
Embedded Systems Programming - PA8001
http://goo.gl/cu8OOH

Lecture 10

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering

User interfaces

Views
A data structure storing the
layout parameters and content
for a specific rectangular area
of the screen.

Layouts

Views putting together a
hierarchy of views. The top of
the hierarchy associated to the
screen using setContentView.

Widgets

Views ready for user
interaction. Both pre-defined
and custom-defined widgets
possible.

Events
Capture interaction with the
user using event listeners.

Describing layouts in XML

A complete description of what is available can be found in
http://developer.android.com/

guide/topics/resources/layout-resource.html

What we will show is what you place in the directory res/layout in
the android project for your application in a file filename.xml.

In the Java code for the activity

The view described in res/layout/filename.xml can be attached to
the view using

setContentView(R.layout.filename);

R is a class created by the compiler from the res directory.

Linear layouts

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

A list of views (widgets or other layouts)

</LinearLayout>

A linear layout with buttons and text views

<LinearLayout ... >

<TextView

android:id="@+id/text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a TextView"

/>

<Button

android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a Button"

/>

</LinearLayout>

Attaching the view to the activity

public class MyActivity extends Activity{

public void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);

setContentView.(R.layout.filename);

TextView tv = (TextView)findViewById(R.id.text);

Button b = (Button) findViewById(R.id.button);

}

}

Toast messages

In order to explore a number of widgets we will make use of Toast
notifications:

a message that pops up on the surface of the window.
It only fills the amount of space required for the message
and the user’s current activity remains visible and
interactive. The notification automatically fades in and
out, and does not accept interaction events.

Using a Toast notification

Toast.makeText(context, text, duration).show();

An editable text field

In the xml layout file

<EditText

android:id="@+id/edittext"

android:layout_width="fill_parent"

android:layout_height="wrap_content"/>

An editable text field

In the onCreate() method of MainActivity

final EditText et = (EditText)findViewById(R.id.edit_message);

et.setOnKeyListener(new OnKeyListener() {

public boolean onKey(View v,

int keyCode, KeyEvent event) {

if ((event.getAction() == KeyEvent.ACTION_DOWN) &&

(keyCode == KeyEvent.KEYCODE_ENTER)) {

Toast.makeText(MainActivity.this,

et.getText(),

Toast.LENGTH_SHORT).show();

return true;

}

return false;

}

});

An editable text field

Remarks

I The View.OnKeyListener must implement the onKey(View,

int, KeyEvent) method, which defines the action to be
made when a key is pressed while the widget has focus.

I In this case, the method is defined to listen for the Enter key
(when pressed down),

I The onKey(View, int, KeyEvent) method should always
return true if the event has been handled, so that the event
doesn’t bubble-up (which would result in a carriage return in
the text field).

A check box

In the xml layout file

<CheckBox

android:id="@+id/checkbox"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="check it out" />

A check box

In the onCreate() method of MainActivity

final CheckBox cb = (CheckBox) findViewById(R.id.checkbox);

cb.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

if (((CheckBox) v).isChecked())

Toast.makeText(MainActivity.this,

"Selected",

Toast.LENGTH_SHORT).show();

else

Toast.makeText(MainActivity.this,

"Not selected",

Toast.LENGTH_SHORT).show();

}

});

A check box

Remark
If you need to change the state yourself (such as when loading a
saved CheckBoxPreference), use the setChecked(boolean) or
toggle() method.

Radio buttons

In the xml layout file

<RadioGroup

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<RadioButton android:id="@+id/radio_red"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Red" />

<RadioButton android:id="@+id/radio_blue"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Blue" />

</RadioGroup>

Radio buttons

In the onCreate() method of MainActivity

final RadioButton radio red =

(RadioButton) findViewById(R.id.radio red);

final RadioButton radio blue =

(RadioButton) findViewById(R.id.radio blue);

radio red.setOnClickListener(radio listener);

radio blue.setOnClickListener(radio listener);

The listener that is used twice

private OnClickListener radio_listener=new OnClickListener(){

public void onClick(View v) {

RadioButton rb = (RadioButton) v;

Toast.makeText(MainActivity.this,

rb.getText(), Toast.LENGTH SHORT).show();

}

};

Custom views

A custom view
You might want to define a view to visualize something. Then you
need to define your own view class and include it in the xml file.

In the xml layout file

<se.hh.examples.forms.BallView

android:id="@+id/bv"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_marginBottom = "350dip"/>

Remarks
Perhaps this is not a good use of the rest of the space. The other
view has to have a android:layout_marginTop = "-350dip"

The BallView class

public class BallView extends View {

public BallView(Context c, AttributeSet a){

super(c,a);

}

public void onDraw(Canvas canvas) {

Paint p = new Paint();

p.setColor(Color.RED);

canvas.drawColor(Color.WHITE);

canvas.drawCircle(getWidth()/2,getHeight()/2,10,p);

}

}

Remark
Nothing to do for the activity class.

Processes in Android

Upon starting an application: a new Linux process with a single
thread of execution.

By default, all components in the same process and thread (called
the ”main” thread).

Upon starting a component within an existing application:
component is started within that process and uses the same thread
of execution.

Keeping the UI reactive

Single thread model: challenge for reactivity.
Time consuming operations: separate threads (”background” or
”worker” threads).

Note: the Android UI toolkit should not be accessed from outside
the UI thread (not thread-safe UI methods)

The main thread

Run event listener and rest otherwise!

Posting runnables

To ask the UI thread to run some code:

public boolean post (Runnable action)

public boolean postDelayed (Runnable action,

long delayMillis)

Runnable

The interface java.lang.Runnable represents a command that
can be executed.
A class that implements Runnable has to provide a method

public void run()

Threads in Java
Also used to start new threads in a Java program. This is how:

I Create a Thread passing a Runnable in the constructor.

I To start the thread use the method start(); it calls the
run() method in the runnable.

Example

See the ManyThreads program to illustrate the constructs.

Another example

The prime calculator

We input a number N and get the prime number of order N. We
use an extra button to test whether the UI is reactive even when
calculating large prime numbers.

Calculating in the same thread

What we want to do when a number is given

int nr = Integer.parseInt(edittext.getText().toString());

long prime = primeNr(nr);

showtext.setText(""+ prime);

Place this code in the OnKeyListener for the EditText.

For large values it will make the UI unusable: the calculation takes
a long time and the main thread cannot take care of other events.

Starting another thread to calculate

What we could do when a number is given

new Thread(new Runnable() {

public void run() {

int nr = Integer.parseInt(edittext.getText().toString());

final long prime = primeNr(nr);

showtext.setText(""+prime);

}

}).start();

Place this code in the OnKeyListener for the EditText.

The main UI thread and this new worker thread take turns to
execute.

Starting another thread to calculate

But it does not work!
We are not allowed to update the UI from other threads!

What we could do when a number is given

new Thread(new Runnable() {

public void run() {

int nr = Integer.parseInt(edittext.getText().toString());

final long prime = primeNr(nr);

showtext.setText(""+prime) ;

}

}).start();

Posting to the UI thread

Posting runnables

Views have a couple of methods that allow you to ask the UI
thread to run some code:

public boolean post (Runnable action)

public boolean postDelayed (Runnable action,

long delayMillis)

The prime calculator again

What we do when a number is given

new Thread(new Runnable() {

public void run() {

int nr = Integer.parseInt(edittext.getText().toString());

final long prime = primeNr(nr);

showtext.post(new Runnable() {

public void run() {

showtext.setText(""+ prime);

}

});

}

}).start();

Services

Applications might need to do work even when the user is not
interacting with the app.

Services: to be created and started from other components by
passing Intents.
Run in the background and do not provide a UI.
May generate Notifications to start an Activity (with a UI)

Services or worker threads?

If you need to perform work outside your main thread, but only
while the user is interacting with your application, then you should
probably instead create a new thread

The echo client app

The launcher Activity

1. A button to start a
Service to handle a
TCP connection.

2. The Activity
finishes directly
after calling the
Service.

3. An Intent is passed
to the method that
starts the service.

4. All this is done in
the listener for the
button.

The Service

1. Runs in the main thread.

2. We have to define the methods that
are used by the system:

I void onCreate()
I int onStartCommand(Intent i,

int flags, int id)
I void onDestroy()

3. Must be terminated explicitely
I stopSelf
I or stopService(Intent i)

Services and threads

Activities and Services of an app run in the same main thread. If
we want to do things in other threads we have to do it explicitly.

We would also like the worker thread of a Service to be very much
like the main thread: doing nothing but waiting for messages to
work on.

Loopers, Handlers, HandlerThreads

1. Every thread in android can be associated with a Looper
(listens to messages)

2. We can associate Handlers to Loopers: they can receive
messages that are put in a queue and dealt with in order.

3. HandlerThreads are already associated to a looper.

A Service with a ServiceHandler

The following is the program structure we suggest for a Service
that can be asked to do several things.

Define a ServiceHandler inside your Service class

private final class ServiceHandler extends Handler{

public ServiceHandler(Looper looper){

super(looper);

}

// override handleMessage:

public void handleMessage(Message msg){

// Normally we would do some work here!

// switch on msg.what (integer)

// to distinguish between different things to do!

}

}

A Service with a ServiceHandler (ctd.)

onCreate starts a HandlerThread and associates a ServiceHandler to
its Looper

public class TheService extends Service{

private Looper mServiceLooper;

private ServiceHandler mServiceHandler;

public void onCreate() {

HandlerThread thread =

new HandlerThread("TheServiceWorkerThread",

Process.THREAD_PRIORITY_BACKGROUND);

thread.start();

mServiceLooper = thread.getLooper();

mServiceHandler = new ServiceHandler(mServiceLooper);

}

A Service with a ServiceHandler (ctd.)

onStartCommand just sends messages to the ServiceHandler

public class TheService extends Service{

public int onStartCommand(Intent intent,

int flags,

int startId) {

Message msg = mServiceHandler.obtainMessage();

msg.what = intent.getExtras().getString("WhatToDo"));

mServiceHandler.sendMessage(msg);

return START_STICKY;

}

}

How does a Service start an Activity?

Services that have done what was required of them and want the
app to start an Activity to interact with the user should not start
the Activity themselves! (the user might be using some other
app!).

Instead they should produce a Notification that the user can select
in order to start an Activity.

An application with two Activities and a Service

Check the code we distribute with this lecture!

	
	User interfaces
	Threads, loopers, handlers
	Services
	Notifications

