
Testing Concurrent  
and Distributed Systems

Mauro Pezzè
Università della Svizzera italiana (Lugano, Switzerland)
Università degli studi di Milano Bicocca (Milano, Italy)

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems
reproducing concurrent faults

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems

concurrent and distributed systems
multiple execution flows that progress simultaneously

Distributed SystemsMulti-Threaded Systems

shared memory message passing

If executed serially  
(one call at a time)

balance is always non-negative

def withdraw(amt):
 b = balance
 if b >= amt:
 balance = balance - amt
 return amt
 else:
 return 0
 fi

def deposit(amt):
 b = balance + amt
 balance = b
 return balance

global balance = 0 Initially balance ≥ 0

Preserves balance ≥ 0

Preserves balance ≥ 0

serial execution

serial execution preserves invariants

concurrent execution and race conditions

race condition
on balance

read-write race
deposit is writing balance
and withdraw is reading

balance

global balance = 0

def deposit(amt):

 b = balance + amt

 balance = b

 return balance

def withdraw(amt):

 b = balance

 if b >= amt:

 balance = balance - amt

 return amt

 else:

 return 0

 fi

global balance = 0

def deposit(amt):

 b = balance + amt

 balance = b

 return balance

def withdraw(amt):

 b = balance

 if b >= amt:

 balance = balance - amt

 return amt

 else:

 return 0

 fi

 serializability

deposit does not appear atomic
with respect to withdraw;  

their executions are not serializable

serialisability violation

relaxed memory model
 Sequential consistency  
 standard memory model for reasoning about concurrent programs
 Modern hardware  
 local write buffers, hierarchies of caches, speculative executions

 significantly improve performance
 invalidate SC in the presence of data races

 compilers’ concurrency-oblivious optimizations

Relaxed memory models  
formal sound semantics for realistic high-performance concurrency

def withdraw(amt):

 b = balance

 if b >= amt:

 balance = balance - amt

 return amt

 else:

 return 0

 fi

def withdraw(amt):

 b = balance

 if b >= amt:

 balance = balance - amt

 return amt

 else:

 return 0

 fi

race condition
atomicity violation  

can occur
between two concurrent instances  
of the same function or method

(suppose balance is 7 Krone,  
and both withdrawals are for 5 Krone)

 different instances
of the same object

1. class	Value	{		
2. 			private	int	x	=	1;		
3. 		
4. 			public	synchronized	void	add(Value	v){x	=	x	+	v.get();}		
5. 		
6. 			public	int	get(){return	x;}		
7. }		
8. 		
9. class	Task	extends	Thread{		
10.			Value	v1;	Value	v2;		
11.		
12.			public	Task(Value	v1,Value	v2){		
13.						this.v1	=	v1;	this.v2	=	v2;		
14.						this.start();		
15.			}					
16.		
17.			public	void	run(){v1.add(v2);}		
18.	}		
19.		
20.	class	Main{		
21.			public	static	void	main(String[]	args){		
22.						Value	v1	=	new	Value();	Value	v2	=	new	Value();		
23.						new	Task(v1,v2);	new	Task(v2,v1);		
24.				}		
25.	}

variable x:: class Value  
unprotected access from the two Task threads (lines 4,6)

• one thread can call add method on object v1,  
which calls the unsynchronized get method  
in the other object v2.

• The other thread can make the dual operation

add method synchronized  
does not prevent simultaneous application  

on two different Value objects by two different threads

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

a data race …

removed with a synchronized1. class	Value	{		
2. 			private	int	x	=	1;		
3. 		
4. 			public	synchronized	void	add(Value	v){x	=	x	+	v.get();}		
5. 		
6. 			public	synchronized	int	get(){return	x;}		
7. }		
8. 		
9. class	Task	extends	Thread{		
10.			Value	v1;	Value	v2;		
11.		
12.			public	Task(Value	v1,Value	v2){		
13.						this.v1	=	v1;	this.v2	=	v2;		
14.						this.start();		
15.			}					
16.		
17.			public	void	run(){v1.add(v2);}		
18.	}		
19.		
20.	class	Main{		
21.			public	static	void	main(String[]	args){		
22.						Value	v1	=	new	Value();	Value	v2	=	new	Value();		
23.						new	Task(v1,v2);	new	Task(v2,v1);		
24.				}		
25.	}

Synchronized method get

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

leading to a deadlock1. class	Value	{		
2. 			private	int	x	=	1;		
3. 		
4. 			public	synchronized	void	add(Value	v){x	=	x	+	v.get();}		
5. 		
6. 			public	synchronized	int	get(){return	x;}		
7. }		
8. 		
9. class	Task	extends	Thread{		
10.			Value	v1;	Value	v2;		
11.		
12.			public	Task(Value	v1,Value	v2){		
13.						this.v1	=	v1;	this.v2	=	v2;		
14.						this.start();		
15.			}					
16.		
17.			public	void	run(){v1.add(v2);}		
18.	}		
19.		
20.	class	Main{		
21.			public	static	void	main(String[]	args){		
22.						Value	v1	=	new	Value();	Value	v2	=	new	Value();		
23.						new	Task(v1,v2);	new	Task(v2,v1);		
24.				}		
25.	}

potential deadlock:
• Task T1 locks V1
• Task T2 locks V2
• Task T1 waits for V2
• Task T2 waits for V1

Synchronize method get

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

locks (Java Synchronized)

public class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() < levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
} C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)

limit concurrency to
prevent data races

C:Write(filter)
A:Read(filter)

B:Read(filter) Race Condition

Thread 2Thread 1

but may failpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() < levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
}

C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)

Thread	2Thread	1

but may failpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() < levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
}

C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)

“'filter' is checked against null before being dereferenced.
This is done in a synchronized block to prevent 'filter'
from being set to null after it has been found to be non-null.

The problem is that setFilter() does not use synchronization at all,
and is explicitly allowed to set 'filter' to null.
The critical section in log(LogRecord) is thus completely useless.

Method setFilter() should be declared synchronized to avoid the race
condition.
Method getFilter() should declared synchronized
otherwise the Java Memory Model allows it to return out-of-date values.”

C:Write(filter)
A:Read(filter)

B:Read(filter) Race Condition

public class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() < levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
} C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)

C:Write(filter)
A:Read(filter)

B:Read(filter) Race Condition

Thread 2Thread 1

type of concurrency failures

data race

serializability/order violation
atomicity violation

deadlock

impact and frequency of concurrency failures

“… intermittently I get the following error”
[Apache, Bug #27315, Atomicity Violation]

“I’ve still no clues on why this crash occurs”
[MySQL, Bug #3596, Data Race]

“What should happen here, Charles?”
[Guava, Bug #976, Atomicity Violation]

hard to find

frequent

dangerous

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems

R1(x)W1(y) W2(t) R1(x) W2(x) R1(y) R2(t)

Test input

W2(t) W1(y) W2(x) R1(y) R2(t)

W2(x)W1(y) W2(t) R1(x) R1(x) R1(y) R2(t)

R1(x)W1(y) W2(t) R1(x) W2(x) R2(t) R1(y)

R1(x)R1(x)

Concurrent Test case

interleavings

<input, interleaving, oracle>Oracle

testing concurrent systems

Selecting
Interleavings

Execute

Test cases

Output

System Model
Property of
interleavings

(data race, deadlock,…)

Generating
Test Cases

main focus of research

Selecting
Interleavings

Execute

Test Cases

Output

System Model
Property of
interleavings

(data race, deadlock,…)

Generating
Test Cases

INPUT

Test Case

R1(x)W1(y) W2(t) R1(x) W2(x) R1(y) R2(t)

W2(t) W1(y) W2(x) R1(y) R2(t)

W2(x)W1(y) W2(t) R1(x) R1(x) R1(y) R2(t)

R1(x)W1(y) W2(t) R1(x) W2(x) R2(t) R1(y)

R1(x)R1(x)

T1 T2
R(x)

R(x)
W(x)

Property based

Techniques

Data race

Atomicity Violation

Deadlock

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Property Based

Space Exploration

taxonomy

Techniques

Data race

Atomicity Violation

Deadlock

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Property Based

Space Exploration

80%

20%

taxonomy

Techniques

Data race
Atomicity Violation

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Space Exploration

seminal work

Deadlock

lockset
happens before

goodlockProperty based

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems

R. J. Lipton,  
“Reduction: A method of proving properties of

parallel programs,”
CACM 1975

The LockSet of an event is the set of locks held by a thread
while executing the event.

LockSet(A) = {this}
LockSet(B) = {this}
LockSet(C) = Ø

LockSet Analysis: identifies shared memory accesses on
different threads that are not protected by the same lock

Example: LockSet(A) ∩ LockSet(B) ∩ LockSet(C) = Ø

C:Write(filter)
A:Read(filter)

B:Read(filter) Race Condition

Thread 2Thread 1

public class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() < levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
} C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)

Dynamic Lockset Analysis
dynamically detecting violation of a locking discipline

(set of rules to prevent data races)

Every variable shared between threads  
must be protected by a mutual exclusion lock

Dynamic Lockset Analysis
INIT: each shared variable is associated with all available locks
RUN: thread accesses a shared variable:

intersect current set of candidate locks
with locks held by the thread

END: set of locks after executing a test
 (set of locks always held by threads
 accessing that variable)

 empty set for v = no lock consistently protects v

Simple lockset analysis: example
Thread Program trace Locks held Lockset(x)

{} {lck1, lck2}
thread A lock(lck1)

{……………..}
 x=x+1

{………………..}
 unlock(lck1}

{……………..}
tread B lock{lck2}

{……………..}
 x=x+1

{………………..}
 unlock(lck2}

{……………..}

Simple lockset analysis: example
Thread Program trace Locks held Lockset(x)

{} {lck1, lck2}
thread A lock(lck1)

{lck1}
 x=x+1

{lck1}
 unlock(lck1}

{}
tread B lock{lck2}

{lck2}
 x=x+1

{}
 unlock(lck2}

{}

INIT: all locks for x

lck1 held

Intersect with
locks held

lck2 held

Empty intersection
potential race

class loggerpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() <
levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
} 

C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)
LockSet(A) = {……………………….}
LockSet(B) = {….……………………}
LockSet(C) = {……………………….}

LockSet(A) ∩ LockSet(B) ∩ LockSet(C) = ………

Java.util.loggin.Logger

class loggerpublic class Logger{
…
private Filter filter;
//Thread 1
public void log(LogRecord record){
 if (record.getLevel().intValue() < levelValue
 || levelValue == offValue) {
 return;
 }
 synchronized (this) {
 if (filter != null){
 if(!filter.isLoggable(record)) {
 return;
 }
 }. }
 …
}
// Thread 2
public void setFilter(Filter f) {
 this.filter = f;
} 

C:Write(filter)

A:Read(filter)
Lock(this)

Unlock(this)

B:Read(filter)

LockSet(A) = {this}
LockSet(B) = {this}
LockSet(C) = Ø

LockSet(A) ∩ LockSet(B) ∩ LockSet(C) = Ø

Java.util.loggin.Logger

Handling Realistic Cases
simple locking discipline violated by

initialization of shared variables without holding a lock
writing shared variables during initialization without locks
allowing multiple readers in mutual exclusion with single writers

read/write/first thread

Virgin

write

Shared

Shared-Modified
read/new thread

write/new thread

write

Exclusive

read

Delay analysis
till after initialization

(second thread)

Multiple writers
report violations

Multiple readers
single writer

do not report violations

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems

message passing
and

happens before

L. Lamport,
“Time, clocks, and the ordering of

events in a distributed system,”
CACM 1978.

Action

1:Execute

class	Writer	extends	Actor	{	
	var	results	=	ArrayBuffer[String]()  
	def	receive()	=	{	
					case	Write(result:String)	=>		
									results.append(result)		
					case	Flush	=>	{	
									writeToExternal(results)		
									results	=	null	
							}	
			}		
}	
 
class	Action(name:String,	terminator:Terminator,	
	writer:Writer)	extends	Actor	{		
			def	receive()	=	{	
								case	Execute	=>	{	
											writer	!	Write(name)		
											terminator	!	ActionDone		
											}		
					}		
}		

class	Terminator(actionNum:Int,	writer:Writer)	extends	Actor	{  
var	curActions	=	actionNum 
def	receive()	=	{	
								case	ActionDone	=>	{		
													curActions	−=	1 
													if	(curActions	==	0)	writer	!	Flush	
													}					
							}		
}		

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

2: send(Write)

3: send(ActionDone)

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

Msg Write is received by Writer and the append method is fine

2: send(Write)

3: send(ActionDone)

4: receive(Write)

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

2: send(Write)

3: send(ActionDone)

4: receive(Write)

1:Execute

5: receive(ActionDone)

6: send(Flush)

class	Writer	extends	Actor	{	
	var	results	=	ArrayBuffer[String]()  
	def	receive()	=	{	
					case	Write(result:String)	=>		
									results.append(result)		
					case	Flush	=>	{	
									writeToExternal(results)		
									results	=	null	
							}	
			}		
}	
 
class	Action(name:String,	terminator:Terminator,	
	writer:Writer)	extends	Actor	{		
			def	receive()	=	{	
								case	Execute	=>	{	
											writer	!	Write(name)		
											terminator	!	ActionDone		
											}		
					}		
}		

class	Terminator(actionNum:Int,	writer:Writer)	extends	Actor	{  
var	curActions	=	actionNum 
def	receive()	=	{	
								case	ActionDone	=>	{		
													curActions	−=	1 
													if	(curActions	==	0)	writer	!	Flush	
													}					
							}		
}		

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

2: send(Write)

3: send(ActionDone)

4: receive(Write)

1:Execute

5: receive(ActionDone)

6: send(Flush)

7: receive(Flush)

Msg Flush is received by Writer results is set to nullclass Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

must happen before analysis

Given two events 𝑒𝑖 and 𝑒𝑗
𝑒𝑖 < 𝑒𝑗 if:

• 𝑒𝑖 and 𝑒𝑗 belong to the same thread t and i < j

• 𝑒𝑖 = send(𝑚𝑠𝑔𝑘) and 𝑒𝑗 = receive(𝑚𝑠𝑔𝑘) 
(a message is always sent before being received)

Happens-before relations:

- send(Write) < send(ActionDone) (intra thread)
- send(Write) < receive(Write) (inter thread)
- send(ActionDone) < receive(ActionDone) (inter thread)
- receive(ActionDone) < send(Flush) (intra thread)
- send(Flush) < receive(Flush) (inter thread)

Concurrent events:
- receive(ActionDone) and receive(Write)
- send(Flush) and receive(Write)
- receive(Write) and receive(Flush)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

MUST HAPPENS BEFORE ANALYSIS
Given two events 𝑒𝑖 and 𝑒𝑗
𝑒𝑖 < 𝑒𝑗 if:

𝑒𝑖 and 𝑒𝑗 belong to the same thread t and i < j
𝑒𝑖 = send(𝑚𝑠𝑔𝑘) and 𝑒𝑗 = receive(𝑚𝑠𝑔𝑘)  

(a message is always sent before being received)

receive(ActionDone)

receive(Write)

send(Write)

send(ActionDone)

send(flush)

receive(flush)

happens before relation

intra thread

inter thread

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

receive(ActionDone)

receive(Write)

send(Write)

send(ActionDone)

send(flush)

receive(flush)

concurrent events
class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

receive(ActionDone)

send(Write)

send(ActionDone)

send(flush)

receive(flush)

concurrent events

possible data
race

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

receive(Write)

Happens-before relations:

- send(Write) > send(ActionDone) (intra thread)
- send(Write) > receive(Write) (inter thread)
- send(ActionDone) > receive(ActionDone) (inter thread)
- receive(ActionDone) > send(Flush) (intra thread)
- send(Flush) > receive(Flush) (inter thread)

Concurrent events:
- receive(ActionDone) and receive(Write)
- send(Flush) and receive(Write)
- receive(Write) and receive(Flush)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

2: send(Write)

3: send(ActionDone)

1:Execute

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

3: send(ActionDone)

1:Execute

2: send(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

3: send(ActionDone)

1:Execute

4: receive(ActionDone)

5: send(Flush)

2: send(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

3: send(ActionDone)

1:Execute

4: receive(ActionDone)

5: send(Flush)

6: receive(Flush)

Msg Flush is received by Writer and results is set to null

2: send(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Action Terminator Writer

3: send(ActionDone)

1:Execute

4: receive(ActionDone)

5: send(Flush)

6: receive(Flush)

Msg Write is received by Writer and a null pointer exception is thrown

2: send(Write) 7: receive(Write)

class Writer extends Actor {
 var results = ArrayBuffer[String]()  
 def receive() = {
 case Write(result:String) =>
 results.append(result)
 case Flush => {
 writeToExternal(results)
 results = null
 }
 }
}
 
class Action(name:String, terminator:Terminator,
 writer:Writer) extends Actor {
 def receive() = {
 case Execute => {
 writer ! Write(name)
 terminator ! ActionDone
 }
 }
}

class Terminator(actionNum:Int, writer:Writer) extends Actor {  
var curActions = actionNum  
def receive() = {
 case ActionDone => {
 curActions −= 1  
 if (curActions == 0) writer ! Flush
 }

 }
}

send(Write)
send(ActionDone)

send(Flush)

receive(ActionDone)

receive(Write)

receive(Flush)

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems

1. class Value {
2. private int x = 1;
3.
4. public synchronized void add(Value v){x = x + v.get();}
5.
6. public synchronized int get(){return x;}
7. }
8.
9. class Task extends Thread{
10. Value v1; Value v2;
11.
12. public Task(Value v1,Value v2){
13. this.v1 = v1; this.v2 = v2;
14. this.start();
15. }
16.
17. public void run(){v1.add(v2);}
18. }
19.
20. class Main{
21. public static void main(String[] args){
22. Value v1 = new Value(); Value v2 = new Value();
23. new Task(v1,v2); new Task(v2,v1);
24. }
25. }

potential deadlock:
• Task T1 locks V1
• Task T2 locks V2
• Task T1 waits for V2
• Task T2 waits for V1

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

Goodlock algorithm
AT RUNTIME:
record the locking pattern for each thread during runtime as a lock tree
one lock tree per tread == nested pattern in which locks are taken by the thread

AFTER EXECUTION:
compare the trees for each pair of threads
for each pair of trees <t1, t2> and each operation on a shared memory location n1 of t1

check that no lock below n1 in t1 is above a node n2 in a thread t2

deadlock1. class Value {
2. private int x = 1;
3.
4. public synchronized void add(Value v){x = x + v.get();}
5.
6. public synchronized int get(){return x;}
7. }
8.
9. class Task extends Thread{
10. Value v1; Value v2;
11.
12. public Task(Value v1,Value v2){
13. this.v1 = v1; this.v2 = v2;
14. this.start();
15. }
16.
17. public void run(){v1.add(v2);}
18. }
19.
20. class Main{
21. public static void main(String[] args){
22. Value v1 = new Value(); Value v2 = new Value();
23. new Task(v1,v2); new Task(v2,v1);
24. }
25. }

lock(V1)

unlock(V1)

lock(V2)

unlock(V2)

Task T1

lock(V2)

unlock(V2)

lock(V1)

unlock(V1)

Task T2

Havelund: Using Runtime Analysis to Guide Model Checking of Java Programs

Testing Concurrent and Distributed Systems
concurrency and distribution

fault types
testing framework

classic approaches
lockset
happens before
goodlock

leading edge research
relevant results
current trends and open problems

Research landscape

Pu
bli

ca
tio

ns

0

2

4

6

8

10

12

14

Year
'00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15

Multi-Core

90+ Techniques presented from 2000 in top-tier venues

Research communities

15

35

42

2

Formal Methods
CAV, SPIN

2/94

Software Engineering
FSE, ICSE, ISSTA, ASE

42/94

Systems
SOSP, ASPLOS, ISCA

15/94

Programming Languages
OOPSLA, PPOP, PLDI

42/94

Research focus

0

2

4

6

8

10

12

14
20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Data	race
Atomicity
Deadlock
Combined
Order
Exploration

36

18

8

4

12

16

Research focus

0

2

4

6

8

10

12

14

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Data	race
Atomicity
Deadlock
Combined
Order
Exploration

36

18

8

4

12

16

Property based

space exploration

Property based
improving precision of happens-before analysis  
 to detect data-races and atomicity violations
improving performance of happens-before and good-lock analyses  
 to detect data-races and deadlocks
improving recall of happens-before analysis to detect data-races
extending happens-before analysis to Web, event-based and Android
extending happens-before analysis to relaxed memory models (C++, Java)
complementing with test case generation  
 to detect data-races, atomicity violations and deadlocks
violations of correctness properties

[Portend ASPLOS’12]

[Velodrome PLDI’08]

[Penelope FSE’10]

[RaceFuzzer PLDI’08]

[AtomFuzzer FSE’08] [Frost SOSP’11]

Improving precision of happens-before analysis to detect  
atomicity violations and data races

Atomicity violations data races

improving precision of happens-before analysis
to detect atomicity violations

’08 Velodrome’ cyclic patterns
reduces false positives by looking for cyclic patterns in the happens-before graph  
(sufficient and necessary conditions for atomicity violations)

'08 AtomFuzzer’s atomic specification
exploits annotations that specify which code blocks are intended to be atomic
limits the analysis to pairs of execution flows that use a single lock to ensure the atomicity of a code region
randomly generates interleavings by exploiting happens-before analysis to capture order relations among flows
executes the test case with random pauses in correspondence of accesses to critical memory regions  
to maximize the probability of observing an atomicity violation

’10 Penelope’s atomicity violation patterns
considers alternative orders of lock acquisitions and releases that violate predefined atomicity violation

patterns
re-executes the target program under the predicted schedules to prune false positives with oracles

improving precision of happens-before analysis
to detect data races

’08 Frost

detects non-benign data races by comparing results and program state of multiple replicas  
of the same program with different interleavings
segments an execution into epochs, and runs each epoch on three replicas

executes a replica with dynamic happens-before analysis to detect synchronization points in the program
executes the other two replicas with a non-preemptive controlled scheduler on a single thread

’11 RaceFuzzer’s order information

dynamically computes order information using an imprecise but efficient  
combines lockset and happens-before analyses to reduce computational cost

’12 Portend’s classification of data races

precisely classifies data races, based on the effects on the system under test
considers data races as benign if they produce same results state with all tests

checks the property with symbolic execution

[ConLock ICSE’14]

[FastTrack PLDI’09]

[Carisma ISSTA’12]

[Falcon ICSE’10]

[LiteRace PLDI’09]

[MagicFuzzer ICSE’12]

Improving performance of happens-before and deadlock
analysis to detect data races, atomicity violations and deadlocks

deadlocksdata races atomicity violations

improving performance of happens-before
to detect data races

’09 Fastrack’s lightweight representation

proposes a lightweight representation of the happens-before information  
 that records only the information about the last write operation on each data item
reduces the cost of vector clock comparison up to an order of magnitude

’09 LiteRace’s cold regions
introduces sampling to reduce analysis overhead
instruments only cold regions defined as the less frequently accessed code elements
assumption: frequently accessed code elements (hot regions) less likely to be involved in data races

’12 Carisma’s similarity relation

exploits similarity between multiple accesses to the same data structures,
dynamically infers the application contexts and uses the contexts to compute the distribution of
memory locations across data structure to better balance the sampling budget

improving performance of happens-before analysis
to detect atomicity violations

’10 Falcon’s siding window

refers to fixed-sized sliding window to detect suspicious patterns that lead to unserializable
memory accesses

maintains access information for each shared data item in a fixed-size window,
uses the information stored in a window to detect suspicious memory access patterns

The sliding window keeps focus on the closely related accesses

improving performance (scalability)  
to detect deadlocks

’12 MagicFuzzer’s detectors of cycles in the lock graph
prunes the good lock graph:  
 a deadlock that corresponds to a cycle in the lock graph contains only nodes  
 that have both incoming and outgoing edges
iteratively removes all the nodes that do not satisfy this property
uses a novel algorithm to analyse the pruned graph

partitions the nodes based on the execution flows, and does not explore redundant paths
’12 ConLock’s should-happen before relation

addresses the thrashing problem of randomized scheduling algorithms::  
 randomized scheduler generates artificial deadlocks: the execution flows are suspended by the scheduler  
 and cannot progress, but a deadlock cannot be confirmed.
introduces a should-happen-before order relation computed with dynamic analysis to increase the probability to
reach and thus confirm a deadlock

Improving recall of happens-before analysis  
to detect data races

[Smaragdakis et al. POPL’12]

[RVPredict PLDI’14]

[DrFinder FSE’15]

’12 Smaragdakis et al.’s causally precedes relation

PROBLEM: happens-before analysis focus on single execution traces  
thus may infer incorrect order relations and miss some data races
introduce causally-precedes analysis to mitigate the problem: 
based on a new causally-precedes (CP) relation that relaxes the happens-before relation with
respect to lock releases and acquisitions detect CP-races that occur when two conflicting
memory accesses are not CP related

’14 RVPredict’s order relation

defines an order relation to detect data races that improves the accuracy of CP-analysis
takes into account control flow information

Improving recall of happens-before analysis 
to detect data races (i/ii)

’15 DrFinder’ may trigger relation

PROBLEM: hidden data race  
== pair of accesses to the same shared memory location in a happens-before relation only for some
interleavings

not revealed with happens-before and extensions due to the over-constraining nature of the analysis
INTUITION: many hidden races can be detected by reversing the order of execution of one or more
operations in a happens-before relation

computes may-trigger relation on an execution trace
looks for alternative interleavings that might expose data races,
executes the selected interleavings to check their feasibility.

Improving recall of happens-before analysis 
to detect data races (ii/ii)

Extending happens-before to new paradigms to detect
data races

Web

[WebRacer PLDI’12] [DroidRacer PLDI’14][EventRacer OOPSLA’13]

Event-based Android

’12 WebRacer

happens-before analysis enhanced with the semantics of Web platforms — focus on
variable races == data races caused by concurrent accesses to shared memory locations

HTML races == accesses of DOM nodes may occur both before and after creations

function races == function invocations occur both before and after parsing the functions
event dispatch races == events fire both before and after adding the event handlers

’13 EventRacer

happens-before analysis for event-based programs

’14 DroidRacer

exploits concurrency semantics of Android programming model to derive precise happens-before relation  
to reduces of false positives

new paradigms

happens-before for relaxed memory models

[MultiRace PPoPP’03] [Relaxer ISSTA’11][Java RaceFinder ASE’09]

C++ Java Android

’03 MultiRace

combines lockset and happens-before analyses
takes into account both lock-based and barrier synchronization mechanisms
detects data races in production mode

’09 Java RaceFinder

introduces new happens-before analysis to capture ordering relations in the relaxed Java memory model

relies on Java PathFinder to generate interleavings that may result in data races
explores the interleaving space driven by patterns that increase the probability to identify a data race

’11 Relaxer

detects potential data races in sequentially consistent execution trace
computes the set of potential happens-before cycles == possible violations of sequential consistency
uses detected races to predict alternative interleavings on a relaxed memory model

exploits biased-random scheduler to force the occurrence of such interleavings

relaxed memory models

Complementing with TC Generation

data races

[Narada OOPSLA’14] [Omen FSE’15][Intruder PLDI’15]

atomicity violations deadlocks

’14 Narada

monitors execution of sequential test suite with lockset analysis
identifies unprotected accesses to shared elements, and infers state and invocation sequences that trigger data races
synthesises concurrent test cases to expose the data race

’15 Intruder

executes sequential test suite to profile the lock acquisitions, lock releases, field accesses
infer possible atomicity violations with lock-based analysis  
based on four memory access patterns known to be non-serializable.
combines sequential test cases to generate concurrent test cases that expose atomicity violations

’15 OMEN
reveals deadlocks by exploiting properties of sequential executions
executes a sequential test suite  
builds a lock dependency relation that captures the lock acquisitions of the executed methods
generates concurrent test cases from sequential ones

Complementing analysis with test case generation

Correctness violations

order violations
constraint solver

[GPredict ICSE’15]

[JPredictor ICSE’08]

[2ndStrike ASPLOS’11]

[Pretex ASE’08] [ExceptioNull FSE’12]

concurrent behaviors
that violate program

specifications
typestate faults

Testing Techniques

Data race

Atomicity Violation

Deadlock

Order Violation

Combined

Stress Testing

Exhaustive

Coverage Criteria

Heuristics

Property Based

Space Exploration

80%

20%

State exploration

jPredictor
shrinks an execution trace to only events relevant for the property to be checked with static analysis

builds a causality graph involving the selected events based on the notion of sliced causality  
(happens-before relation)
predicts and executes alternative interleavings that might lead to property violations

GPredict

verifies high level properties expressed as regular expressions on the order of statements

infers the order relations between events dynamically identified on execution traces  
relying on thread-local traces, and ignoring global synchronisations,
checks for the feasibility of interleavings that violate the concurrency properties by means of a
constraint solver to predict possible concurrency faults

violations of program specifications

Pretex

typestate == state associated with an object — set of operations that can be applied to the object in that state
typestate fault == invoking an operation on an object obj in a typestate that does not support that operation 
 (related to high level semantics of the target system)
computes the happens-before relation among events
determines which objects are shared
infers typestate properties of each shared object relying on mining techniques
generates a finite state machine model of the concurrent execution
checks the generated model for typestate property violations

2nd-Strike

detects concurrency typestate faults that involve files, pointers locks
dynamically analyzes a test case execution to generate a set of candidate faults
identify operations that cannot be reordered with happens-before relation
uses a deterministic scheduler to force the execution of the candidate faults computed during the analysis

typestate faults

ExceptioNull

detects interleavings that can lead to null pointer dereferences of shared data

items with hybrid lockset and happens-before analysis

order violations with constraint solver

Research focus

0

2

4

6

8

10

12

14
20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Data	race
Atomicity
Deadlock
Combined
Order
Exploration

36

18

8

4

12

16

space exploration

bounded state space exploration

stress testing

exhaustive (bounded) exploration

coverage of (property-relevant) interleavings

heuristic-driven exploration

limit the amount of interleavings randomly

limit the depth of the interleavings

limit accord to the structure

heuristic priority

Pruning the Interleaving Space

Model checking

[Joshi FSE’10] [Tasharofi ASE’13][Wang ICSE’11]

systematic
exploration of
interleavings

exploration of data
flow relations

SO FAR

selecting interleavings
property based approaches
low level order violations
shared memory systems

OPEN ISSUES

generating test cases

high level order violations

message passing systems

reference

Francesco A. Bianchi, Alessandro Margara, Mauro Pezzè  
A Survey of Recent Trends in Testing Concurrent Software Systems  

IEEE Transactions on Software Engineering, May 2017

Testing

GUI testing

Concurrent testing

Test oracles

Symbolic execution

field testing

cloud testing

ULS testing

Self healing

failure prediction

fault localisation

healing alerts

dynamic analysis

automated healing

Reproducing Concurrency Failures
from Crash Stacks

Concurrency field failures

test code + thread interleaving

order of shared memory
accesses

Executable code fragment 
that exercises the program under test

Failure inducing test code

encapsulates synchronizations  
that ensure a correct behavior  

when the same instance of the class  
is accessed from multiple threads

Thread-safe Class

java.lang.NullPointerException
 at java.util.logging.Logger.log(Logger.java:421)
 at java.util.logging.Logger.doLog(Logger.java:458)
 at java.util.Logging.Logger.log(Logger.java:482)
 at java.util.logging.Logger.info(Logger.java:996)

type of exception Point Of Failure
(POF)

“70% of concurrency failures lead to crashes or hangs”
Lu et al. ASPLOS ‘08

Crash Stack

public void log(LogRecord r) {
 synchronized(this) {
 if(filter != null) {

public void setFilter(Filter f) {

failure-inducing interleaving

 this.filter = f;
}

 if(!filter.isLoggable(r)) {
 return;
 }
 }
 }
 }

 = null

 Thread 1 Thread 2

Point Of Failure (POF)

Threat-safety Violation

Concurrent
Suffixes

Logger sout = Logger.getAnonymousLogger();
MyFilter myFilter0 = new MyFilter();
sout.setFilter(myFilter0);

sout.info(""); sout.setFilter(null);

Thread 2Thread 1

Sequential
Prefix

Concurrent Test Code

java.lang.NullPointerException
 at java.util.logging.Logger.log(Logger.java:421)
 at java.util.logging.Logger.doLog(Logger.java:458)
 at java.util.Logging.Logger.log(Logger.java:482)
 at java.util.logging.Logger.info(Logger.java:996)

Logger sout = Logger.getAnonymousLogger();
MyFilter myFilter0 = new MyFilter();
sout.setFilter(myFilter0);

sout.info(""); sout.setFilter(null);

Crash Stack

 Thread 1 Thread 2

Failure-inducing Test Code

Limited information from Crash Stacks

Crashing method and Class Under Test (CUT)

Input
Parameter

Sequential
Prefix

Crashing
Method

CUT

Interfering
Method

Failure-inducing test code

Concurrent
Test Code

Failure-Inducing
Test Code

&
Interleaving

Test Code
Generator

Interleaving
Explorer

[if failure not found]

Pruning Strategies

Avoid exploring the interleaving space of
redundant and irrelevant test codes

Crash
Stack

ConCrash

Concurrent
Test Code

Failure-Inducing
Test Code

&
Interleaving

Test Code
Generator

Interleaving
Explorer

Pruning Strategies

Crash
Stack

[if failure not found]

Pruning Strategies

Uses information from executing call of a test code sequentially

Low computational cost

Pruning Strategies

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);

sout.m3(5); sout.m4(10);

Thread 2

candidate test code

Thread 1

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3(5);

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

ENTER(m3)
W(x)
R(k)

EXIT(m3)

…
REL(lock)
EXIT(m2)

ENTER(m4)
ACQ(l)

R(k)
REL(l)

EXIT(m4)

…
REL(lock)
EXIT(m2)

Sequential Coverage

Crashing
Method

Interfering
Method

Pruning Strategies

one of its method call sequences throws an exception sequentially

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m9(null);

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

ENTER(m9)
R(x)

…
REL(lock)
EXIT(m2)

ENTER(m4)
ACQ(l)

R(k)
REL(l)

EXIT(m4)

…
REL(lock)
EXIT(m2)

java.lang.NullPointerException

Our focus are concurrent (not sequential) failures!

Crashing
Method

PS-Exception

Prunes a candidate test code if  
the sequential coverage of the crashing method does not match the crash stack

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock)
EXIT(m2)

ENTER(m4)
ACQ(l)

R(k)
REL(l)

EXIT(m4)

…
REL(lock)
EXIT(m2)

MyException
 at cut.m6()
 at cut.m8()
 at cut.m3()

Stack Trace
ENTER(m3)
ENTER(m8)
ENTER(m12)

…

Crashing
Method

PS-Stack

Prunes a candidate test code if  
the sequential coverages of the concurrent suffixes are redundant

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock)
EXIT(m2)

ENTER(m4)
ACQ(l)

R(k)
REL(l)

EXIT(m4)

…
REL(lock)
EXIT(m2)

ENTER(m3)
W(x)
R(k)

EXIT(m3)

Crashing
Method

Interfering
Method

Redundant?

repository

PS-Redundant

Prunes a candidate test code if  
the concurrent suffixes do not write- access the same shared memory location

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m3();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock)
EXIT(m2)

ENTER(m4)
ACQ(l)

R(y)
REL(l)

EXIT(m4)

…
REL(lock)
EXIT(m2)

ENTER(m3)
W(x)

EXIT(m3)
Shared memory accessed

x y

Crashing
Method

Interfering
Method

PS-Infere

Prunes a candidate test code if  
the concurrent suffixes are mutually exclusive

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m1();

CUT sout = new CUT();
sout.m1();
sout.m2(“hi”);
sout.m4(10);

…
REL(lock)
EXIT(m2)

ENTER(m4)
ACQ(l)

R(x)
REL(l)

EXIT(m4)

…
REL(lock)
EXIT(m2)

ENTER(m1)
ACQ(l)
W(x)
REL(l)

EXIT(m1)

Cannot interleave!

Crashing
Method

Interfering
Method

PS-Interleave

Concurrent
Test Code

Failure-Inducing
Test Code

&
Interleaving

Test Code
Generator

Interleaving
Explorer

Crash
Stack

Uses symbolic execution and constraint solving to identify
failure inducing interleavings

[if failure not found]

Interleaving Explorer

Class Under Test Success Rate

PerUserPoolDataSource 100%

SharedPoolDataSource 100%

IntRange 100%

BufferedInputStream 100%

Logger 100%
PushbackReader 100%
NumberAxis 100%
XYSeries 100%
Category 100%
FileAppender 100%
AVG 100%

* Average results of 5 runs with a time budget of 5 hours

Failures reproduced in all runs

Failure Reproduction

Class Under Test Success Rate
Failure

Reprod. Time
(sec)

PerUserPoolDataSource 100% 63

SharedPoolDataSource 100% 42

IntRange 100% 13

BufferedInputStream 100% 15

Logger 100% 70
PushbackReader 100% 7
NumberAxis 100% 30
XYSeries 100% 107
Category 100% 25
FileAppender 100% 92
AVG 100% 46

Average failure reproduction time is less than 1 minute

* Average results of 5 runs with a time budget of 5 hours

Reproduction Costs

Class Under Test Success Rate
Failure

Reprod. Time
(sec)

Tests Retained
after Pruning

PerUserPoolDataSource 100% 63 2

SharedPoolDataSource 100% 42 2

IntRange 100% 13 1

BufferedInputStream 100% 15 2

Logger 100% 70 3
PushbackReader 100% 7 1
NumberAxis 100% 30 1
XYSeries 100% 107 8
Category 100% 25 1
FileAppender 100% 92 5
AVG 100% 46 3

Effective test code generation

* Average results of 5 runs with a time budget of 5 hours

Generated test suite size

Class Under Test Success Rate
Failure

Reprod. Time
(sec)

Tests
Retained

after Pruning

Test Size
(# method

calls)

PerUserPoolDataSource 100% 63 2 4

SharedPoolDataSource 100% 42 2 4

IntRange 100% 13 1 4

BufferedInputStream 100% 15 2 5

Logger 100% 70 3 5
PushbackReader 100% 7 1 4
NumberAxis 100% 30 1 3
XYSeries 100% 107 8 6
Category 100% 25 1 5
FileAppender 100% 92 5 10
AVG 100% 46 3 5

Small test codes

* Average results of 5 runs with a time budget of 5 hours

Generated test suite size

ConTeGe [Pradel and Gross PLDI ’12] (random-based)
AutoConTest [Terragni and Cheung ICSE ’16] (coverage-based)

ConTeGe AutoConTest

Class Under Test Success Rate
Failure

Reprod. Time
(sec)

Success Rate
Failure

Reprod. Time
(sec)

PerUserPoolDataSource 0% >18,000 0% >18,000

SharedPoolDataSource 0% >18,000 0% >18,000

IntRange 0% >18,000 100% 23

BufferedInputStream 80% 4,487 0% >18,000

Logger 0% >18,000 0% >18,000
PushbackReader 20% 5,796 - -
NumberAxis 0% >18,000 100% 93
XYSeries 40% 12,387 0% >18,000
Category 100% 14,410 - -
FileAppender 0% >18,000 - -

Alternative approaches

reference

Francesco A. Bianchi, Mauro Pezzè, Valerio Terragni 
Reproducing concurrency failures from crash stacks.  

ESEC/SIGSOFT FSE 2017: 705-716

