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Abstract. We present how common JAVACARD security properties can
be formalised in Dynamic Logic and verified, mostly automatically, with
the KeY system. The properties we consider, are a large subset of prop-
erties that are of importance to the smart card industry. We discuss
the properties one by one, illustrate them with examples of real-life, in-
dustrial size, JAVACARD applications, and show how the properties are
verified with the KeY Prover – an interactive theorem prover for JAVA

CARD source code based on a version of Dynamic Logic that models the
full JAVACARD standard. We report on the experience related to formal
verification of JAVACARD programs we gained during the course of this
work. Thereafter, we present the current state of the art of formal veri-
fication techniques offered by the KeY system and give an assessment of
interactive theorem proving as an alternative to static analysis.

1 Introduction

JAVA CARD [8] is a technology designed to incorporate JAVA in smart card pro-
gramming. The main ingredient of this technology is the JAVACARD language
specification, which is a stripped down version of JAVA. In recent years JAVA

CARD technology gained interest in the formal verification community. The two
main reasons for this are: (1) JAVACARD applications are safety and security
critical, and thus a perfect target for formal verification, (2) due to the relative
language simplicity JAVA CARD is also a feasible target for formal verification.

In this paper we show how common JAVA CARD security properties can be
formalised in the Dynamic Logic used in the KeY system and proved with the
KeY interactive theorem prover (the background of the KeY project is given in
Sect. 2). The properties in question are a rather large subset of properties that
are of interest to the smart card industry [18]. We demonstrate the formalisa-
tion and verification of the properties on two real-life JAVA CARD applets (the
case studies are described in Sect. 3). After giving the detailed description of
the properties we formalised and proved (Sect. 4), we report on the experience
we gained during the course of this work and analyse the main difficulties we
encountered. In an earlier paper [12] we reported on the verification of trans-
actions related safety properties based on a somewhat simplified example of a
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JAVA CARD purse applet. We proposed the approach of design for verification,
where we argue that certain precautions have to be taken into account during
the design and coding phase to make verification feasible. In this work however,
we concentrate on source code verification of already existing JAVACARD appli-
cations without any simplifications whatsoever, and we discuss wider range of
security properties than before. In particular, one of the assumptions we made,
is that we should be able to specify properties and perform verification without
modifying the source code of the verified program. Thus, this work presents the
current state of the art of automated formal verification techniques offered by
the KeY system for industrial size JAVA CARD applications with respect to mean-
ingful, industry related security properties. This is discussed in Sect. 5. The main
conclusion is that full source code verification of JAVA CARD applications is abso-
lutely possible and in most part can indeed be achieved automatically, however,
such verification requires deep understanding of the specification issues, includ-
ing full understanding of the application being verified and the specificities of
the JAVACARD environment. Therefore, we consider the KeY system, assuming
the approach we present in this work, mostly suitable for experienced users. The
properties that we consider here, originate from the area of static analysis [18],
however, to the best of our knowledge, no static analysis technique for thorough
treatment of those properties has been developed. We managed to formalise and
verify almost all of the properties using the KeY interactive theorem prover.
For the remaining properties we give concrete suggestions on how to treat them
with the KeY system. We give arguments why we think that interactive theorem
proving is a reasonable, and in fact in some ways better, alternative to static
analysis. This discussion is included in the second part of Sect. 5.

2 Background

The KeY Project. The work presented here is part of the KeY project1 [1]. The
main goals of KeY are to (1) provide deductive verification for a real world pro-
gramming language and to (2) integrate formal methods into industrial software
development processes.

For the first goal a deductive verification tool for JAVA source programs, the
KeY Prover, has been developed. The main target of the KeY system is the JAVA

CARD language – a stripped down version of JAVA used to program smart cards
(e.g., JAVACARD does not support concurrency or large primitive data types, and
has a very small API). The verification is based on a specifically tailored version
of Dynamic Logic – JAVACARD Dynamic Logic (JAVACARD DL), which supports
most of sequential JAVA, in particular the full JAVACARD language specification
including the JAVACARD transaction mechanism. JAVA CARD DL and the KeY
Prover are designed to make the verification process as automated as possible.

For the second goal, the KeY Prover was integrated into a commercial CASE
tool, which uses UML (Unified Modelling Language) as the design language

1 http://www.key-project.org
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and OCL (Object Constraint Language) as the specification language. For the
present work however, due to specificities of the security properties in question,
and the necessity to operate on relatively low level of the specification, we took
the approach of using JAVA CARD DL directly as a specification language.

JAVACARD Dynamic Logic with Strong Invariants. We give a very brief introduc-
tion to JAVA CARD DL. We are not going to present or explain any of its sequent
calculus rules. Dynamic Logic [13] can be seen as an extension of Hoare logic.
It is a first-order modal logic with parametric modalities [p] and 〈p〉 for every
program p (we allow p to be any sequence of legal JAVA CARD statements). In
the Kripke semantics of Dynamic Logic the worlds are identified with execution
states of programs. A state s′ is accessible from state s via p, if p terminates
with final state s′ when started in state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ ex-
presses that φ holds in some final state of p. Since JAVACARD programs are deter-
ministic, there is exactly one final state (p terminates) or no final state (p does not
terminate). In JAVA CARD DL termination forbids exceptions to be thrown, i.e., a
program that throws an uncaught exception is considered to be non terminating
(or, terminating abruptly) [5]. The formula φ→ 〈p〉ψ is valid if, for every state s
satisfying precondition φ, a run of the program p starting in s terminates, and in
the terminating state the postcondition ψ holds. The formula φ→ [p]ψ expresses
the same, except that termination of p is not required, i.e., ψ needs only to hold if
p terminates. On top of that, a “throughout” modality ([[·]]) has been introduced
to JAVA CARD DL. As opposed to the box and diamond modalities, the through-
out modality requires that a certain property is maintained at all intermediate
program states, so for the throughout modality the semantics of a program is a
sequence of all states the execution passes through when started in the current
state (its trace). This allows us to ensure that a certain property should hold
even in case of an unexpected/abrupt termination (e.g., when the smart card is
ripped out from the terminal). We call such properties strong invariants. Strong
invariants are the central part of one of the discussed security properties.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive
verification of JAVA CARD programs. The detailed description of the calculus can
be found in [2]. The calculus covers all features of JAVA CARD, such as exceptions,
complex method calls, or JAVA arithmetic. The full JAVA CARD DL sequent calcu-
lus is implemented in the KeY Prover. The prover itself is implemented in JAVA.
The calculus is implemented by means of so-called taclets [3], that avoid rules
being hard coded into the prover. Instead, rules can be dynamically added to the
prover. As a consequence, one can, for example, use different versions of arith-
metic during a proof: idealised arithmetic, where all integer types are infinite
and do not overflow, or JAVA arithmetic, where integer types are bounded and
exhibit overflow behaviour [6]. Full treatment of strong invariants also required
formalisation of JAVA CARD transactions in the logic. The transaction mecha-
nism [8] ensures that a piece of JAVA CARD program is executed to completion
or not at all. The theoretical aspects of integration of the throughout modality
and transactions into JAVA CARD DL are discussed in [4].
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Related Work. For us, the most interesting formal approaches to JAVA CARD

application development are those considered with source code level verifica-
tion, based on static checking and various program calculi. The work of Jacobs
et al. [14] is most closely related to our work and can partly serve as a brief
overview of verification techniques targeted at source code. It reports on suc-
cessful verification attempts of a commercial JAVA CARD applet with different
verification tools: ESC/JAVA2 [10], Krakatoa [16], Jive [19], and LOOP [15].
The security property under consideration, one of the properties we discuss in
this paper, is that only ISOExceptions are thrown at the top level of the ap-
plet. The analysed applet is a commercial one, sold to customers. There are
no technical details revealed about the applet, so it is difficult to compare its
complexity to our case studies. Jacobs et al. detected subtle bugs in the applet
with respect to a possible uncaught ArrayIndexOutOfBoundsException (with
LOOP and Jive tools), as well as full verification (no exceptions other than
ISOException, satisfied postcondition, and preserved class invariant) of single
methods with the Krakatoa tool. The paper admits that expertise and consid-
erable user interaction with the back-end theorem provers (PVS and Coq) were
required. It is also noted that the provers are the performance and scalability
bottlenecks in the verification process. We will relate to those issues while we
present our results.

3 Case Studies

In the remainder of this paper we will use two JAVA CARD case studies. The first
one is a JAVA CARD electronic purse application Demoney2 [17]. While Demoney
does not have all of the features of a purse application actually used in produc-
tion, it is provided by Trusted Logic S.A. as a realistic demonstration application
that includes all major complexities of a commercial program, in particular it is
optimised for memory consumption, which, as noted in [12], is one of the major
obstacles in verification. The Demoney source code is at present not publicly
available, so we are not able to disclose some of the technical details necessary
to fully discuss the verification problems associated with Demoney, but we hope
that what we present is convincing enough.

The second case study is an RSA based authentication applet for logging
into a Linux system (SafeApplet). It was initially developed by Dierk Bolten for
JAVA Powered iButtons3 and was one of the motivating case studies to introduce
strong invariants into JAVA CARD DL. Here, we use a fully refactored version of
SafeApplet, which is described in [20].

4 Security Properties

The security properties that we discuss here are directly based on the ones
described in [18], which we will refer to as the SecSafe document in the rest
2 We thank Renaud Marlet of Trusted Logic S.A. for providing the Demoney code.
3 http://www.ibutton.com
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of the paper. We considered all of the properties listed there, but few of them
we did not yet analyse in full detail. However, we still discuss those remaining
properties and the possibilities of handling them in the KeY system at the end
of this section. Let us start with a brief overview of the five properties that we
do discuss in detail.

Only ISOExceptions at Top Level (Sect. 3.4 of the SecSafe document). The ex-
ceptions of type ISOException are used in JAVACARD to signal error conditions
to the outside environment (the smart card terminal). Such an exception results
with a specific APDU (Application Protocol Data Unit) carrying an error code
being sent back to the card terminal. To avoid leaking out the information about
error conditions inside the applet, a well written JAVACARD applet should only
throw exceptions of type ISOException at top level.

No X Exceptions at Top Level. Due to its complexity, the first property is pro-
posed to be decomposed into simpler subproperties. Such properties say that
certain exceptions are not thrown, including most common ones (e.g., Null-
PointerException). A special case of this property is the next one.

Well Formed Transactions. This property consists of three parts, which say, re-
spectively: do not start a transaction before committing or aborting the previous
one, do not commit or abort a transaction without having started any, and do
not let the JAVACARD Runtime Environment close an open transaction. The
JAVA CARD specification allows only one level of transactions, i.e., there is no
nesting of transactions in JAVA CARD. As we show later, this property can be
expressed in terms of disallowing JAVACARD’s TransactionException.

Atomic Updates (Sect. 3.5 of the SecSafe document). In general, this property
requires related persistent data in the applet to be updated atomically. In the
context of our work this property is directly connected to the “rip-out” properties
and strong invariants, which we will use to deal with this property.

No Unwanted Overflow (Sect. 3.6 of the SecSafe document). This property sim-
ply says that common integer operations should not overflow.

In the following we will go through these security properties one by one. For
each of the properties we will give a general guideline on how to formalise it in
JAVA CARD DL, give an example based on one or both of the case studies, give
comments about the verification of a given property and possibly discuss some
more issues related to the property. Due to space restrictions and the lengthy
code snippets in our examples, we are going to show abbreviated versions of
the examples. A technical report discussing all the examples in full detail is
available [21].

4.1 Only ISOExceptions at Top Level

The KeY system provides a uniform framework for allowing and disallowing
exceptions of any kind in JAVA CARD programs. We explain this with a general
example. Given some applet MyApplet one can forbid aMethod to throw any
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exception other than ISOException in the following way (this is the actual
syntax used by the KeY Prover, we will explain it shortly):

java {"source/"}

program variables { MyApplet self; }

problem {
preconditions ->
<{ method-frame(MyApplet()): {

try { self.aMethod(); } catch(ISOException ie) {}
} }> true }

This is a proof obligation that is an input to the KeY Prover. The first section in
the file tagged with java tells the prover where the source code of the program
to be verified is. The program variables section defines all the program/JAVA

variables that are going to be used in the proof obligation. The problem section
defines the actual proof obligation. The string preconditions is a place holder
for the preconditions necessary to establish the correct execution of aMethod.
One of the obvious conditions to put there, is that the self reference is not
null: !self = null. With this proof obligation we want to prove that a call to
aMethod either terminates normally or with an exception of type ISOException.
The actual call to the method, self.aMethod(), appears inside the diamond
modality (<{}>) and is wrapped with some additional statements. The diamond
requires the program to terminate normally – the trivial postcondition true is
only satisfied if no exceptions are thrown. So, to specify that a program throws a
certain kind of exception only, one wraps the actual program with a try-catch
statement catching the particular kind of exception. This way, if our method
terminates normally or throws an ISOException (only), the program inside the
diamond still terminates normally, making the proof obligation valid. In case
any other kind of exception is thrown the proof obligation becomes invalid. The
method-frame statement tells the prover that our program is executed in the
context of the MyApplet class (e.g., such information is necessary if aMethod is
private). The method-frame statements is one of the extensions to JAVA syntax
used in JAVA CARD DL to deal with scopes of methods, method return values,
etc. We want to stress here, that this extension is a superset of JAVA, not a subset
– any valid JAVA/JAVACARD program can be used inside the modality.

Let us now demonstrate this property with real examples. First we give a
specification of Demoney ’s method verifyPIN. This method is common to al-
most every JAVA CARD applet, it is responsible for verifying the correctness of
the PIN passed in the APDU. If the PIN is correct the method sets a global flag
indicating successful PIN verification and returns, otherwise an ISOException
with a proper status code (including the number of tries left to enter the cor-
rect PIN) is thrown. The proof obligation below specifies that verifyPIN is
only allowed to throw ISOException. The example is abbreviated; however, no
important issues are omitted:

program variables {
fr.trustedlogic.demo.demoney.Demoney self;
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javacard.framework.APDU apdu; ... }

problem {
// General preconditions for verifyPIN, e.g., !self = null & ...
// PIN well formed preconditions: !self.pin = null & ...
// ISOException well formed preconditions: ...

-> <{ method-frame(fr.trustedlogic.demo.demoney.Demoney()): {
try{ self.verifyPIN(apdu,offset,length); }catch(ISOException ie){}

} }> true }

There are numerous preconditions to guard the execution of verifyPIN. It took
some trial and error steps to get all the preconditions right (we discuss this issue
in detail in Sect. 5). Missing even the smallest one renders the program not
terminating normally. This proof obligation is proven automatically by the KeY
Prover in slightly more than 3 minutes4 with less that 10 000 proof steps.

The SecSafe document requires that exceptions other than ISOException
are not thrown as a result of invoking the entry point of the applet. For us, it
means that we would have to prove our property for the applet entry method
process. At the current stage of our experiments we found it technically difficult
to perform a proof of this kind for the applet of the size of Demoney. We know
however, that such a proof can be modularised (see next example).

The second example is based on SafeApplet. Among other things, SafeApp-
let keeps a table of registered users that can be authenticated with the applet.
For each user a unique user ID and a set of RSA encryption keys are stored.
Method dispatchDeleteKeyPair is responsible for unregistering a given user
ID, it takes an APDU, which stores the user ID to be unregistered. In case no user
with such an ID is registered an ISOException with a proper code (SW USER UN-
REGISTERED) is thrown, otherwise the proper entry in the user table is removed:

// APDUException, ISOException well formed, ...
& !self = null & !self.temp = null & ...
-> <{ method-frame(SafeApplet()):{

finishedWithISOEx = false; finishedOK=false;
try { self.dispatchDeleteKeyPair(apdu); finishedOK = true;
}catch(ISOException e1){ finishedWithISOEx = true; }

} }> (finishedOK = TRUE | (finishedWithISOEx = TRUE &
ISOException.instance.theSw[0] = SafeApplet.SW_USER_UNREGISTERED))

Among other things, the precondition says that the entries in the user table are
not null. In the postcondition we also want to specify that the ISOException
that might be thrown contains the right status code. Because of this, we need
to distinguish between two cases in the postcondition: either the method termi-
nates normally or an ISOException is thrown with a proper status code – two
boolean variables (finishedOK and finishedWithISOEx) keep track of this. The
way the program in the modality is constructed ensures that those two variables
cannot be true at the same time (this can also be verified).

4 All the benchmarks presented here were run on a Pentium IV 2.6GHz Linux system
with 1.5GB of memory. The version of the KeY system used is available on request.
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Proof Modularisation. This proof obligation is proved automatically with the
KeY Prover in about 15 minutes with less than 40 000 proof steps. This may seem
to be a lot. The reason for such performance is threefold. First of all, there is a
loop involved, which goes through the table of users. This loop is symbolically
unwound step by step and the proof size depends on the actual constant value of
MAX USERS (equal to 5). Secondly, the method performs a lot of preliminary work
before the users table is modified. Finally, for this particular benchmark result,
there was no proof modularisation used whatsoever – when a method call is made
in a program the prover replaces the call with the actual method body and exe-
cutes it symbolically. Instead, one can use the specification of the called method
– it is enough to establish that the precondition of the called method is satisfied,
and then the call can be replaced with the postcondition of the called method.
Obviously, one also has to prove that the called method satisfies its specification.
One limitation of this technique is that the method specification have to include
so called modification conditions [22, 7] – a complete set of attributes that the
method possibly modifies. Factoring out method calls this way shortens the total
proof effort even in the simplest cases – although a method might be called only
once in a program, due to proof branching, it may need to be analysed in the
proof multiple times. For comparison, we applied such modularisation to our
last example – we used specification for just one method that contains a loop.
The resulting proof took less that one minute (5 000 proof steps), the side proof
establishing that the factored out method satisfies its specification took less than
2 minutes (12 000 proof steps) – the time performance increased 5 times.

4.2 No X Exceptions at Top Level

As already mentioned, the KeY system provides a uniform framework for dealing
with exceptions. The JAVA CARD DL calculus rules and the semantics of the dia-
mond modality require that no exceptions are thrown whatsoever. In particular,
the calculus is carefully designed to establish that each object that is derefer-
enced is not null, that the indices used to access array elements are within
array bounds, etc. So, as long as the total correctness semantics is used, the
KeY Prover establishes absence of all possible exceptions. Still, for the sake of
consistency, one can disallow only one kind of exception this way:
preconditions & unwantedException = FALSE ->

<{ method-frame(MyApplet()): {
try { self.aMethod(); } catch(Exception e) {

unwantedException = (e instanceof UnwantedException); } }
}> (unwantedException = FALSE)

Here, the boolean variable unwantedException will become true only when the
undesired exception is thrown in aMethod, thus the above proof obligation states
that no UnwantedException is thrown by aMethod.

4.3 Well Formed Transactions

The first two parts of this property say that a transaction should not be started
before committing or aborting the previous one, and that no transaction should
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be committed or aborted if none was started. This boils down to saying that no
TransactionException related to well-formedness is thrown in the program.
Since in our model of JAVACARD environment we do not consider transaction
capacity, we can simplify this part of the property to “No TransactionExcep-
tion is thrown in the program.” – a special case of the previous property.

The last part of the property says that no transactions should be left open
to be closed by JCRE. The information about open transactions is kept track
of by JCRE and can be accessed through the JAVA CARD API (static attribute
JCSystem.transactionDepth). It is quite straightforward to specify that a given
method does not leave an open transaction:

preconditions & JCSystem.transactionDepth = 0
-> <{ method-frame(MyApplet()): { self.aMethod(); }

}> (JCSystem.transactionDepth = 0) }

The precondition states that there is no open transaction before aMethod is
called. This is necessary in case aMethod is top-level and does not check for an
open transaction before it starts its own. After aMethod is finished we require
the transactionDepth to be equal to 0 again, this ensures that there is no open
transaction. Also, what is implicit, is that no TransactionException is thrown.
We will briefly illustrate this property with a real example in the next section.

4.4 Atomic Updates

This property requires related persistent data in the applet to be updated atomi-
cally. Strong invariants seem to be the right technique to deal with this property
– as we stated already, they are used to specify consistency of data at all times,
so that in case an abrupt termination occurs, the data (in particular, related
data) stay consistent. We will illustrate this property briefly with the same ex-
ample that is discussed in full in [12], for this work however we were able to use
the real Demoney applet instead of the simplified one used in [12]. One of the
routines of the electronic purse is responsible for recording information about
the purchase in the log file. Among other things, the current balance after the
purchase is recorded in a new log entry. As the SecSafe document points out ac-
curately, when atomic consistency properties are considered, one has to be able
to say what it means for the data to be related. In our example we want to state
that the current balance of the purse is always the same as the one recorded in
the most recent log entry. By using JAVACARD transaction mechanism, method
performTransaction is responsible for debiting the purse balance and updat-
ing the log file in one atomic step. In JAVACARD DL, to express that a strong
invariant is preserved, the throughout modality is used:

JCSystem.transactionDepth = 0 & !self = null & ...
// Strong Invariant: The current balance of the purse is equal to the
// balance recorded in the most recent log entry: self.balance = ...

-> [[{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {
self.performTransaction(amount, apduBuffer, offsetTransCtx); }

}]] // Strong Invariant: same as above



10 W. Mostowski

An important part of the precondition is the one saying that the strong invariant
holds before the method is executed. This proof obligation is proved automati-
cally in 12 minutes with less than 12 000 proof steps. This particular method uses
two loops to copy array data, which were not factored out with modularisation,
so we consider this a relatively good result. Modularisation has been used for
some other, simple methods, however, we have to point out here, that in case
of proof obligations involving the throughout modality and transactions using
method specifications is not possible in general, and in cases where it is possible
it has to be used with caution.

This proves that the related data stays consistent throughout the execution of
performTransaction. Since a JAVA CARD transaction is involved in this method
it is also desirable to prove well-formedness of transactions for performTrans-
action, as stipulated in the previous section:

// Mostly the same preconditions as for the previous proof obligation
-> <{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {

self.performTransaction(amount, apduBuffer, offsetTransCtx); }
}> (JCSystem.transactionDepth = 0)

This is proved automatically in 11 minutes with less than 12 000 proof steps.
We proved a similar property for SafeApplet, saying that all the registered

users have a properly defined set of private and public encryption keys at all
times. Here we only make two comments about the proof. First, there are no
transactions used in SafeApplet to ensure data consistency, instead additional
fields in objects associated with consistency property are used and accessing of
those objects is carefully coded. This results in a more complex proof. Second,
during the proof, some small amount of manual interaction with the prover was
necessary, namely 8 manual quantifier instantiations were required, otherwise
the proof proceeded automatically and took 3 minutes to finish.

4.5 No Unwanted Overflow

Finally, we deal with a property related to integer arithmetic: additions, subtrac-
tions, multiplications and negations must not overflow. To deal with all possible
issues related to integer arithmetic, in particular overflow, the KeY Prover uses
three different semantics of arithmetic operations [6]. The first semantics treats
the integer numbers in the idealised way, i.e., the integer types are assumed to be
infinite and, thus, not overflowing. The second semantics bounds all the integer
types and prohibits any kind of overflow. The third semantics is that of JAVA,
i.e., all the arithmetic operations are performed as in the JVM, in particular they
are allowed to overflow and the effects of overflow are accurately modelled. Thus,
to deal with overflow properties, it is enough for the user to choose appropriate
integer semantics in the KeY Prover. Based on the SecSafe document, below is
an example of a badly formed program with respect to overflow:

inShort(balance) & inShort(maxBalance) & inShort(credit) &
balance > 0 & maxBalance > 0 & credit > 0 ->

<{ try { if (balance + credit > maxBalance) throw ie;
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else balance += credit;
}catch(ISOException e){} }> balance > 0

The problem is that the balance + credit operation can overflow making the
condition inside the if statement false resulting in a balance being less than
0 after this program is executed. When processed by the KeY Prover with the
idealised integer semantics switched on, this proof obligation gets proved quickly.
When the arithmetic semantics with overflow control is used, this proof obliga-
tion is not provable. The fix to the program to avoid overflow is to change the if
condition to balance > maxBalance - credit. The modified proof obligation
is provable with both kinds of integer semantics.

4.6 Other Properties

We have just shown how to formalise and prove five kinds of security properties
from the SecSafe document. Here we briefly discuss the remaining ones.

Memory Allocation. Due to restricted resources of a smart card, one of the re-
quirements on a properly designed JAVA CARD applet is the constrained memory
usage: bounded dynamic memory allocation and no memory allocation in certain
life stages of the applet. This seems like a problem suitable for static analysis –
in general there is no need for precise analysis of the control flow, although, for
example, if memory allocation is performed inside a loop, a precise analysis is
required to find out the loop bounds. Either way, we believe that this property in
general can be formalised and proved with the KeY system as well. The main idea
is the following. The KeY Prover maintains a set of implicit attributes for every
object to model certain aspects of the JAVA virtual machine, in particular object
creation. There is no obstacle to introduce a new static implicit attribute to our
JAVA model that would keep track of the amount of allocated memory or the
possibility to allocate memory. However, due to optimisation of inheritance and
interface representation in JVM, the actual memory consumption may differ for
each JVM implementation. Thus, keeping precise record of the allocated memory
is not so simple and thorough treatment of this problem requires further research.
At the moment, we could only give approximate figures for memory usage.

Conditional Execution Points. This property says that certain program points
must only be executed if a given condition holds. Again, this is a subject to
static analysis (e.g., ESC/JAVA2 provides means to annotate and check condi-
tions at any program point), but it can also be done with theorem proving by
introducing a generalised version of the throughout modality. The throughout
modality requires that a property holds after every program statement. For the
generalised case, such a property would have to hold only in certain parts of the
program. So there are no theoretical obstacles here, but due to less priority this
has not yet been implemented in KeY.

Information Privacy and Manipulation of Plain Text Secret. Those two prop-
erties fall into the category of data security properties. As it has been shown
in [9], formalising and proving data security properties can in general be inte-
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grated into interactive theorem proving, however no experiments on real JAVA

CARD examples were performed so far.

5 Discussion

Lessons Learned. Here we sum up the practical experience we gained during
the course of this work. The main lesson is that the current state of software
verification technology that at least the KeY system offers makes the verification
tasks feasible. Schematic formalisation of the security properties from the SecSafe
document was easy, however, applying it to concrete examples was much more
tricky. We found getting right all the preconditions to guard the execution of
a given method very difficult. This particularly holds when normal termination
is required. Constructing the preconditions requires deep understanding of the
program in question and the workings of the JCRE. However, calculation of the
preconditions can be tool supported as well:

In [14] ESC/JAVA2 is used to construct preconditions. In short, the tool is
run interactively on an unspecified applet, which results in warnings about pos-
sible exceptions. Such warnings are removed step by step by adding appropri-
ate expressions to the precondition. Alternatively, as [14] suggests, the weakest
precondition calculus of the Jive system could be used by running the proof
“backwards”, i.e., by starting with a postcondition and calculating the neces-
sary preconditions. This however, has not been presented in the paper and to
our understanding the approach has certain limitations.

The KeY system itself provides a functionality to compute specifications for
methods to ensure normal termination [23]. The basic idea behind computing
the specification is to try to prove a total correctness proof obligation. In case it
fails, all the open proof goals are collected and the necessary preconditions that
would be needed to close those goals are calculated. There are two disadvantages
to this technique: (1) for the proof to terminate the preconditions that guard
the loop bounds cannot be omitted, so there is no way to calculate preconditions
for loops, they have to be given beforehand, (2) proofs have to be performed the
same way for computing the specification as it is done when one simply tries
to prove the obligation, so computing the specification is in fact a front-end for
analysing failed proof attempts in an organised fashion. Moreover, the specifi-
cations produced can be equally hard to read as is analysing the failed proof
attempt manually. Despite all this, we still find the specification computation
facility of the KeY system quite helpful for proof obligations that produce small
failed proof attempts or at least ones containing only few open proof goals.

Proving partial correctness also requires caution. A wrong or unintended pre-
condition can render the program to be always terminating abruptly. This makes
any partial correctness proof obligation trivially true. Thus, in cases where a par-
tial correctness proof is necessary (e.g., strong invariants), one should accompany
such a proof with an additional termination property, as we did in Sect. 4.4.

To enable automation, the KeY Prover and the JAVACARD DL are designed
in a way not to bother the user with the workings of the calculus and the
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proof system. However, we have realised that proper formulation of the DL
expressions can further support automation. We have also introduced a small
number of additional simplification rules for arithmetic expressions. Such rules
considerably simplify the proof, but introducing them, although being relatively
easy, requires a little bit more than the basic understanding of JAVA CARD DL.
Moreover, each introduced rule has to be proven sound. The rules are very simple
and we have means to do it automatically with the KeY system [3], but due to
constantly changing set of those rules, we decided to leave the correctness proofs
out for the time being.

Our experimental results show that proof modularisation greatly reduces the
verification effort. The problem of modularising proofs using method specifica-
tions has been well researched [22, 7], but has been implemented in the KeY
system only recently, thus, we gained relatively little experience here. So far we
have learnt that using method specification in the context of the throughout
modality is not always possible and has to be done with care.

Finally, one of the goals of formal verification is to find and eliminate bugs.
So far, we have not found any in our case studies. We believe the reason for
this is twofold. First, the properties we considered so far were relatively simple
and the methods were expected not to contain bugs related to those properties.
Second, neither of the applications we analysed as a whole, only parts of them.
In particular, the bugs often occur at the points where the methods are invoked,
due to an unsatisfied method precondition.

Static Analysis vs. Interactive Theorem Proving. The results of this paper show
that we are able to formalise and prove all of the security properties defined in the
SecSafe document. Many of the properties would require quite advanced static
analysis and, as far as we know, no such static analysis technique has been devel-
oped so far. Moreover, we believe that some properties go beyond static analysis,
e.g., certain aspects of memory allocation (Sect. 4.6) require accurate analysis
of the control flow. Furthermore, each single property would probably require a
different approach in static analysis, while the KeY Prover provides a uniform
framework. For example, all properties related to exceptions are formalised in
the same, general way, and in fact can be treated as one property. Also, dealing
with integer overflow is done within the uniform framework of different integer
semantics, that cover all possible overflow scenarios.

Therefore, we consider interactive theorem proving as a feasible alternative
to static analysis. More generally, deep integration of static analysis with our
prover is a subject of an ongoing research [11]. One argument that speaks for
static analysis is full automation. However, our experiments show that the KeY
system requires almost no manual interaction to prove the properties we dis-
cussed. Also, the time performance of the KeY prover seems to be reasonable,
although the work on improving it continues. On the other hand, as we noticed
earlier, constructing proof obligations require some user expertise. In our opinion
however, this is something that is difficult to factor out when serious formal ver-
ification attempts are considered, no matter if theorem proving or static analysis
is used as the basis.
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6 Summary and Future Work

We have shown how most of the security properties of the industrial origin for
JAVA CARD applications can be formalised in JAVACARD DL and proved, for the
most part automatically, with the KeY Prover. Most of the properties were illus-
trated by real-life JAVA CARD applets. Considerable experience related to formal
verification has been gained during the course of this work. This experience indi-
cates that JAVA CARD source code verification, at least using the KeY system, has
recently become a manageable and relatively easy task, however, for scenarios
like the one presented in this work, user expertise is required. Two main areas for
improvement are clearly the modularisation of the proofs and tool support for
calculating specifications (more precisely, preconditions). Our future work will
concentrate on those two aspects, to reach full, truly meaningful verification of
JAVA CARD applications with as much automation as possible. We feel that the
performance results should already be acceptable by software engineers, how-
ever, the work on improving the speed of the prover will continue. Finally, our
experience clearly shows that interactive theorem proving is a reasonable alter-
native to static analysis – we plan to further explore this area by concentrating
on the few properties we only discussed briefly here.
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