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Abstract—Validation and verification of Software Product
Lines is particularly challenging due to the complex structure and
interaction of commonalities and variabilities among products.
There are several approaches to specify the structure of such
commonalities and variabilities, such as the delta-oriented ap-
proach. Building upon such a structure, we propose an approach
to avoid redundant analysis in Software Product Lines by
extending them to semantic behavioural changes. To this end, we
propose to use Differential Symbolic Execution, an automated
technique for proving functional behavioural equivalence based
on satisfiability modulo theories. Our proposal aims at identifying
the behavioural commonalities of one software product relative
to another and exploits them in order to establish an efficient
model-based testing trajectory.

I. INTRODUCTION

Software Product Line Engineering (SPLE) has proven to be
beneficial to the development of embedded and safety-critical
systems and has been applied successfully by several compa-
nies and institutions. The products of a Software Product Line
(SPL) share certain commonalities and differentiate in terms
of variability points, user-visible aspects or characteristics
of products. SPLE promises distinct benefits, i.e., tailored
products, reduced development costs, improved quality, and
shorter time to market, but also gives rise to an complex
structure and interaction among such products. This makes
their validation and verification extremely challenging.

Analysing the correctness of safety-critical SPLs is of
significant importance. For this particular reason, several anal-
ysis approaches on reducing the analysis effort have been
developed and proposed recently; we refer to [1] for a detailed
overview. Some earlier work propose (test) models that struc-
ture the commonalities and variabilities of an SPL and thereby
structure the model-based testing process. We build upon such
approaches and extend them in order to compare the behaviour
of structural commonalities among different products.

To this end, we propose to exploit Differential Symbolic Ex-
ecution (DSE) [2], which is capable of identifying shared and
featured behaviour of two products and allows to describe their
behavioural differences. Applied to SPLE, it can be used for
characterising the behaviour of one product relative to another.
Within our approach, the differential information is exploited
to point out the test cases of a given test suite related to
the shared behaviour for an analysed product accordingly. By
focusing on the identified behavioural differences exclusively,

Fig. 1. A Software Product Line including the products P1 and P2. It
illustrates possible feature combinations of the features A and B, describing
common behaviour, and the elective feature C, describing optional behaviour.
The behaviour of product P1 is analysed through the test suite T1 (coloured
in yellow). By exploiting the behavioural differences, the analysis effort for
product P2 can be minimised to the test cases within test suite T2 that
are related to the syntactic and semantic changes (coloured in green), while
reusing the test results of the unchanged part (coloured in yellow)..

test case execution of optional behaviour is performed only
once and reduces analysis effort ultimately.

The remainder of this paper is organised as follows: Section
II outlines the problem and section III describes our approach
briefly. An overview of related work is given in section IV.
Finally, section V presents a future roadmap.

II. PROBLEM DESCRIPTION

Typically, a sample of products is identified as a repre-
sentative set of the whole SPL for analysis [1]. (Whether
such a sample is indeed representative of the SPL behaviour
is a related problem to our proposal, but it is beyond the
scope of the present paper.) By analysing a particular product
in this sample, parts of the common code and a set of the
variability points are verified. Subsequently, analysing another
product in this sample, some parts of the common code and
a subset of the already verified variability points may be
verified again. Our goal is to avoid those redundant analyses
by identifying common parts whose behaviour has remained
intact and focusing on the modified and added behaviour.

To illustrate this problem, consider the SPL shown in
Fig. 1 including the sampled products P1 and P2. The SPL
consists of the features A and B, describing the common



behaviour, and the elective feature C, describing optional
behaviour. Additionally, the behaviour of the feature B in
product P2 is modified due to the introduction of the feature C.
Syntactic behavioural changes, i.e., the introduction of C, can
simply be identified by using the structural information [3]; in
our case using the delta-oriented approach. Complex feature
interactions that introduce semantic behavioural changes, i.e.,
the modified behaviour in B, can easily be overlooked though.
Our goal is to detect such changes and link them to the test-
cases to be re-executed.

Consider the test suites T1 and T2 for the respective sampled
products P1 and P2, which cover the products’ control flow
graphs. When exploiting the syntactic model, the test suite T1

traverses the paths for the features A and B solely, whereas
the paths for the feature C is traversed by the test suite T2

exclusively. Although incorporating the syntactic models of
the delta-oriented approach reduces redundant analysis effort,
the syntactic models are inherently too imprecise to cover
the semantic behavioural changes within feature B. We aim
at remedying this imprecision by using a semantic analysis
technique specified below.

III. PROPOSED APPROACH

A key characteristic of an efficient SPL analysis approach
is to avoid redundant analysis steps for inherited commonal-
ities [4]. Our approach comprises applying DSE to SPLE, in
analysing behavioural differences by comparing one sampled
product relative to another, representing the differential seman-
tic information. This information is then used to transform the
underlying test model of a product accordingly in order to save
analysis effort for testing. Additionally, this information can
be exploited to modify a given set of test cases and to execute
change-related test cases exclusively.

By applying DSE to the SPL illustrated in Fig. 1, the
test cases for syntactic and semantic behavioural changes
within the sampled product P2 (coloured in green) can be
derived from the given test suites T2, while reducing redundant
analysis steps at the same time. Therefore, the differential
information of product P2 relative to product P1 is created
by comparing them to each other. Those changes, denoted as
∆P2→P1

, describe the relative changes and are exploited to
select the test cases covering changed behaviour within the
given test suite T2, further referred to as T∆P2

.
When using the test suites T1 and T∆P2 to analyse the SPL,

the paths for the features A and B are covered by the test suite
T1 exclusively. The paths for the syntactic behavioural changes
of the elective feature C as well as the paths for the semantic
behavioural changes of the shared behaviour C are covered
by the test suite T∆P2 then.

In summary, applying DSE to SPLE brings about three
main advantages. Differential information can (a) be applied to
select a number of test cases from a given test suite related to
semantic behavioural changes, (b) be incorporated to optimise
test case execution, and (c) be embodied to guide the overall
analysis of an SPL. Consequently, redundant analysis steps are
avoided and the analysis effort is reduced.

IV. RELATED WORK

Classen et al. [5] developed a model checking algorithm
based on Featured Transition Systems (FTS) and applied the
principles of symbolic execution in [4] to address the state
explosion problem. In contrast to our approach, they express
the behaviour of all products of an SPL in one single model.

Lochau et al. [3] applied the principles of Delta-Oriented
Programming to state machines to transform one product’s
state machine into another accordingly. This approach has been
further refined by Lity et al. [6] to abstract parts of the program
that do not influence the current point of interest. Compared to
their approach, we focus on behavioural changes at the code
level rather than abstract state machine models.

Lachmann et al. [7] presented an integration testing ap-
proach for SPLs, which focuses on structural changes between
products. Unlike our approach, they do not focus on generating
the test cases for each product, but select and prioritise them
based on the SPL’s specification instead.

V. FUTURE ROADMAP

Our first milestone is to formalise our approach based on
the syntax and the formal semantics of DELTAJAVA, a delta-
oriented framework for SPLs. We would like to implement our
approach by translating our formal semantics into the DSE tool
input and adapt the tool to take the SPL structure into account.
Subsequently, we plan to apply the approach to case studies
and analyse the data. Our goal is to verify the following theses:
• Coverage: the test cases generated for the behavioural

differences cover semantic behavioural changes including
the added, deleted, and modified behaviour of common-
alities.

• Efficiency: the accumulated effort in applying structural
analysis and in performing DSE is by far less than the
saved effort by avoiding re-testing.
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