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concurrent and distributed systems
multiple execution flows that progress simultaneously

Distributed SystemsMulti-Threaded Systems

shared memory message passing



If executed serially  
(one call at a time)

balance is always non-negative

def withdraw(amt):
   b = balance
   if b >= amt:
         balance = balance - amt
         return amt
   else:
         return 0
   fi

   

def deposit(amt):
   b = balance + amt
   balance = b
   return balance

   

global balance = 0 Initially balance ≥ 0

Preserves balance ≥ 0

Preserves balance ≥ 0

serial execution

serial execution preserves invariants 

concurrent execution and race conditions

race condition 
on balance

read-write race
deposit is writing balance 
and withdraw is reading 

balance 

global balance = 0

def deposit(amt):
 
   b = balance + amt

    balance = b

   return balance

   

def withdraw(amt):
 
   b = balance
 
   if b >= amt:
 
         balance = balance - amt
 
         return amt
   
   else:
  
         return 0

   
   fi

   



global balance = 0

def deposit(amt):
 
   b = balance + amt

    balance = b

   return balance

   

def withdraw(amt):
 
   b = balance
 
   if b >= amt:
 
         balance = balance - amt
 
         return amt
   
   else:
  
         return 0

   
   fi

   

 serializability

deposit does not appear atomic 
with respect to withdraw;  

their executions are not serializable

serialisability violation 

relaxed memory model
 Sequential consistency  
      standard memory model for reasoning about concurrent programs 
 Modern hardware  
      local write buffers, hierarchies of caches, speculative executions

 significantly improve performance
 invalidate SC in the presence of data races

 compilers’ concurrency-oblivious optimizations

Relaxed memory models  
formal sound semantics for realistic high-performance concurrency



def withdraw(amt):
 
   b = balance
 
   if b >= amt:
 

         balance = balance - amt
 
         return amt
   
   else:
  
         return 0

   
   fi

   

def withdraw(amt):
 
   b = balance
 
   if b >= amt:
 
         balance = balance - amt
 
         return amt
   
   else:
  
         return 0

   
   fi

   

race condition 
atomicity violation  

can occur 
between two concurrent instances  
of the same function or method

(suppose balance is 7 Krone,  
and both withdrawals are for 5 Krone)

 different instances 
of the same object

1. class	Value	{		
2. 			private	int	x	=	1;		
3. 		
4. 			public	synchronized	void	add(Value	v){x	=	x	+	v.get();}		
5. 		
6. 			public	int	get(){return	x;}		
7. }		
8. 		
9. class	Task	extends	Thread{		
10.			Value	v1;	Value	v2;		
11.		
12.			public	Task(Value	v1,Value	v2){		
13.						this.v1	=	v1;	this.v2	=	v2;		
14.						this.start();		
15.			}					
16.		
17.			public	void	run(){v1.add(v2);}		
18.	}		
19.		
20.	class	Main{		
21.			public	static	void	main(String[]	args){		
22.						Value	v1	=	new	Value();	Value	v2	=	new	Value();		
23.						new	Task(v1,v2);	new	Task(v2,v1);		
24.				}		
25.	}

variable x:: class Value  
unprotected access from the two Task threads (lines 4,6)

• one thread can call add method on object v1,  
which calls the unsynchronized get method  
in the other object v2. 

• The other thread can make the dual operation

add method synchronized  
does not prevent simultaneous application  

on two different Value objects by two different threads

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

a data race …



removed with a synchronized1. class	Value	{		
2. 			private	int	x	=	1;		
3. 		
4. 			public	synchronized	void	add(Value	v){x	=	x	+	v.get();}		
5. 		
6. 			public	synchronized	int	get(){return	x;}		
7. }		
8. 		
9. class	Task	extends	Thread{		
10.			Value	v1;	Value	v2;		
11.		
12.			public	Task(Value	v1,Value	v2){		
13.						this.v1	=	v1;	this.v2	=	v2;		
14.						this.start();		
15.			}					
16.		
17.			public	void	run(){v1.add(v2);}		
18.	}		
19.		
20.	class	Main{		
21.			public	static	void	main(String[]	args){		
22.						Value	v1	=	new	Value();	Value	v2	=	new	Value();		
23.						new	Task(v1,v2);	new	Task(v2,v1);		
24.				}		
25.	}

Synchronized method get

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

leading to a deadlock1. class	Value	{		
2. 			private	int	x	=	1;		
3. 		
4. 			public	synchronized	void	add(Value	v){x	=	x	+	v.get();}		
5. 		
6. 			public	synchronized	int	get(){return	x;}		
7. }		
8. 		
9. class	Task	extends	Thread{		
10.			Value	v1;	Value	v2;		
11.		
12.			public	Task(Value	v1,Value	v2){		
13.						this.v1	=	v1;	this.v2	=	v2;		
14.						this.start();		
15.			}					
16.		
17.			public	void	run(){v1.add(v2);}		
18.	}		
19.		
20.	class	Main{		
21.			public	static	void	main(String[]	args){		
22.						Value	v1	=	new	Value();	Value	v2	=	new	Value();		
23.						new	Task(v1,v2);	new	Task(v2,v1);		
24.				}		
25.	}

potential deadlock:
• Task T1 locks V1 
• Task T2 locks V2
• Task T1 waits for V2
• Task T2 waits for V1

Synchronize method get

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs



locks (Java Synchronized)

public class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
} C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)

limit concurrency to 
prevent data races 

C:Write(filter)
A:Read(filter) 

B:Read(filter) Race Condition

Thread 2Thread 1

but may failpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
}

C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)



Thread	2Thread	1

but may failpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
}

C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)

“'filter' is checked against null before being dereferenced.  
This is done in a synchronized block to prevent 'filter' 
from being set to null after it has been found to be non-null.  

The problem is that setFilter() does not use synchronization at all, 
and is explicitly allowed to set 'filter' to null.  
The critical section in log(LogRecord) is thus completely useless.

Method setFilter() should be declared synchronized to avoid the race 
condition.  
Method getFilter() should declared synchronized 
otherwise the Java Memory Model allows it to return out-of-date values.”

C:Write(filter)
A:Read(filter) 

B:Read(filter) Race Condition

public class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
} C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)

C:Write(filter)
A:Read(filter) 

B:Read(filter) Race Condition

Thread 2Thread 1



type of concurrency failures

data race

serializability/order violation
atomicity violation

deadlock

impact and frequency of concurrency failures

“… intermittently I get the following error”
[Apache, Bug #27315, Atomicity Violation]

“I’ve still no clues on why this crash occurs”
[MySQL, Bug #3596, Data Race]

“What should happen here, Charles?”
[Guava, Bug #976, Atomicity Violation]

hard to find

frequent

dangerous 
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R1(x)W1(y) W2(t) R1(x) W2(x) R1(y) R2(t)

Test input

W2(t) W1(y) W2(x) R1(y) R2(t)

W2(x)W1(y) W2(t) R1(x) R1(x) R1(y) R2(t)

R1(x)W1(y) W2(t) R1(x) W2(x) R2(t) R1(y)

R1(x)R1(x)

Concurrent Test case

interleavings

<input, interleaving, oracle>Oracle



testing concurrent systems 

Selecting 
Interleavings

Execute

Test cases

Output

System Model
Property of 
interleavings

(data race, deadlock,…)

Generating 
Test Cases

main focus of research 

Selecting 
Interleavings

Execute

Test Cases

Output

System Model
Property of 
interleavings

(data race, deadlock,…)

Generating 
Test Cases



INPUT

Test Case

R1(x)W1(y) W2(t) R1(x) W2(x) R1(y) R2(t)

W2(t) W1(y) W2(x) R1(y) R2(t)

W2(x)W1(y) W2(t) R1(x) R1(x) R1(y) R2(t)

R1(x)W1(y) W2(t) R1(x) W2(x) R2(t) R1(y)

R1(x)R1(x)

T1 T2
R(x)

R(x)
W(x)

Property based

Techniques

Data race

Atomicity Violation

Deadlock

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Property Based

Space Exploration

taxonomy



Techniques

Data race

Atomicity Violation

Deadlock

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Property Based

Space Exploration

80%

20%

taxonomy

Techniques

Data race
Atomicity Violation

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Space Exploration

seminal work

Deadlock

lockset 
happens before

goodlockProperty based
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R. J. Lipton,  
“Reduction: A method of proving properties of 

parallel programs,” 
CACM 1975

The LockSet of an event is the set of locks held by a thread 
while executing the event.

LockSet(A) = {this}
LockSet(B) = {this}
LockSet(C) =    Ø

LockSet Analysis: identifies shared memory accesses on 
different threads that are not protected by the same lock 

Example: LockSet(A)  ∩  LockSet(B)  ∩ LockSet(C) = Ø

C:Write(filter)
A:Read(filter) 

B:Read(filter) Race Condition

Thread 2Thread 1

public class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
} C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)



Dynamic Lockset Analysis
dynamically detecting violation of a locking discipline 

(set of rules to prevent data races)

Every variable shared between threads  
must be protected by a mutual exclusion lock

Dynamic Lockset Analysis
INIT:      each shared variable is associated with all available locks 
RUN:     thread accesses a shared variable: 

intersect current set of candidate locks  
with locks held by the thread 

END:     set of locks after executing a test  
                     (set of locks always held by threads  
                       accessing that variable) 

           empty set for v =  no lock consistently protects v



Simple lockset analysis: example
Thread Program trace Locks held Lockset(x)

{} {lck1, lck2}
thread A   lock(lck1)

{……………..}
  x=x+1

{………………..} 
  unlock(lck1}

{……………..}
tread B   lock{lck2}

{……………..}
  x=x+1

{………………..} 
  unlock(lck2}

{……………..}

Simple lockset analysis: example
Thread Program trace Locks held Lockset(x)

{} {lck1, lck2}
thread A   lock(lck1)

{lck1}
  x=x+1

{lck1} 
  unlock(lck1}

{}
tread B   lock{lck2}

{lck2}
  x=x+1

{}
  unlock(lck2}

{}

INIT: all locks for x

lck1 held

Intersect with 
locks held

lck2 held

Empty intersection
potential race



class loggerpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < 
levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
} 

C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)
LockSet(A) = {……………………….}
LockSet(B) = {….……………………}
LockSet(C) = {……………………….}

LockSet(A)  ∩  LockSet(B)  ∩ LockSet(C) = ………

Java.util.loggin.Logger

class loggerpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
  if (record.getLevel().intValue() < levelValue 
       || levelValue == offValue) {
    return;
  }
  synchronized (this) {
     if (filter != null){
        if( !filter.isLoggable(record)) {
            return;
          }
     }. }
    …
}
// Thread 2
public void setFilter(Filter f) {
       this.filter = f; 
} 

C:Write(filter)

A:Read(filter) 
Lock(this)

Unlock(this)

B:Read(filter)

LockSet(A) = {this}
LockSet(B) = {this}
LockSet(C) = Ø

LockSet(A)  ∩  LockSet(B)  ∩ LockSet(C) = Ø

Java.util.loggin.Logger



Handling Realistic Cases
simple locking discipline violated by 

initialization of shared variables without holding a lock
writing shared variables during initialization without locks
allowing multiple readers in mutual exclusion with single writers

read/write/first thread

Virgin

write

Shared

Shared-Modified
read/new thread

write/new thread

write

Exclusive

read

Delay analysis
till after initialization

(second thread) 

Multiple writers
report violations 

Multiple readers
single writer

do not report violations 

Testing Concurrent and Distributed Systems
concurrency and distribution  

fault types 
testing framework 

classic approaches 
lockset
happens before 
goodlock

leading edge research 
relevant results
current trends and open problems 

message passing
and

happens before

L. Lamport, 
“Time, clocks, and the ordering of 

events in a distributed system,” 
CACM 1978. 



Action

1:Execute

class	Writer	extends	Actor	{	
	var	results	=	ArrayBuffer[String]()  
	def	receive()	=	{	
					case	Write(result:String)	=>		
									results.append(result)		
					case	Flush	=>	{	
									writeToExternal(results)		
									results	=	null	
							}	
			}		
}	
 
class	Action(name:String,	terminator:Terminator,	
	writer:Writer)	extends	Actor	{		
			def	receive()	=	{	
								case	Execute	=>	{	
											writer	!	Write(name)		
											terminator	!	ActionDone		
											}		
					}		
}		

class	Terminator(actionNum:Int,	writer:Writer)	extends	Actor	{  
var	curActions	=	actionNum 
def	receive()	=	{	
								case	ActionDone	=>	{		
													curActions	−=	1 
													if	(curActions	==	0)	writer	!	Flush	
													}					
							}		
}		

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

2: send(Write)

3: send(ActionDone)

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)



Action Terminator Writer

Msg Write is received by Writer and the append method is fine

2: send(Write)

3: send(ActionDone)

4: receive(Write)

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

2: send(Write)

3: send(ActionDone)

4: receive(Write)

1:Execute

5: receive(ActionDone)

6: send(Flush)

class	Writer	extends	Actor	{	
	var	results	=	ArrayBuffer[String]()  
	def	receive()	=	{	
					case	Write(result:String)	=>		
									results.append(result)		
					case	Flush	=>	{	
									writeToExternal(results)		
									results	=	null	
							}	
			}		
}	
 
class	Action(name:String,	terminator:Terminator,	
	writer:Writer)	extends	Actor	{		
			def	receive()	=	{	
								case	Execute	=>	{	
											writer	!	Write(name)		
											terminator	!	ActionDone		
											}		
					}		
}		

class	Terminator(actionNum:Int,	writer:Writer)	extends	Actor	{  
var	curActions	=	actionNum 
def	receive()	=	{	
								case	ActionDone	=>	{		
													curActions	−=	1 
													if	(curActions	==	0)	writer	!	Flush	
													}					
							}		
}		

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)



Action Terminator Writer

2: send(Write)

3: send(ActionDone)

4: receive(Write)

1:Execute

5: receive(ActionDone)

6: send(Flush)

7: receive(Flush)

Msg Flush is received by Writer results is set to nullclass Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

must happen before analysis

Given two events 𝑒𝑖 and 𝑒𝑗
𝑒𝑖 < 𝑒𝑗 if:

• 𝑒𝑖 and 𝑒𝑗 belong to the same thread t and i < j

• 𝑒𝑖 = send(𝑚𝑠𝑔𝑘) and 𝑒𝑗 = receive(𝑚𝑠𝑔𝑘) 
(a message is always sent before being received)



Happens-before relations:

- send(Write) < send(ActionDone)                 (intra thread)
- send(Write) < receive(Write)                          (inter thread)
- send(ActionDone) < receive(ActionDone)        (inter thread)
- receive(ActionDone) < send(Flush)                   (intra thread)
- send(Flush) < receive(Flush)                             (inter thread)

Concurrent events:
- receive(ActionDone) and receive(Write)
- send(Flush) and receive(Write)
- receive(Write) and receive(Flush)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

MUST HAPPENS BEFORE ANALYSIS
Given two events 𝑒𝑖 and 𝑒𝑗
𝑒𝑖 < 𝑒𝑗 if:

𝑒𝑖 and 𝑒𝑗 belong to the same thread t and i < j
𝑒𝑖 = send(𝑚𝑠𝑔𝑘) and 𝑒𝑗 = receive(𝑚𝑠𝑔𝑘)  

(a message is always sent before being received)

receive(ActionDone)

receive(Write)

send(Write) 

send(ActionDone)

send(flush)

receive(flush)

happens before relation

intra thread

inter thread

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)



receive(ActionDone)

receive(Write)

send(Write) 

send(ActionDone)

send(flush)

receive(flush)

concurrent events
class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

receive(ActionDone)

send(Write) 

send(ActionDone)

send(flush)

receive(flush)

concurrent events

possible data 
race

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

receive(Write)



Happens-before relations:

- send(Write) > send(ActionDone)           (intra thread)
- send(Write) > receive(Write)                     (inter thread)
- send(ActionDone) > receive(ActionDone)   (inter thread)
- receive(ActionDone) > send(Flush)              (intra thread)
- send(Flush) > receive(Flush)                        (inter thread)

Concurrent events:
- receive(ActionDone) and receive(Write)
- send(Flush) and receive(Write)
- receive(Write) and receive(Flush)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)



Action Terminator Writer

2: send(Write)

3: send(ActionDone)

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

3: send(ActionDone)

1:Execute

2: send(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)



Action Terminator Writer

3: send(ActionDone)

1:Execute

4: receive(ActionDone)

5: send(Flush)

2: send(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

3: send(ActionDone)

1:Execute

4: receive(ActionDone)

5: send(Flush)

6: receive(Flush)

Msg Flush is received by Writer and results is set to null

2: send(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)



Action Terminator Writer

3: send(ActionDone)

1:Execute

4: receive(ActionDone)

5: send(Flush)

6: receive(Flush)

Msg Write is received by Writer and a null pointer exception is thrown

2: send(Write) 7: receive(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
     case Write(result:String) => 
         results.append(result) 
     case Flush => {
         writeToExternal(results) 
         results = null
       }
   } 
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor { 
   def receive() = {
        case Execute => {
           writer ! Write(name) 
           terminator ! ActionDone 
           } 
     } 
} 

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
        case ActionDone => { 
             curActions −= 1  
             if (curActions == 0) writer ! Flush
             }    

       } 
} 

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Testing Concurrent and Distributed Systems
concurrency and distribution 

fault types
testing framework 

classic approaches 
lockset
happens before
goodlock 

leading edge research 
relevant results
current trends and open problems 



1. class Value { 
2.    private int x = 1; 
3.  
4.    public synchronized void add(Value v){x = x + v.get();} 
5.  
6.    public synchronized int get(){return x;} 
7. } 
8.  
9. class Task extends Thread{ 
10.   Value v1; Value v2; 
11. 
12.   public Task(Value v1,Value v2){ 
13.      this.v1 = v1; this.v2 = v2; 
14.      this.start(); 
15.   }    
16. 
17.   public void run(){v1.add(v2);} 
18. } 
19. 
20. class Main{ 
21.   public static void main(String[] args){ 
22.      Value v1 = new Value(); Value v2 = new Value(); 
23.      new Task(v1,v2); new Task(v2,v1); 
24.    } 
25. }

potential deadlock:
• Task T1 locks V1 
• Task T2 locks V2
• Task T1 waits for V2
• Task T2 waits for V1

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

Goodlock algorithm 
AT RUNTIME:
record the locking pattern for each thread during runtime as a lock tree
one lock tree per tread == nested pattern in which locks are taken by the thread

AFTER EXECUTION: 
compare the trees for each pair of threads
for each pair of trees <t1, t2> and each operation on a shared memory location n1 of t1 

check that no lock below n1 in t1 is above a node n2 in a thread t2



deadlock1. class Value { 
2.    private int x = 1; 
3.  
4.    public synchronized void add(Value v){x = x + v.get();} 
5.  
6.    public synchronized int get(){return x;} 
7. } 
8.  
9. class Task extends Thread{ 
10.   Value v1; Value v2; 
11. 
12.   public Task(Value v1,Value v2){ 
13.      this.v1 = v1; this.v2 = v2; 
14.      this.start(); 
15.   }    
16. 
17.   public void run(){v1.add(v2);} 
18. } 
19. 
20. class Main{ 
21.   public static void main(String[] args){ 
22.      Value v1 = new Value(); Value v2 = new Value(); 
23.      new Task(v1,v2); new Task(v2,v1); 
24.    } 
25. }

lock(V1)

unlock(V1)

lock(V2)

unlock(V2)

Task T1

lock(V2)

unlock(V2)

lock(V1)

unlock(V1)

Task T2

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

Testing Concurrent and Distributed Systems
concurrency and distribution  

fault types 
testing framework 

classic approaches 
lockset
happens before
goodlock

leading edge research 
relevant results
current trends and open problems 
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2

Formal Methods
CAV, SPIN

2/94

Software Engineering
FSE, ICSE, ISSTA, ASE

42/94

Systems
SOSP, ASPLOS, ISCA

15/94

Programming Languages
OOPSLA, PPOP, PLDI

42/94



Research focus

0

2

4

6

8

10

12

14
20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Data	race
Atomicity
Deadlock
Combined
Order
Exploration

36

18

8

4


12

16

Research focus

0

2

4

6

8

10

12

14

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Data	race
Atomicity
Deadlock
Combined
Order
Exploration

36

18

8

4


12

16

Property based

space exploration



Property based
improving precision of happens-before analysis  
               to detect data-races and atomicity violations
improving performance of happens-before and good-lock analyses  
               to detect data-races and deadlocks
improving recall of happens-before analysis to detect data-races
extending happens-before analysis to Web, event-based and Android 
extending happens-before analysis to relaxed memory models (C++, Java)
complementing with test case generation  
               to detect data-races, atomicity violations and deadlocks
violations of correctness properties

[Portend ASPLOS’12]

[Velodrome PLDI’08]

[Penelope FSE’10]

[RaceFuzzer PLDI’08]

[AtomFuzzer FSE’08] [Frost SOSP’11]

Improving precision of happens-before analysis to detect  
atomicity violations and data races

Atomicity violations data races



improving precision of happens-before analysis
to detect atomicity violations 

’08 Velodrome’ cyclic patterns 
reduces false positives by looking for cyclic patterns in the happens-before graph  
(sufficient and necessary conditions for atomicity violations)  

'08 AtomFuzzer’s atomic specification 
exploits annotations that specify which code blocks are intended to be atomic
limits the analysis to pairs of execution flows that use a single lock to ensure the atomicity of a code region
randomly generates interleavings by exploiting happens-before analysis to capture order relations among flows 
executes the test case with random pauses in correspondence of accesses to critical memory regions  
to maximize the probability of observing an atomicity violation 

’10 Penelope’s atomicity violation patterns 
considers alternative orders of lock acquisitions and releases that violate predefined atomicity violation 

patterns 
re-executes the target program under the predicted schedules to prune false positives with oracles

improving precision of happens-before analysis
to detect data races  

’08 Frost  

detects non-benign data races by comparing results and program state of multiple replicas  
of the same program with different interleavings
segments an execution into epochs, and runs each epoch on three replicas

executes a replica with dynamic happens-before analysis to detect synchronization points in the program
executes the other two replicas with a non-preemptive controlled scheduler on a single thread

’11 RaceFuzzer’s order information  

dynamically computes order information using an imprecise but efficient  
combines lockset and happens-before analyses to reduce computational cost

’12 Portend’s classification of data races  

precisely classifies data races, based on the effects on the system under test
considers data races as benign if they produce same results state with all tests

checks the property with symbolic execution



[ConLock ICSE’14]

[FastTrack PLDI’09]

[Carisma ISSTA’12]

[Falcon ICSE’10]

[LiteRace PLDI’09]

[MagicFuzzer ICSE’12]

Improving performance of happens-before and deadlock 
analysis to detect data races, atomicity violations and deadlocks

deadlocksdata races atomicity violations

improving performance of happens-before 
to detect data races 

’09 Fastrack’s lightweight representation

proposes a lightweight representation of the happens-before information  
      that records only the information about the last write operation on each data item
reduces the cost of vector clock comparison up to an order of magnitude   

’09 LiteRace’s cold regions 
introduces sampling to reduce analysis overhead
instruments only cold regions defined as the less frequently accessed code elements
assumption: frequently accessed code elements (hot regions) less likely to be involved in data races

’12 Carisma’s similarity relation

exploits similarity between multiple accesses to the same data structures,
dynamically infers the application contexts and uses the contexts to compute the distribution of 
memory locations across data structure to better balance the sampling budget



improving performance of happens-before analysis   
to detect atomicity violations 

’10 Falcon’s siding window

refers to fixed-sized sliding window to detect suspicious patterns that lead to unserializable 
memory accesses

maintains access information for each shared data item in a fixed-size window, 
uses the information stored in a window to detect suspicious memory access patterns

The sliding window keeps focus on the closely related accesses

improving performance (scalability)  
to detect deadlocks 

’12 MagicFuzzer’s detectors of cycles in the lock graph 
prunes the good lock graph:  
      a deadlock that corresponds to a cycle in the lock graph contains only nodes  
       that have both incoming and outgoing edges
iteratively removes all the nodes that do not satisfy this property
uses a novel algorithm to analyse the pruned graph

partitions the nodes based on the execution flows, and does not explore redundant paths
’12 ConLock’s should-happen before relation

addresses the thrashing problem of randomized scheduling algorithms::  
     randomized scheduler generates artificial deadlocks: the execution flows are suspended by the scheduler  
     and cannot progress, but a deadlock cannot be confirmed. 
introduces a should-happen-before order relation computed with dynamic analysis to increase the probability to 
reach and thus confirm a deadlock 



Improving recall of happens-before analysis  
to detect data races

[Smaragdakis et al. POPL’12]

[RVPredict PLDI’14]

[DrFinder FSE’15]

’12 Smaragdakis et al.’s causally precedes relation

PROBLEM: happens-before analysis focus on single execution traces  
thus may infer incorrect order relations and miss some data races
introduce causally-precedes analysis to mitigate the problem: 
based on a new causally-precedes (CP) relation that relaxes the happens-before relation with 
respect to lock releases and acquisitions detect CP-races that occur when two conflicting 
memory accesses are not CP related

’14 RVPredict’s order relation

defines an order relation to detect data races that improves the accuracy of CP-analysis 
takes into account control flow information

Improving recall of happens-before analysis 
to detect data races (i/ii)



’15 DrFinder’ may trigger relation

PROBLEM: hidden data race  
== pair of accesses to the same shared memory location in a happens-before relation only for some 
interleavings

not revealed with happens-before and extensions due to the over-constraining nature of the analysis 
INTUITION: many hidden races can be detected by reversing the order of execution of one or more 
operations in a happens-before relation

computes may-trigger relation on an execution trace
looks for alternative interleavings that might expose data races, 
executes the selected interleavings to check their feasibility. 

Improving recall of happens-before analysis 
to detect data races (ii/ii)

Extending happens-before to new paradigms to detect 
data races

Web

[WebRacer PLDI’12] [DroidRacer PLDI’14][EventRacer OOPSLA’13]

Event-based Android



’12 WebRacer

happens-before analysis enhanced with the semantics of Web platforms — focus on
variable races == data races caused by concurrent accesses to shared memory locations

HTML races ==  accesses of DOM nodes may occur both before and after creations

function races ==  function invocations occur both before and after parsing the functions
event dispatch races == events fire both before and after adding the event handlers

’13 EventRacer

happens-before analysis for event-based programs

’14 DroidRacer

exploits concurrency semantics of Android programming model to derive precise happens-before relation  
to reduces of false positives

new paradigms

happens-before for relaxed memory models

[MultiRace PPoPP’03] [Relaxer ISSTA’11][Java RaceFinder ASE’09]

C++ Java Android



’03 MultiRace

combines lockset and happens-before analyses 
takes into account both lock-based and barrier synchronization mechanisms
detects data races in production mode 

’09 Java RaceFinder

introduces new happens-before analysis to capture ordering relations in the relaxed Java memory model

relies on Java PathFinder to generate interleavings that may result in data races
explores the interleaving space driven by patterns that increase the probability to identify a data race 

’11 Relaxer

detects potential data races in sequentially consistent execution trace
computes the set of potential happens-before cycles == possible violations of sequential consistency
uses detected races to predict alternative interleavings on a relaxed memory model

exploits biased-random scheduler to force the occurrence of such interleavings 

relaxed memory models

Complementing with TC Generation

data races

[Narada OOPSLA’14] [Omen FSE’15][Intruder PLDI’15]

atomicity violations deadlocks



’14 Narada 

monitors execution of sequential test suite with lockset analysis
identifies unprotected accesses to shared elements, and infers state and invocation sequences that trigger data races
synthesises concurrent test cases to expose the data race

’15 Intruder 

executes sequential test suite to profile the lock acquisitions, lock releases,  field accesses
infer possible atomicity violations with lock-based analysis  
based on four memory access patterns known to be non-serializable. 
combines sequential test cases to generate concurrent test cases that expose atomicity violations

’15 OMEN  
reveals deadlocks by exploiting properties of sequential executions
executes a sequential test suite  
builds a lock dependency relation that captures the lock acquisitions of the executed methods
generates concurrent test cases from sequential ones

Complementing analysis with test case generation

Correctness violations

order violations
constraint solver

[GPredict ICSE’15]

[JPredictor ICSE’08]

[2ndStrike ASPLOS’11]

[Pretex ASE’08] [ExceptioNull FSE’12]

concurrent behaviors 
that violate program 

specifications
typestate faults



Testing Techniques

Data race

Atomicity Violation

Deadlock

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Property Based

Space Exploration

80%

20%

State exploration

jPredictor
shrinks an execution trace to only events relevant for the property to be checked with static analysis

builds a causality graph involving the selected events based on the notion of sliced causality  
(happens-before relation)
predicts and executes alternative interleavings that might lead to property violations 

GPredict 

verifies high level properties expressed as regular expressions on the order of statements

infers the order relations between events dynamically identified on execution traces  
relying on thread-local traces, and ignoring global synchronisations,
checks for the feasibility of interleavings that violate the concurrency properties by means of a 
constraint solver to predict possible concurrency faults 

violations of program specifications 



Pretex

typestate == state associated with an object — set of operations that can be applied to the object in that state
typestate fault == invoking an operation on an object obj in a typestate that does not support that operation 
         (related to high level semantics of the target system)
computes the happens-before relation among events
determines which objects are shared
infers typestate properties of each shared object relying on mining techniques
generates a finite state machine model of the concurrent execution
checks the generated model for typestate property violations 

2nd-Strike 

detects concurrency typestate faults that involve files, pointers locks 
dynamically analyzes a test case execution to generate a set of candidate faults 
identify operations that cannot be reordered with happens-before relation
uses a deterministic scheduler to force the execution of the candidate faults computed during the analysis

typestate faults 

ExceptioNull

detects interleavings that can lead to null pointer dereferences of shared data 

items with hybrid lockset and happens-before analysis

order violations with constraint solver 
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space exploration

bounded state space exploration

stress testing

exhaustive (bounded) exploration

coverage of (property-relevant) interleavings

heuristic-driven exploration    

limit the amount of interleavings randomly

limit the depth of the interleavings

limit accord to the structure

heuristic priority 



Pruning the Interleaving Space

Model checking

[Joshi FSE’10] [Tasharofi ASE’13][Wang ICSE’11]

systematic 
exploration of 
interleavings 

exploration of data 
flow relations

SO FAR

selecting interleavings 
property based approaches
low level order violations 
shared memory systems

OPEN ISSUES

generating test cases

high level order violations 

message passing systems



reference

Francesco A. Bianchi, Alessandro Margara, Mauro Pezzè  
A Survey of Recent Trends in Testing Concurrent Software Systems  

IEEE Transactions on Software Engineering, May 2017 

Testing 

GUI testing

Concurrent testing

Test oracles

Symbolic execution

field testing

cloud testing

ULS testing

Self healing 

failure prediction

fault localisation

healing alerts

dynamic analysis

automated healing



Reproducing Concurrency Failures 
from Crash Stacks

Concurrency field failures 



test code           +           thread interleaving

order of shared memory 
accesses 

Executable code fragment 
that exercises the program under test 

Failure inducing test code 

encapsulates synchronizations  
that ensure a correct behavior  

when the same instance of the class  
is accessed from multiple threads

Thread-safe Class 



java.lang.NullPointerException
  at java.util.logging.Logger.log(Logger.java:421)
  at java.util.logging.Logger.doLog(Logger.java:458)
  at java.util.Logging.Logger.log(Logger.java:482)
  at java.util.logging.Logger.info(Logger.java:996)
  

type of exception Point Of Failure
(POF)

“70% of concurrency failures lead to crashes or hangs” 
Lu et al. ASPLOS ‘08 

Crash Stack

public void log(LogRecord r) { 
 synchronized(this) {  
  if(filter != null) {

public void setFilter(Filter f) {

failure-inducing interleaving

 this.filter = f; 
}

       if(!filter.isLoggable(r)) {
        return; 
       }
     } 
   } 
  }

 = null

     Thread 1    Thread 2 

Point Of Failure (POF)

Threat-safety Violation



Concurrent 
Suffixes

Logger sout = Logger.getAnonymousLogger();
MyFilter myFilter0 = new MyFilter();
sout.setFilter(myFilter0);

sout.info(""); sout.setFilter(null);

Thread 2Thread 1

Sequential 
Prefix

Concurrent Test Code 

java.lang.NullPointerException
  at java.util.logging.Logger.log(Logger.java:421)
  at java.util.logging.Logger.doLog(Logger.java:458)
  at java.util.Logging.Logger.log(Logger.java:482)
  at java.util.logging.Logger.info(Logger.java:996)

Logger sout = Logger.getAnonymousLogger();
MyFilter myFilter0 = new MyFilter();
sout.setFilter(myFilter0);

sout.info(""); sout.setFilter(null);

Crash Stack

     Thread 1    Thread 2 

Failure-inducing Test Code

Limited information from Crash Stacks

Crashing method  and  Class Under Test (CUT)

Input
Parameter

Sequential 
Prefix

Crashing 
Method

CUT

Interfering 
Method

Failure-inducing test code 



Concurrent 
Test Code

Failure-Inducing 
Test Code 

& 
Interleaving

Test Code 
Generator

Interleaving 
Explorer

[if failure not found]

Pruning Strategies

Avoid exploring the interleaving space of 
redundant and irrelevant test codes

Crash 
Stack 

ConCrash

Concurrent 
Test Code

Failure-Inducing 
Test Code 

& 
Interleaving

Test Code 
Generator

Interleaving 
Explorer

Pruning Strategies

Crash 
Stack 

[if failure not found]

Pruning Strategies 



Uses information from executing call of a test code sequentially

Low computational cost

Pruning Strategies 

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);

sout.m3(5); sout.m4(10);

Thread 2

candidate test code

Thread 1

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3(5);

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

ENTER(m3) 
W(x) 
R(k) 

EXIT(m3)

…
REL(lock) 
EXIT(m2)

ENTER(m4) 
ACQ(l) 

R(k)
REL(l) 

EXIT(m4)

…
REL(lock) 
EXIT(m2)

Sequential Coverage 

Crashing 
Method

Interfering 
Method

Pruning Strategies



one of its method call sequences throws an exception sequentially 

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m9(null);

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

ENTER(m9) 
R(x) 

…
REL(lock) 
EXIT(m2)

ENTER(m4) 
ACQ(l) 

R(k)
REL(l) 

EXIT(m4)

…
REL(lock) 
EXIT(m2)

java.lang.NullPointerException

Our focus are concurrent (not sequential) failures!

Crashing 
Method

PS-Exception

Prunes a candidate test code if  
the sequential coverage of the crashing method does not match the crash stack

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock) 
EXIT(m2)

ENTER(m4) 
ACQ(l) 

R(k)
REL(l) 

EXIT(m4)

…
REL(lock) 
EXIT(m2)

MyException
 at cut.m6()
 at cut.m8()
 at cut.m3()

Stack Trace
ENTER(m3)
ENTER(m8)
ENTER(m12)

…

Crashing 
Method

PS-Stack



Prunes a candidate test code if  
the sequential coverages of the concurrent suffixes are redundant

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock) 
EXIT(m2)

ENTER(m4) 
ACQ(l) 

R(k)
REL(l) 

EXIT(m4)

…
REL(lock) 
EXIT(m2)

ENTER(m3) 
W(x) 
R(k) 

EXIT(m3)

Crashing 
Method

Interfering 
Method

Redundant?

repository

PS-Redundant

Prunes a candidate test code if  
the concurrent suffixes do not write- access the same shared memory location

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock) 
EXIT(m2)

ENTER(m4) 
ACQ(l) 

R(y)
REL(l) 

EXIT(m4)

…
REL(lock) 
EXIT(m2)

ENTER(m3) 
W(x) 

EXIT(m3)
Shared memory accessed 

x             y

Crashing 
Method

Interfering 
Method

PS-Infere



Prunes a candidate test code if  
the concurrent suffixes are mutually exclusive

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m1();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock) 
EXIT(m2)

ENTER(m4) 
ACQ(l) 

R(x)
REL(l) 

EXIT(m4)

…
REL(lock) 
EXIT(m2)

ENTER(m1) 
ACQ(l) 
W(x)
REL(l)

EXIT(m1)

Cannot interleave!

Crashing 
Method

Interfering 
Method

PS-Interleave

Concurrent 
Test Code

Failure-Inducing 
Test Code 

& 
Interleaving

Test Code 
Generator

Interleaving 
Explorer

Crash 
Stack 

Uses symbolic execution and constraint solving to identify 
failure inducing interleavings

[if failure not found]

Interleaving Explorer



Class Under Test Success Rate

PerUserPoolDataSource 100%

SharedPoolDataSource 100%

IntRange 100%

BufferedInputStream 100%

Logger 100%
PushbackReader 100%
NumberAxis 100%
XYSeries 100%
Category 100%
FileAppender 100%
AVG 100%

* Average results of 5 runs with a time budget of 5 hours 

Failures reproduced in all runs 

Failure Reproduction

Class Under Test Success Rate
Failure 

Reprod. Time 
(sec)

PerUserPoolDataSource 100% 63

SharedPoolDataSource 100% 42

IntRange 100% 13

BufferedInputStream 100% 15

Logger 100% 70
PushbackReader 100%   7
NumberAxis 100% 30
XYSeries 100% 107
Category 100% 25
FileAppender 100% 92
AVG 100% 46

Average failure reproduction time is less than 1 minute

* Average results of 5 runs with a time budget of 5 hours 

Reproduction Costs



Class Under Test Success Rate
Failure 

Reprod. Time 
(sec)

# Tests Retained 
after Pruning

PerUserPoolDataSource 100% 63 2

SharedPoolDataSource 100% 42 2

IntRange 100% 13 1

BufferedInputStream 100% 15 2

Logger 100% 70 3
PushbackReader 100%   7 1
NumberAxis 100% 30 1
XYSeries 100% 107 8
Category 100% 25 1
FileAppender 100% 92 5
AVG 100% 46 3

Effective test code generation

* Average results of 5 runs with a time budget of 5 hours 

Generated test suite size

Class Under Test Success Rate
Failure 

Reprod. Time 
(sec)

# Tests 
Retained 

after Pruning

Test Size
(# method 

calls)

PerUserPoolDataSource 100% 63 2 4

SharedPoolDataSource 100% 42 2 4

IntRange 100% 13 1 4

BufferedInputStream 100% 15 2 5

Logger 100% 70 3 5
PushbackReader 100%   7 1 4
NumberAxis 100% 30 1 3
XYSeries 100% 107 8 6
Category 100% 25 1 5
FileAppender 100% 92 5 10
AVG 100% 46 3 5

Small test codes

* Average results of 5 runs with a time budget of 5 hours 

Generated test suite size



ConTeGe                 [Pradel and Gross PLDI ’12] (random-based)
AutoConTest           [Terragni and Cheung ICSE ’16] (coverage-based)

ConTeGe AutoConTest

Class Under Test Success Rate
Failure 

Reprod. Time 
(sec)

Success Rate
Failure 

Reprod. Time 
(sec)

PerUserPoolDataSource 0% >18,000 0% >18,000

SharedPoolDataSource 0% >18,000 0% >18,000

IntRange 0% >18,000 100% 23

BufferedInputStream 80%    4,487 0% >18,000

Logger 0% >18,000 0% >18,000
PushbackReader 20%   5,796 - -
NumberAxis 0% >18,000 100% 93
XYSeries 40% 12,387 0% >18,000
Category 100% 14,410 - -
FileAppender 0% >18,000 - -

Alternative approaches
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