (normal, out of bound) values


Boundary Value Testing: Pros and Cons

- + straightforward test-case generation
 - no sense of covering the input domain
 - awkward for logical vars.
 - only independent input domains
 - not using white-box information

Boundary Value Testing: Pros and Cons

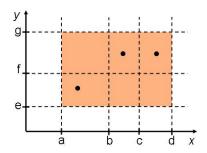
- + straightforward test-case generation
 - no sense of covering the input domain *
 - awkward for logical vars. *
 - only independent input domains *
 - not using white-box information
- *: Today's order of business.

Outline

Introductio

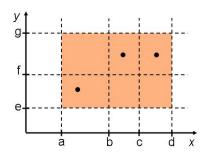
Equivalence Class Testing

Decision Tables


Decision Tables

Classification Trees

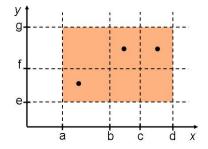
Conclusions


Weak Normal EC: Idea

- Define equivalence classes on the domain (range) of input (output) for each variable: (independent input)
- cover equivalence classes for the domain of each variable: single fault assumption
- how many test-cases are needed?
- also called: (equivalence, category) partition method

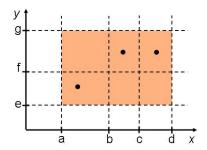
Little Puzzle

What is the minimal number of tokens that are needed to be put in an $m \times n$ grid such that each row and column contains at leats one token?



Little Puzzle

What is the minimal number of tokens that are needed to be put in an $m \times n$ grid such that each row and column contains at leats one token?


max(m,n):

Put token number i at (max(i, m), max(i, n)).

Weak Normal EC: Idea

- Define equivalence classes on the domain (range) of input (output) for each variable: (independent input)
- cover equivalence classes for the domain of each variable: single fault assumption
- ▶ how many test-cases are needed? $\max_{x} |S_{x}|$.

Mortgage Example (recap)

Spec. Write a program that takes three inputs: gender (boolean), age([18-55]), salary ([0-10000]) and output the total mortgage for one person

Mortgage = salary * factor, where factor is given by the following table.

Category	Male	Female
Young	(18-35 years) 75	(18-30 years) 70
Middle	(36-45 years) 55	(31-40 years) 50
Old	(46-55 years) 30	(41-50 years) 35

Weak Normal EC Testing

Category	Male	Female
Young	(18-35 years) 75	(18-30 years) 70
Middle	(36-45 years) 55	(31-40 years) 50
Old	(46-55 years) 30	(41-50 years) 35

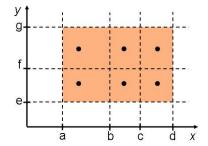
- age: difficult!
- salary: [0-10000]
- male: as strange as boundary value!

Weak Normal EC Testing

Category	Male	Female
Young	(18-35 years) 75	(18-30 years) 70
Middle	(36-45 years) 55	(31-40 years) 50
Old	(46-55 years) 30	(41-50 years) 35

- ▶ age: difficult! [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]
- ► salary: [0-10000]
- male: as strange as boundary value! true, false

Weak Normal EC Testing


if (male) then return

```
((18 \leq \mathit{age} < 35)?(75 * \mathit{salary}) : (31 \leq \mathit{age} < 40)?(55 * \mathit{salary}) : (30 * \mathit{salary}))
```

else return $((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))$

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	20	1000	75*1000	75*1000	Р
female	32	1000	50*1000	50*1000	Р
male	38	1000	55*1000	50*1000	Р
female	42	1000	35*1000	35*1000	Р
male	48	1000	30*1000	30*1000	Р
female	52	1000	35*5000	too late!	F

- cover the all combinations of equivalence classes for the domain of all variables: multiple fault assumption
- ▶ number of test-cases? $\prod_{x} |S_{x}|$


```
      Category
      Male
      Female

      Young
      (18-35 years) 75
      (18-30 years) 70

      Middle
      (36-45 years) 55
      (31-40 years) 50

      Old
      (46-55 years) 30
      (41-50 years) 35
```

- ▶ age: [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]
- salary: [0-10000]
- male: true, false

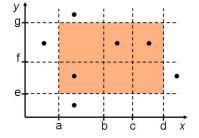
if (male) then return

```
((18 \leq \mathit{age} < 35)?(75 * \mathit{salary}) : (31 \leq \mathit{age} < 40)?(55 * \mathit{salary}) : (30 * \mathit{salary}))
```

else return $((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))$

Gender	Age	Salary	Output	Correct Out.	Pass/Fail	
female	20	1000	75*1000	70*1000	F	
female	32	1000	50*1000	50*1000	Р	
female	38	1000	50*1000	50*1000	Р	
female	42	1000	35*1000	35*1000	Р	
female	48	1000	35*1000	35*1000	Р	
female	52	1000	35*5000	too late!	F	

if (male) then return


```
((18 \leq \mathit{age} < 35)?(75 * \mathit{salary}) : (31 \leq \mathit{age} < 40)?(55 * \mathit{salary}) : (30 * \mathit{salary}))
```

else return $((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))$

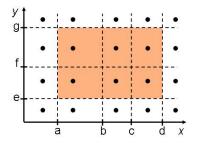
	- ((-	,	(_ '0' ' ') ('' ' ')	(
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	20	1000	75*1000	75*1000	Р
male	32	1000	50*1000	75*1000	F
male	38	1000	55*1000	50*1000	Р
male	42	1000	30*1000	55*1000	F
male	48	1000	30*1000	30*1000	Р
male	52	1000	30*1000	30*1000	Р

Weak Robust EC

- includes weak normal; adds out of range test-cases for each variable
- ► number of test-cases? $(\max_x | S_x |) + 2 * n$

Weak Robust EC Testing

if (male) then return


```
((18 \le age < 35)?(75 * salary) : (31 \le age < 40)?(55 * salary) : (30 * salary))

else return ((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))
```

	- ((-	_ 101 117	((
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	1000	30*1000	too young!	F
female	56	1000	35*1000	too late	F
male	36	-1	55*-1	0	F
female	36	10001	50*10001	50*10000	F

Strong Robust EC

- Same as strong normal but also checks for all out of range combinations
- ▶ number of test-cases? $\prod_{x} (|S_x| + 2)$

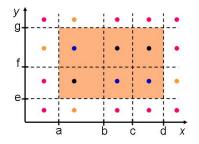
Strong Robust EC

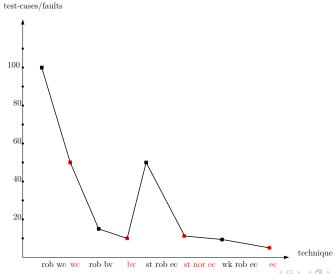
if (male) then return

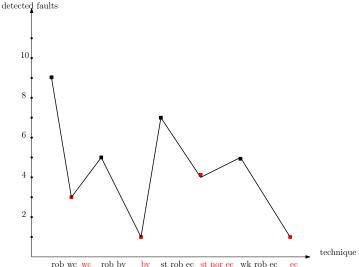
```
 ((18 \leq age < 35)?(75*salary): (31 \leq age < 40)?(55*salary): (30*salary))  else return  ((18 \leq age < 30)?(75*salary): (31 \leq age < 40)?(50*salary): (35*salary))
```

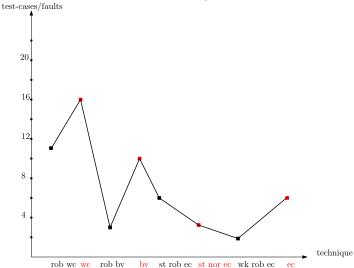
Mostly similar faults to Weak Robust EC:

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	1000	30*1000	too young!	F
female	56	1000	35*1000	too late	F
female	17	1000	35*1000	too young!	F
male	56	1000	30*1000	too late	F
male	36	-1	55*-1	0	F
female	36	10001	50*10001	50*10000	F

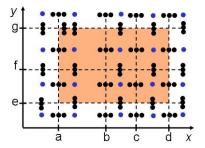

. . .


A Brief Comparison


 $A \rightarrow B$: Test-cases of A (faults detected by A) is a subset of those of B.


Mortgage Case: #Test-Cases

Mortgage Case: Detected Fault



Mortgage Case: #Test-Cases/Fault

Idea

- Considering the boundaries of each partition relevant
- Example: Robust worst case testing of of partitions

Strong Robust EC + Robust BV

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	-1	30*-1	too young!	F 1
male	17	1000	30*1000	too young!	F 1
male	17	10001	30*10001	too young!	F 1
male	56'	-1	30*-1	too late	F 2
male	56	1000	30*1000	too late	F 2
male	56	10001	30*10001	too late	F 2
female	17	-1	30*-1	too young!	F 3
female	17	1000	30*1000	too young!	F 3
female	17	10001	30*10001	too young!	F 3
female	56	-1	30*-1	too late	F 4
female	56	1000	30*1000	too late	F 4
female	56	10001	30*10001	too late	F 4

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	18	1000	75*1000	70*1000	F 5
female	19	1000	75*1000	70*1000	F 5
female	20	1000	75*1000	70*1000	F 5
female	29	1000	75*1000	70*1000	F 5
female	30	1000	35*1000	70*1000	F 6
female	31	1000	50*1000	50*1000	Р
female	32	1000	50*1000	50*1000	Р
female	34	1000	50*1000	50*1000	Р
female	35	1000	50*1000	50*1000	Р
female	36	1000	50*1000	50*1000	Р
female	38	1000	50*1000	50*1000	Р
female	39	1000	50*1000	50*1000	Р
female	40	1000	35*1000	50*1000	F 7

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	41	1000	35*1000	35*1000	Р
female	42	1000	35*1000	35*1000	Р
female	44	1000	35*1000	35*1000	Р
female	45	1000	35*1000	35*1000	Р
female	46	1000	35*1000	35*1000	Р
female	49	1000	35*1000	35*1000	Р
female	50	1000	35*1000	35*1000	Р
female	51	1000	35*1000	too late!	F 7
female	52	1000	35*1000	too late!	F 7
female	53	1000	35*1000	too late!	F 7
female	54	1000	35*1000	too late!	F 7
female	55	1000	35*1000	too late!	F 7

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	18	1000	75*1000	75*1000	Р
male	19	1000	75*1000	75*1000	Р
male	20	1000	75*1000	75*1000	Р
male	29	1000	75*1000	75*1000	Р
male	30	1000	75*1000	75*1000	Р
male	31	1000	55*1000	75*1000	F 8
male	32	1000	55*1000	75*1000	F 8
male	34	1000	55*1000	75*1000	F 8
male	35	1000	55*1000	75*1000	F 9
male	36	1000	55*1000	55*1000	Р
male	38	1000	55*1000	55*1000	Р
male	39	1000	55*1000	55*1000	Р
male	40	1000	55*1000	20*1000	F 10

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	41	1000	30*1000	30*1000	Р
male	42	1000	30*1000	30*1000	Р
male	44	1000	30*1000	30*1000	Р
male	45	1000	30*1000	30*1000	Р
male	46	1000	30*1000	30*1000	Р
male	49	1000	30*1000	30*1000	Р
male	50	1000	30*1000	30*1000	Р
male	51	1000	30*1000	30*1000	Р
male	52	1000	30*1000	30*1000	Р
male	53	1000	30*1000	30*1000	Р
male	54	1000	30*1000	30*1000	Р
male	55	1000	30*1000	30*1000	Р

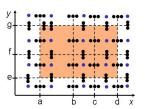
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	17	-1	35*-1	0	F 11
female	18	-1	75*-1	0	F 11

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	17	10001	35*10001	too young!	F 11
female	18	10001	75*10001	75*10000	F 12

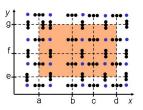
. . .

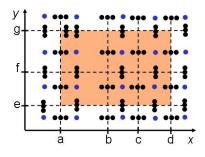
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	-1	30*-1	0	F 12
male	18	-1	70*-1	0	F 12

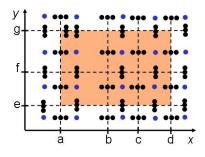
. . .


Strong Robust EC + Robust BV (Cont'd)

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	10001	30*10001	too young!	F 12
male	18	10001	70*10001	75*10000	F 12


. . .


► Example: Strong EC + Robust BV number of test-cases: $\sim \prod_{x} 4(|S_x|+1)$, whopping!


- >100 test-cases for the mortgage example
- ► too many for any real-life program e.g., 5 vars., each 5 partitions:
 - \sim 8 million test-cases
 - 1 sec. for each test-case:
 - 3 months testing!

- Problems:
 - No constraints on the equivalence classes
 - 2. Dependencies among different variables not taken into account
 - No choice among relevant classes (e.g., apply worst-case testing on some and boundary values on others)
- ► Solutions: Attend the coming lecture!

- Problems:
 - No constraints on the equivalence classes
 - 2. Dependencies among different variables not taken into account
 - No choice among relevant classes (e.g., apply worst-case testing on some and boundary values on others)
- ► Solutions: Attend the coming lecture!

Possible Solution: Pairwise Testing

- ► Pairwise testing: for each two variables and each two partitions of their valuations, there is at least one test case
- ► *T*-wise testing: for each *T* variables and each *T* partitions of their valuations, there is at least one test case

Outline

La tracal contra

Equivalence Class Testing

Decision Tables

Decision Table

Classification Tree

Conclusions

Outline

Introductio

Equivalence Class Testing

Decision Table

Decision Tables

Classification Trees

Conclusions

Idea

- Goal: Summarize the logic of the program (à la Karnaugh maps)
- Find a few conditions on input determining the output behavior
 need not be independent
 relaxing the independence assumption in all previous techniques
- Determine the output actions for each combination of condition evaluations
- also called: cause-effect graph testing, or tableau testing

► Stub:

- condition part the most dominating conditions first multi-valued conditions and special cases last
- action part exceptions preferably combined actions as new rows

Stub	E	Entr	y		
c1	F	Т	Т		
c2	-	F	Т		
c3	-	-	F		
a1	X	-	-		
a2	_	Х	-		
a1;a2	-	-	Χ		

- Entry
 - columns are called rules
 - condition part: true, false, (possibly other values) or don't care
 - action part

Stub	E	Entr	y
c1	F	Т	Т
c2	-	F	Т
c3	-	-	F
a1	X	-	-
a2	-	X	-
a1;a2	-	-	Χ

- Completeness check for independent variables
 - each don't care counts for two rules
 - there must be $2^{|\{c_i\}|}$ rules (for n_i -valued conditions: $\prod_i n_i$)

c1	F	Т	Т
c2	-	F	Т
c3	-	-	F
a1	Х	-	-
a2	-	Х	_
a1;a2	-	-	Χ

- Completeness check for independent variables
 - each don't care counts for two rules
 - ▶ there must be $2^{|\{c_i\}|}$ rules (for n_i -valued conditions: $\prod_i n_i$)

c1	F	T	Т	Т
c2	-	F	Т	Т
c3	-	-	F	Т
a1	X	_	-	-
a2	_	X	-	_
a1;a2	-	-	Χ	_
error	-	-	-	Χ

nditions/Actions]
0≤salary≤10000?	n	у	у	у	у	у	у	у	у	
male?	-	-	-	У	у	у	n	n	n	
too young? [,18]	-	у	-	_	-	-	-	-	-	
young? m:[18,,35], f:[18,,30]	_	_	-	у	-	-	у	_	-	
mid? m:[36,,45], f:[31,,40]	-	_	-	_	у	-	-	у	-	l
old? m:[46,,55], f:[40,,50]	-	-	-	_	-	у	-	-	у	l
too old? m:[56,], f:[51,]	-	-	у	_	-	-	-	-	-	
										ĺ
wrong inputs	Χ	Χ	Χ	_	-	-	_	-	_	
75*salary	_	_	-	Х	-	-	-	_	-	
70*salary	_	_	-	_	-	-	Х	_	-	ĺ
55*salary	_	_	-	_	Χ	-	-	_	-	l
50*salary	_	_	-	_	-	-	-	Х	-	
35*salary	-	_	-	_	-	-	-	-	Χ	
30*salary	-	-	-	-	-	Х	-	-	-	
	nditions/Actions 0 \(\leq \salary \leq 10000? \) male? too young? [,18] young? m:[18,,35], f:[18,,30] mid? m:[36,,45], f:[31,,40] old? m:[46,,55], f:[40,,50] too old? m:[56,], f:[51,] wrong inputs 75*salary 70*salary 55*salary 50*salary 35*salary 30*salary	0≤salary≤10000? male? too young? [,18] young? m:[18,,35], f:[18,,30] - mid? m:[36,,45], f:[31,,40] - old? m:[46,,55], f:[40,,50] - too old? m:[56,], f:[51,] wrong inputs 75*salary 70*salary 55*salary 50*salary 35*salary -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Decision Table for Testing

variables: Physical or Logical	Р	Р	Р	Р	Р	L	L	L	L	L
Independent?	у	у	у	у	n	у	у	у	у	n
Single fault assum.?	У	у	n	n	_	у	у	n	n	-
Exception handling?	у	n	У	n	-	У	n	У	n	-
BV		X								
Robust	Χ									
WC				Χ						
Robust WC			Χ							
EC							Χ			
Strong (Normal) EC									Х	
(Weak) Robust EC						Χ				
Strong Robust EC								Χ		
Decision Table					Χ					Χ

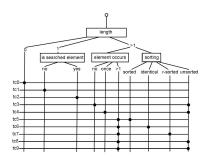
Outline

I make a divination

Equivalence Class Testing

Decision Table

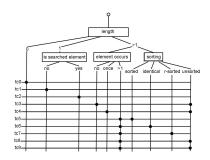
Decision Table


Classification Trees

Conclusions

Basic Steps

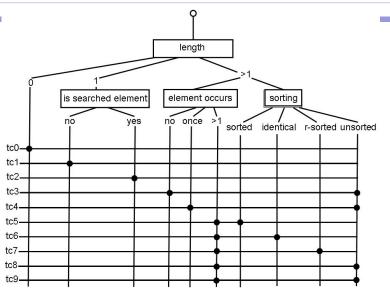
Classification tree:


- Determine the aspects of specification influencing the logic
- Establish a hierarchy between aspects (the more global conditions first)
- Partition the input domain for each aspect cover the whole domain of the "parent" node

Basic Steps

Combination table:

 Define a test-case for each relevant combination of inputs



Example

Informal Spec

Consider the function count(list:List(EI),eI:EI):int, which takes a list of elements (with an order defined on them), and an element and output the number of occurrences of the element in the list.

Mortgage Example

Classes

- 1. Salary: -1, [0..10000], >10000,
- 2. Gender: Male, Female,
- 3. Age: Too young, Young, Middle, Old, Too old (dependent on gender)

Outline

I make a divination

Equivalence Class Testing

Decision Table

Decision Table

Classification Trees

Conclusions

Functional Testing

- Equivalence testing forms the basis:
 - Strong variants are often practically infeasible
 - ▶ Robust techniques are very effective for PL's with weak typing
- Decision tables and classification trees, help us in:
 - 1. summarizing the logic
 - identifying and documenting the effective methods and test-cases.

One Sentence to Take Home

No perfect functional testing technique exists: combination of classification tree (or DT) with others should provide an effective mix.