Real Bugs

Real Proje ts

\/*\' el
Andrzej quoWskl é& 4 Mo

joint work with (Iexwographldaﬂql) {5!
lago Abal, Claus Brabrand , - \
Jonathan Hechtbauer S ONIENG,
Gijs van der Hoorn
Alexandru F. losif Lazar 1
Jean Melo, Marcio Ribeiro <
Stefan Stanciulescu (N el
Andre Santos, Chris",]'im}:erley ’jJ mg ’3‘
f.

IT UNIVERSITY OF COPENHAGEN

" -
; y . i
i LI SR | 4
f e : it { /asowski,IT Uriversity of Cop
L. B "

Keynote) MODELS 20]8
' CAPENHAGEN
Keynote 0(10ber]4“‘ ']9“]

www.modelsconference.org

Keynote

Silvija Seres - Y 4
Independent - ,
Adpvisor & Investor 4 B2 sl
Martijn Wisse
The Prof. of Biorobotics {b -
Premier Delft University of Technology

James R. Cordy
Confe rence on Prof. of Computer Science

- - - Queen’s University at Kingston
Model-Driven Engineering

Ariane V (2013)

N TN [.27 tataiity-per 100 million miles
If we are

Doing so well,
| Why are we still
SO OBSESSED

B with correctness ?

Lesson 1

Don’t drive your research
by problems that are
abstract (remote) for you

m (variability) Bugs in the Linux kernel
m Bugs in the Robot Operating System (ROS)

B AGENDA

© Andrzej Wasowski, IT University of Copenhagen 9

Bugs are beautiful and fascinating

= You are not a V&V researcher if you don’t touch realfbugs and
systems in your work.

m Real data gives a rich research context, enables a lot of
fascinating work.

m Real data does not exclude work in clean "lab conditions"
when appropriate. It supports it.

© Andrzej Wasowski, IT University of Copenhagen 10

What iS LinUX Kernel ? Device Shipments, 2015

ncredibl | | oo 5. 5%

ncredibly versatile operating system 10S/0S X 12.37%

H Windows - 11.79%

GNU/Linux runs 68-98% webservers il over [21 66%

supercomputers and . n on Linux Android '

internet servers S phones s

B tablets dts oy Brgppeans $12

, smartTVs '-lLlNUX @ o=

Unix Linux etc. L. JFOUNDATION

NEC Quaconw (I

$0.5M/Y platinum membership fee

top 500 supercomputers

1995 OS marketshare 2016

Routers, storage servers,
entertainment systems,
robots, loT devices, ... , /

Cloud infrastructure

ml\icrosoft
HlAzure

o
it

The most popular OS kernel on the planet!

Sources: Gartner and https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://techcrunch.com/2016/11/16/microsoft-joins-the-1linux-foundation/

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://techcrunch.com/2016/11/16/microsoft-joins-the-linux-foundation/

Linux Kernel is very large

The source code has 700 million characters, 21 million lines of code
(quick measurements on the Raspberry Pi version of Linux)

Boeing 747 has 6 million mechanical parts, half of them simple fasteners
Are humans able to understand the entire kernel?

Y X
999 Prr il
,,lll

TR uuuull‘u ']}

4000 programmers from 440 companies contributed to the kernel
(approximate numbers from 2015 only)

10,800 lines of code added, 5,300 removed, 1,875 modified
Every. Single. Day. (on average)

Over 8 changes per second

Is any human able to comprehend this evolution speed?

Incidentally, this makes it impossible to verify with current state of the art
Nobody has access to all hardware on which others work
Each potentially breaks things for others

Let’s indulge! Look! A bug!
Dereferencing uninitialized pointer causes Kernel crash

void pts_sb_from_inode(struct inode * inode)

1 #ifdef CONFIG_DEVPTS_MULTIPLE_INSTANCES = Domain knowledge
2 if (inode->i_sb->s_magic == ...) ...

i m Data flow
3 #endif

m Inter-procedural data-flow
void pty_close(struct tty_struct * tty) m Pointers
4 #ifdef CONFIG_UNIX98_PTYS = Nested structs
5 pts_sb_from_inode (tty->driver_data);
s #endif m [real bug] cross
compilation unit and

- subsystem
7 tty = kzalloc(sizeof (#tty), GFP_KERNEL); m [real bug] function

s pty_close (tty) pointers (pty_close)

lago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand, Marcio Ribeiro, Andrzej Wasowski: Variability Bugs in Highly Configurable
Systems: A Qualitative Analysis. TOSEM 26(3): 10:1-10:34 (2018)
Bug 7acféed, see http://vbdb.itu.dk/#bug/linux/7acf6cd

© Andrzej Wasowski, IT University of Copenhagen 14

http://vbdb.itu.dk/#bug/linux/7acf6cd

Let’s look at another bug

Control-flow

1| extern int preempt_count;

2

3| void tcp_twsk_destructor() {

4 #ifdef CONFIG_TCP_MD5SIG // ENABLED

5 preempt_count—--;

6 #endif

7|}

8

9| void inet_twdr_hangman (long data) {

10 void (*fn) (); // function pointer
11 fn = (void (%) ()) data; // o funpt
12 fn(); / dynamic invocation
13| }

14
15| void __run_timers() {

16 long data = (long) &tcp_twsk_destructor;
17 int pc = preempt_count; // save
18 inet_twdr_hangman (data) ;
e19 if (pc != preempt_count) BUG(); ck
20| }

Bug 657e€964€74, http://vbdb.itu.dk/#bug/linux/7acf6cd

Unsafe casts help generic
programing of data
structures

Type casts, pointers to ints;
Do not loose shapes and
aliasing info

Function pointers used
heavily (OO)

Inter-procedural data-flow not
possible without control-flow
[elsewhere] conditional
struct components (with
incompatible casts)

© Andrzej Wasowski, IT University of Copenhagen 15

http://vbdb.itu.dk/#bug/linux/657e964
http://vbdb.itu.dk/#bug/linux/7acf6cd

Lesson 2: Hunting bugs in software
Is for tough warriors
Not for those of faint heart

=8

Warning!

You may get dirty

© Andrzej Wasowski, IT University of Copenhagen 17

A closer look at a bug

index : kernel/qgit/stable/linux-stable.git

g t Linux kernel stable tree

summary refs log tree | commit diff stats

author | Peter Hurley <peter@hurleysoftware.com> 2013-01-30 17:43:49 (GMT)
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> 2013-02-04 23:40:28 (GMT)
commit 7acf6cd80b201f77371a5374a786144153629be8 (patch)

tree 5222e9eca68f3b37ad62d1eb74966705712d1196

parent 16559ae48c76f1ceb970b9719dea62b77eb5d06b (diff)

pty: Fix BUG()s when ptmx_open() errors out

If pmtx_open() fails to get a slave inode or fails the pty open(),

the tty is released as part of the error cleanup. As evidenced by the
first BUG stacktrace below, pty close() assumes that the linked pty has
a valid, initialized inode* stored in driver data.

Also, as evidenced by the second BUG stacktrace below, pty unix98_ shutdown()
assumes that the master pty's driver_data has been initialized.

1) Fix the invalid assumption in pty close().
2) Initialize driver_data immediately so proper devpts fs cleanup occurs.

Fixes this BUG:

815.868844] BUG: unable to handle kernel NULL pointer dereference at ©096866660000028

815.869018] IP: [<ffffffff81207bcc>] devpts pty kill+Bx1lc/0xad

815.869190] PGD 7c775067 PUD 79deb67 PHD O

815.869315] Oops: 0000 [#1] PREEMPT SHP

815.869443] Modules linked in: kvm intel kvm snd_hda intel snd_hda codec snd_hwdep snd_pcm snd_seq midi

http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=7acf6cd80b201f77371a5374a786144153629be8

© Andrzej Wasowski, IT University of Copenhagen 18

http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=7acf6cd80b201f77371a5374a786144153629be8

The Variability Bugs Database Q search the database

4 unux Dereferencing uninitialized pointer causes Kernel crash viewrawfites -

During the initialization of a UNIX98 pseudo-terminal by ptmx_open, a tty_struct structure is allocated. But before its pointer field
link->driver_data is properly initialized, ptmx_open will try to allocate an inode structure for the PTY slave. If this allocation fails,
some cleanup code must be executed to free the already allocated resources. Namely, pty_close will be called to release the
previously opened tty, and this eventually dereferences tty->link->driver_data, which is assumed to have been already initialized.

But fixed by commit 7aci6cd80b2
Parent commit tree here

Related links ~

Type use of variable before initialization (CWE 457)
Config UNIX98_PTYS && DEVPTS_MULTIPLE_INSTANCES (2nd degree)
C-features FunctionPointers

See mﬁ':n//vbdb.itu.dk/, §R4%dd your own bugs

© Andrzej Wasowski, IT University of Copenhagen 19

http://vbdb.itu.dk/

Subject Systems

As of December 2015

System Domain LOC

Marlin 3D-printer firmware 0.04M
BusyBox UNIX utilities 0.20M
Apache Web Server 0.20M

Linux kernel Operating system 12.70M

Andrzej Wasowski. -
ux kernel: A qualitative analysis. A J——
&

What do we see? Diversity!

15 memory errors CWE ID
4 null pointer dereference 476
3 buffer overflow 120
3 read out of bounds 125
2 insufficient memory -
1 memory leak 401
1 use after free 416
1 write on read only -
8 compiler warnings CWE ID
5 uninitialized variable 457
1 unused function (dead code) 598
1 unused variable 563
1 void pointer dereference -
7 type errors CWE ID
5 undefined symbol -
1 undeclared identifier -
1 wrong number of args to function -
7 assertion violations CWE ID
5 fatal assertion violation 617
2 non-fatal assertion violation 617
2 APlviolations CWE ID
1 Linux API contract violation -
1 double lock 764
1 arithmetic errors CWE ID
1 numeric truncation 197

omp
Zninitiali e
type errors: :
undefined symbol
undeclared identifier

“logic errors:
behavior violation

PRwiMwoalaNnwo|— =N s

© Andrzej Wasowski, IT University of Copenhagen 21

Lesson 3

Other researchers will be glad
iIf you help them avoiding dirt.

You will help research quality
in your field.

m (variability) Bugs in the Linux kernel
m Bugs in the Robot Operating System (ROS)

B AGENDA

© Andrze] Wasowski, IT University of Copenhagen 24

Software engineering for robotics
Why is it so hard?

Programs for robots are not input — output mappings
Intelligence, planning, mapping, vision, proximity, kinematics
Operating under uncertainty and lack of predictability

Huge diversity: simple robots to very complex autonomous
robots, difficult to generalize (no one-size fits all)

HW abstractions easily fall short
Complex systems made of many components parallel, distributed
Reliability and safety requirements

Complex vendor market (OEMs, component providers,
integrators, end users)

© Andrze] Wasowski, IT University of Copenhagen 25

communication
middleware
with uniform
API

100s
integrated
HW drivers
& SW
components

separates

logics and

algos from
HW

infrastructure
for test,
simulation,
logging

more tutorials
than you can

. an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between pro-

cesses, and package management. It also provides tools and libraries for obtaining, build-
ing, writing, and running code across multiple computers.

© Andrzej Wasowski, IT University of Gopenhagen

26

Does ROS matter?
Is ROS the OSS platform for robotics?

m In 2016: 1M+ unique page views a month at wiki.ros.org
m Yearly interest growth 21%
m Biggest reception in USA and China (comparable share)

m In July 2016: 300K+ visits to answers.ros.org
(your support channel)

m 17 new questions a day, 21K+ questions answered

= More than 100K+ unique IP addresses downloading ROS
packages in July 2016

= 4400 papers citing the ROS report

source: Tully Foote. Community Metrics Report. 2016

© Andrze] Wasowski, IT University of Copenhagen 27

wiki.ros.org
answers.ros.org

YeS! Flna"y a pretty bug from ROS! m Access out of bounds!

Context: argument processing code in main = Wait! the element outside
is zero, so NULL

Fix indexing beyond end of array #1 [vewisse | ®m A printf-like fun gets
FRYBETEE tfoote merged 1 commitinto ros:indigo-devel froM eric-wieser:patch-1 On Apr 2, 2016
NULL, accesses to crash!
¢ Conversation 1 - Commits 1 B Checks 0 [Files changed 1 . .
’ o o e = Wait! ROS_FATAL is a
Changes from all commits v+ Jumpto...~ +1-1 mm Diff settings v macro (Ca”_by_name) —
Fix indexing beyond end of array mlght not access
¥ melodic-devel (#167) © 0.6.2 0514
o m Nested macros expand to
&3 eric-wieser committed on Apr 2,2016 commit 1957a441092d0bd90f115924f54831657ac6161f A
‘ ::ros::console::prlnn
2 mmssn t52_ros/sre/static_transforn_ broadcaster_progran.cop i G several calls reach
i e, 70,7 00 int main(int arge, char ** arev vsnprintf that accesses
{
S (stremplaray(7], aroviel) =) NULL and crashes
{ . . 3
ROS_FATAL("target_frame and source frame are the same (%s, %s) this cannot work", argv[8], argv[9]); [] Walt! In glIbC VSnprlntf
+ ROS_FATAL("target_frame and source frame are the same (%s, %s) this cannot work", argv[7], argv([8]);
typesets "(null)" for a
’ . NULL string, exits safely
’ ® So no major bug! Just a
This ought to crash the node immediately, shouldn’t it? misprinted error message.

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f

© Andrzej Wasowski, IT University of Copenhagen 29

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f

Above in the same file ...

int main(int argec, char ** argv)

{

//Initialize ROS
ros::init(argc, argv,"static_transform_publisher", ros::init_options: :AnonymousName);

tf2_ros::StaticTransformBroadcaster broadcaster;

m The first thing a ROS node main does is to initialize the framewg
m Includes processing of framework arguments (usually quite &
m Arguments argc and argv are passed by reference ’

m Processed arguments are removed

® argv is re-sorted so that only non-framework arguments are in
® argc is decreased accordingly

m What does it mean? There was never any access out of boun
(this is just a minor formatting error on a failing execution)

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f

© Andrzej Wasowski, IT University of Copenhagen 30

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f

Lesson 4: Reproduce!

Andrzej Wasowski @AndrzejWasowski - Mar 6 v
When you are a bug researcher, never claim that you understood
. what the bug really is, before you managed to actually reproduce the failure and

see it yourself. The bug *is* more nuanced than you think it is. [credits to
@zhoulaifu]

Pull requests Issues Marketplace Explore

L robust-rosin / robust @ Unwatchv | 5 K Unstar | 7 Fork 3
¢> Code Issues 16 Pull requests 1 Wiki Insights

A dataset of 200 bugs in the Robot Operating System for BugZoo

® 119 commits ¥ 4 branches © 0 releases 22 5 contributors
.| L

Branch: master v New pull request Create new file | Upload files = Find file Clone or download >

gavanderhoorn Docs should go in ‘doc’ dir. Latest commit febsb47 2 days ago
il care-o-bot Updated Dockerfile and BugZoo files to use one-fork-many-branch model (... 15 days ago
B confidential moved confidential bugs 2 months ago
i doc Docs should go in ‘doc’ dir. 2 days ago
B geometry?2 Updated Dockerfile and BugZoo files to use one-fork-many-branch model (... 15 days ago
B kobuki Added kobuki b166c93 (#49) 12 days ago

B8 mavros Removed L1 and L2, and made L3 the norm (fixes #17) a month ago

-
Lesson 2: Hunting bugs in software
Is for tough warriors
Lesson 1 Not for those of faint heart
Don’t drive your research
by problems that are
abstract (remote) for you A
| It's not (§
or the ti gramma'r'li; Fig. 2‘,-‘you;‘ paper ,
A
. L2 INS v o RN N »
"| Lesson 4: Reproduce!
S
Lesson 3
Other researchers will be glad
if you help them avoiding dirt. \
You will help research quality
Andrze] Wasowski @AndrzejWasowski - Mar 6 v

in your field.

When you are a bug researcher, never claim that you understood
what the bug really is, before you managed to actually reproduce the failure and
see it yourself. The bug *is* more nuanced than you think it is. [credits to
@zhoulaifu]

A

y
drze] Wasowski, IT University of Copenfiagen 35

gven warriors need t ght weaponj

Real Problems will take you
to interesting work

Sometimes not
where you planned to go

Problem — Solution
Problem < Understanding

m Problem — solution: EBA bug finder
m Problem « understanding: Why variability bugs appear?
m Problem «> research methods: How to collect bug data?

B AGENDA

© Andrze] Wasowski, IT University of Copenhagen 39

Another Bug: double lock

void inode_get_rsv_space(struct inode xinode)

1

2 if (%) return;

3 spin_lock(&inode->i_lock); // 2nd lock
4 spin_unlock(&inode->i_lock);

5}

6

7 void add_dquot_ref(struct inode *inode) {
8 spin_lock(&inode->i_lock); // 1st lock
9 if (%) {

10 spin_unlock(&inode->i_lock); 7 —
11 return;

12 }

13 inode_get_rsv_space(inode); // call

14 spin_unlock(&inode->i_lock);

15 }

1 @@

2 expression E;

3 @@

4 % spin_lock(E);

5 ... when != spin_unlock(E);

6 * spin_lock(E);

m Supports CPP, ef
m Integrated into the ker

m Intra procedural, unaware of aliasing

See http://coccinelle.lip6.fr/ by Julia Lawall, Rene Rydhof Hansen, and many others

© Andrzej Wasowski, IT University of Copenhagen 40

http://coccinelle.lip6.fr/

Welcome to EBA!

Effect-Based Analyzer

1 void inode_get_rsv_space(struct inode *inode) {
2 if (%) return;

3 spin_lock(&inode->i_lock); // 2nd lock
4 spin_unlock(&inode->i_lock);

5}

6

7 void add_dquot_ref(struct inode xinode) {
8 spin_lock(&inode->i_lock); // 1st lock
9 if (k) {

10 spin_unlock(&inode->i_lock); 7
11 return;

12 }

13 inode_get_rsv_space(inode); // call

14 spin_unlock(&inode->i_lock);

15 }

m For this to work we need to know about effects
m And about memory objects (to detect aliasing)

See http://iagoabal.eu/eba © Andrzej Wasowski, IT University of Copenhagen 41

http://iagoabal.eu/eba

!
mem. addr. shape

ref
| OXCAFE tr ,
X OxCODE - P 0

ref
S| 42 |00 o L

shape term: ety ptrref, L

Polymorphic in regions and shapes (abstraction)

lago Abal. Claus Brabrand. Andrzej Wasowski. Effective Bug Finding in C Programs with Shape ani

= —

Syntax . /

Used to show the type system

[-value expressions L x| f | «E
r-value expressions F o n | Ei+FEy | if (Ep) FrelseE2 | (IHE
| new xz : 1T = F1; E> | 'L | &L | Ly :=F5; F3
| fuan(T1 x1,~«~,Tn Tyn) = E1; Fo | LO(E17"’7En)
m
m We use a specialized language only for presentation
m The type system is formalized and implemented for CIL
m Entire C is translatable to CIL
"ﬁ

lago Abal. Claus Brabrand. Andrzej Wasowski. Effective Bug Finding in C Programs with Shape ani

= e

ff ct Abstractlons \MCM201 7 p
‘%mnqwas Sowski, 4 iy s jon

Inference of Shapes & Effects A

F: ENV X EXP X SHAPE X EFFECT

I'tp L:ref, Z&
I'tp'L:Z & pU{read,}

[FETCH]

IbpL:vet, Z&p1 TFpE1:Z&¢s I'hkpBEx:Z &3

[ASSIGN] 7 -
I'bp L:=FE1; Ex:Z" & o1 U pa U{write,} U @3
m Formalized and implemented for entire C e /
® Including spec. of selected kernel functions, e.g: ”/
Yoy
lockp.,
spin_lock : ref,, ptrref,, ¢ us
unlock .,
spin_unlock : ref,, ptrref,, ¢ L

Bug Pattern Definitions o b

m Formalize bug patterns in CTL with nominals over e’ffe_c;ts
= A simple reachability checker finds paths matching a formula * y
= E.g. double lock = lock, then take same lock again without unlocking 7. k2

«
x

T EU (lock, N EX (—unlock, EU lock,))

T —wunlock,

BT—
double free T EU (free, N EX (malloc, EU free,))
memory leak T EU (alloc, N EX EG —free,)

use before initialization —inif, EU use,

Does this work?

Precision (false positives), hew bugs

m Nine thousand files in drivers analyzed (you do get dirty!) w
m 9 reports for 9K lines is not a lot of noise

m Each reported bug classified as either a true or a false positive.
m Still a lot of work to filter out false positives (you get dirty!)

m You talk to devs: they want you to fix bugs! (you may get dirty!)

m We right now have 14 new bugs and >=5 fixed in the Linux kernel
project (some in the main tree already)

| | EBa | SmarcH [COCCINELLE

Bugs found 4 0 0
False positives 5 8 6
TIME (minutes) 23 16 2

© Andrzej Wasowski, IT University of Copenhagen 46

Does this work?

Experimental Evaluation, time in seconds, recall on historical bugs

hash ID | depth || E B C

1173ff0 0 0.6 1.3 0.1

1492051 0 87 o6 03

16dadb1 0 0.4 0.8 0.1

344e3c7 0 0.7 1.3 o6+

2904207 0 5.8 2.0 28

59a1264 0 0.2 0.6 0.1

Sadsb7d 0 0.6 34 0.1 Bug [depth || E S c
8860168 0 0.7 1.0 0.1 00dfff7 2 5.0 +5 o+
a7eef8s 0 0.6 1.2 0.2 5c51543 2 2.3 +5 —
b838396 0 3.3 2.8 1.1 b383141 2 6+ 29 03
ca9fels 0 0.4 07 1.8 1c81557 1 5.0 19 06
eldb4ce 0 0.4 1.1 0.2 328be39 1 8.9 +# 82
e50fb58 0 0.5 0.9 0.1 5a276fa 1 89 12 82
023160b 0 1.0 2.6 &8 80edb72 1 63 2+ o7
09dc3cf 0 1.2 +4 ot 872c782 1 1.7 28 +9
0adb237 0 1.1 1.5 0.2 d7e9711 1 21 +3 27
0e67989 0 0.4 1.0 03 (9 historical bugs, inter-proc, double-lock, in kernel, biased against

(17 historical bugs, intra-proc, double-lock, in Linux kernel, biased against EBA) EBA)

lago Abal. Claus Brabrand. Andrzej Wasowski. Effective Bug Finding in C Programs with Shape and Effect Abstractions. VMCAI 2017

© Andrzej Wasowski, IT University of Copenhagen 47

1173ff0
149a051
16da4b1
344e3c7
2904207
59a1264
5ad8b7d
8860168
a7eef88
b838396
ca9fe15
e1db4ce
e50fb58
023160b
09dc3cf
0adb237
0e6f989
00dfff7
5c51543
b383141
1c81557
328be39
5a276fa
80edb72
872c782
d7e9711

jagoabal.eu/e W CD0O ¥ IN &

EBA

-ﬂn Download .zip -m Download .tar.gz :’ View on GitHub

EBA i a prototype tool to find non-trivial resource manipulation bugs in C programs, at compile-time, and super-fast

In its few months of existence, EBA has found several double-lock bugs in Linux 4.7—4.10 releases (i.e. in code that has

passed code revi Al the following bugs are caught by EBA in a matter of seconds:

HSI: cmt_speech: Fix double spin_lock

usb: gadget: pch_udc: reorder spin_[un]lock to avoid deadlock

ath10k: fix deadlock while processing rx_in_ord_ind [1]

net: ethernet: ti: cpdma: fix lockup in cpdma_ctir_destroy() [2]

libceph: ceph_build_auth() doesn’t need ceph_auth_build_hello()

[PATCH] Fix: scsi: megaraid: reduce the scope of pending-list lock to avoid double lock
iommu/vt-d: Fix dead-locks in disable_dmar_iommu() path [3]

Re: Potential double-lock BUG in drivers/tty/serial/sh-sci.c (Linux 4.9)

Potential deadlock BUG in drivers/net/wireless/st/cw1200/sta.c (Linux 4.9) [4]
Potential deadlock BUG in Linux 4.9 drivers/dma/coh901318.c [4]

[PATCH] [media] pctv452e: fix double lock bug [4]

Potential double-lock BUG in drivers/infiniband/core/umem_odp.c (Linux 4.9-rc7) [4]
dmaengine: pI330: fix double lock

cros_ec: Fix deadlock when EC is not responsive at probe [3]

Advertisement

We are hiring!

After all, lambdas, types,
and model checking
are useful for
solving real problems.

(but we wouldn’t know without
trying on real problems)

m Problem — solution: EBA bug finder
m Problem « understanding: Why variability bugs appear?
m Problem « research methods: How to collect bug data?

B AGENDA

© Andrze] Wasowski, IT University of Copenhagen 51

What do we find in the variability bugs ?

A quick extract

m Bugs appear in unanticipated configurations ¥y IR
m The programmer did not think about other configurations w
m Essentially all 98 VBDB bugs appear to be such ... v

m 30 out of 43 Linux bugs in VBDB have this feature

m The interviewed developer: cross-cutting features are a frequent source of '
problems; Developers are often experts only in a particular subsystem. Y, TE"';';rE Ny
J

m Bugs may involve non-locally defined features (defined in other subsystems) ¥/ 7’5’5‘«?;\

“Code cluttered with ifdefs is difficult to read and maintain. Don’t do it.
Instead put your ifdefs in a header, and conditionally define ‘static inline’

functions or macros, which are used in the code.” [submitting patches]

f 7”5’&‘(\
lago Abal. Claus Brabrand. Andrzej Wasowski. g =

42 variability bugs in the Linux kernel: A qualitative analysis. ASE 2014 + TOSEM’18

@© Andrzej Wasowski, IT University of Copenhagen 52

An interesting pattern with negative conditions

(a presence conditions for a bug to trigger)

49 some-enabled ¢ :
21 a
21 aAb
6 aANbAc
1 aANbAcANdANe
45 some-enabled-one-disabled
20 —a
20 aA-b incl.: (a Vv a') A —b
4 aANbA—c
1 aANbAcANdN—e
4 other configurations
1 —a A —b
1 a A -bA—c
2 aA-bA-cA-dA e

lago Abal. Claus Brabrand. Andrzej Wasowski.
42 variability bugs in the Linux kernel: A qualitative analysis. ASE 2014 + TOSEM'18 © sl v " 53

structure of the sufficient presence condition for the bug

m In Linux commit 60e233a5660 function
add_uevent_var with HOTPLUG disabled overflows a
buffer

m Originally we spinned this for testing and sampling

m Second thought: isn’t this a symptom of forgetti
to “mentally” enable/disable a feature?

m The kernel developer: you hardly can think
than 5 involved configs (features) when co
debugging or profiling.

What are
the cognitive
challenges?

ThiS program contains a import java.util.Random;
Simple COding bug String subject = null;

int totalLength = 600;
final int HTTP_UNAUTHORIZED = 401;

H final int HTTP_NOT_IMPLEMENTED = 501;
How would you debug it? String REQUEST GET = "GET";
(public void sendHeaders(int responseNum) {

Where is the bug? 2 ;:; gu:o;?.l;_ength - responseNum;

subject = "response header";

What configurations con- G semn0)

subject = "Void response";

tain the bug? 3 System.out.println("Done");

private void handleIncoming(String requestType) {
boolean http_unauthorized = new Random().nextBoolean();
if (http_unauthorized)
sendHeaders (HTTP_UNAUTHORIZED);

if (!requestType.equals(REQUEST_GET))
sendHeaders (HTTP_NOT_IMPLEMENTED) ;
}

public static void main(String[] args) {
Http http = new Http();
http.handleIncoming("POST");

}

Controlled Experiment |
/ ’
How does the degree of variability affect ...
. the time of bug finding? ~
. the accuracy of bug finding?

= Programs: 3program*s from Ssys,te{ns
m Linux, opeh source, 12MLOC/13K features |
m Busy Box, open source, - 204KLOC/600 features
= Best Lap,, C.e;mmercnal game, 15 KLOC -

Subjects: N= 69{31><Msc+3 Phd /F6><post doc] /

S

|
= Task: find the bug Q, 4

~m Metrics: time and accurapy . ~
m Small, fit on screen—no scrollmg (25-35/LOC)
||
] Deactlvate features |n NO/LO ver3|on keep the bug

Bugs unlnltlahzedvar null ptr deref, 7§ert violation .

Jean Melo, Claus Brabrand. Andrzej Wasowskl
How does! the degree of variability affect bug fmdmg’? ICSE 2016

),

0 (F|=0) L0

(IF|=1) @@ HI (| F| = 3)

© Andrzej Wasowski, IT University of Copenhagen 56

Your guess?

How does the time change
from P-NO via LO to HI?

Bug Finding Time Increases Linearly with |F|

Variance of the time is amplified by variability

Mean debugging time [minutes]

Program
o pi
m P2
m P3

o I tried to keep all dif-
ferent paths in mind,

but it was especially
difficult with multiple
colors [HI]

T T T
NO (|F|=0) LO ([F|=1) HI (|F|=3)

m Obvious consequence of the former, but meaningful
= Variability amplifies differences in bug finding competences

Jean Melo. Claus Brabrand. Andrzej Wasowski.
How does the degree of variability affect bug finding? ICSE 2016

Program
o p1
= P2
. P3

EE-

°

= Variability makes debugging harder but not terribly so
= Might explain why FOSD/SPLE works !!!
® Humans “reason family-based” (at least until |F|=3)

m We've got some innate ability for meta-programming !

Time distributions [min]

©

NO LO HI NO
(F=0) (F=1) (F=3) (F=0)

© Andrzej

j Wasowski, IT Universi

LO H NO LO H
(F=11 (F=3) (F=0) (F=1) (F=3)

ity of Copenhagen 58

Finding Variability Bugs is Easy

Linking them to configurations is harder

i]

10— | incorrect

No [| Ocorret
0% 20% 40% 60% 80% 100%

Most developers correctly identify bugs regardless of the variability degree

Many fail to identify the of erronous configurations; give too few or too many (!)

Precision decreases with increasing variability degree

We can expect this to be harder in presence of constraints (feature models)

Speculation: devs don’t think about configurability all the time; Afterthought, reversed staging
We likely make the same mistakes when coding (vbdb!) as when debugging;

HI 2222222222222]

| BPartially correct
DOFully correct

L0 iz

NO |]

0% 20% 40% 60% 80% 100%

© Andrzej Wasowski, IT University of Copenhagen 59

What'’s

in your head
when you
work with
variability?

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wasowski.
Variability through the eyes of the programmer. |ICPC 2017

© Andrze] Wasowski, IT University of Copenhagen 61

Controlled Experiment II - !

= 2 buggy programs e

m 1 derived from Busy Box, 1 derived from Best Lap
m Same programs as before, but using #ifdefs not colors
m We wanted to see whether people look at #ifdefs

m Same two bugs

= Null pointer dereference, assertion violation
m Both bugs in HI (3 features) and NO (0 features) versions

m N=20 subjects, 7BSc, 1 MSc, 7 PhD, 5 post-doc

m Task: What is the bug? where is the bug? and in which
configurations it appears? while we track your gaze

m Latin square: subject solves two tasks order on different
programs (randomized order and assignments)

m No time limit (effectively 4—12 minutes per task)

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wasowski.
Variability through the eyes of the programmer. ICPC 2017 .

" { L
e e S
N

Analyzing the Eye Tracker Data

Eye tracker g'\/\es a fi%tion sequence: triples (z,y,t) of locations and tirPe stamps

import java.util.Random; Connect-the-dots dlagram

public classAttp (
sczingtﬁjecc = nul1;
AL ;

B (= 690,
sikdine ngHGoNE 1ZED = 401

time

-
{(wry)}

visialize

1\ abstraet
private void,
#1£dgf CONF:

i

UENTED) ;

public staticivoid main(String(] args) {

LT T

}

-
abstract Il

Jr-('\m:n‘!ii'luai’r\i

visualize

|<:

{®)}

1l
visualize

v

areas of interest

T
abstract

x-roordl'm:t\‘
fixation sequence

abstract
time

—

{[y,t}}
I

visualize
¥

gaze transitions

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wasowski.

Variability through the eyes of the programmer. |ICPC 2017

© Andrzej Wasowski, IT University of Gopenhagen

63

Variability Attracts Attention (or Confusion)

m Observation: Variability appears to increase debugging time
of the areas of the program that contain variability. /
= Time doubles from no to hi for both programs
m Consistent with the previous study,
but now for #ifdefs not colors

m Heatmaps similar (KL divergence),
but there is a small shift

area of interest variability increase
lines | area without | with factor
4-9 | fields 26s 58s 22x
12-21 | sendHeaders 63s 120's 1.9x
23-33 | handleIncoming | 56 98s 1.8x
35-38 | main 82s | 53s | 0.7x = o . : : . R
T alfouraress [o35 | ors [T Observation: Time increases for fragments without variability

in proximity of code fragments that do contain variability

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wasowski.
Variability through the eyes of the programmer. |ICPC 2017

© Andrzej Wasowski, IT University of Copenhagen 64

Variability Intensifies Eye Movements (or Confusion)

Variability appears to increase the nhumber of gaze transitions Could alterna-
between definitions-usages for fields and call-returns for methods. tive code organi-

/- zation help?

et | i]

M B

L
EMMI”“ roveresivg] [| ﬁ [Ferieienig]
| | j
’_ : 2.9 g

<

13 ey i s 1.0 : 3.1'
R AN . P K
i] [ocir
(a) Without variability. (b) With variability.

Fig. 10: Average number of gaze transitions (eye switches) between the differents elements of program P.

© Andrzej Wasowski, IT University of Copenhagen 65

m Problem — solution: EBA bug finder
m Problem « understanding: Why variability bugs appear?
m Problem « research methods: How to collect bug data?

B AGENDA

© Andrze] Wasowski, IT University of Copenhagen 66

We need realistic bug benchmarks
Rule 1 ii\k‘"—:;

= Most interesting questions about programs are undecidable.
m More theoretical misbehaviours than what occurrs in real systems

m Bugs not caused by meticulbusi'y contrived computations and
circumstances.

m But by simple misconceptions:' omissions, misspellings, confusion,
miscommunication, misunderstandings, misusage of a-library, or simply lack
of information about the intended behavior of the. system

® Human cognition functlons that determine the errors
m Historical bugs approximate problems mhﬁduced by human cogn|t|on
m Need benchmarks reflecting real probJems to guide research

/

© Andrze] Wasowski, IT University of Copenhagen 67

L

Selection of bugs should be. unblased
Rule 2

m Avoid sampling bias. - N\

m You can limit the bug category ;(ROS bugs, Lmux bugs variability bugs,
concurrency bugs, etc.)

m But do question correctness of sampling WIthln the category
m Do the bugs collected represent any.tﬁlng more than your collection
u Using a particular tool introduces’bias

© Andrze] Wasowski, IT University of Copenhagen 68

Reproducible bugs, reproduclble benchmarks'
Rule 3 .;\P:.

m It should be possible for another researcher to recreate a reasonably similar
benchmark by following your method

m Each bug should be reproducib_le
m Recall what are the risks of misunderstanding the bug

m Hard to achieve for flaky non-testable bugs (concurrency!) bugs relying on hardware
that you don’t have etc. For instance:

m Robotics is, diverse: actuators, sensors, control, dlstrlbutlon communication, planning,
simulation and visualization, diagnostics, perception (incl. object and collision detection),
HRI (human-robot interac'tion),fSLaM (Simultaneous Localization and Mapping), artificial
intelligence h- g

m Specialist skills requrred' 4

m Robotics software depends on hardware and a physical environment.

= hardware might be unavailable, intermittent environmental conditions irreproducible

m Consequently, not all historical bugs will be reproducible

© Andrzej Wasowski, IT Universi

ity of Copenhagen 69

Restoration of buggy versmn of the system code
Rule 4 .._\\I::

m Get it from the code repository (git)
m Use the time of reporting or fixing the bug (travel in git history)
m The bug has likely been fixed since it was reported which means that it can
be only reproduced on an older snapshot
m ROS is a moving target with-ever changing properties which means that the
newest ROS version is likely to prevent reproduction in a repeatable manner.
m The problem is however not only getting the file with the bug at the right
time. You need the entire system source code. _
= in Robust, we obtain the entire Source distribution of ROS from a given
point in time for each bug (compute only dependencies of the buggy
package; credits: rosinstall generator)
m Really irritating to hit more than one’bug in this snapshot (for instance a
- build-problem prevents reproducin__g"a dynamic problem)

© Andrzej Wasowski, IT Universi

ity of Copenhagen 70

Restoration of historical development ecosystem
Rule 5)

m Compilers and interpreters (for all the languages), runtime library, build
system, operating system and all dependent distribution libraries.

m In ROBUST we use docker containers (one per bug) in which the
environment for a bug is re-established.

m We use bugzoo® to manage the containers uniformly.
m Code repositaries and branches disappear ;

m In ROBUST we fork aII mvolved, repOSItorles (for the source of buggy
packages).
We store all dependencnes ina dockevcontalner and store the container
on dockerhub.

m We keep a redundant copy at thefu’niversity.

h.ttp's ://github. com/squareslab/BugZoo .

© Andrze] Wasowski, IT University of Copenhagen 71

https://github.com/squaresLab/BugZoo

Facilitate automatic test reproduction
Rule 6 s

m In the fork we develop a test case (bug-__witness";:-"regression test)
m Make available both in the textbffixed and the broken branch

buggy code: test case, ¢:
Cc Ced

fixed code: .

c’ = fix(C’) test case, ¢:
Cred

= We provide scripts to manipulatgffhe container staté: build, test, fix/unfix
m The test case has to be non-intrusive '

© Andrze] Wasowski, IT U

iniversity of Copenhagen 72

Add the test-case non- mvaswely
Rule 7 i;_n_.

m The test case contaminates the original historic source
m Because we require realism; t‘he invasion shall be minimal
m Modifying existing’code should be avoided (but often impossible)
m The legacy code often exhibits'bugs outside the testable su_(_faces
m We use a number of patterns to minimize the invasion: -
m Inject short:assertions (if the property cannot be tested on an output of a
function),
m Determinize control- flow (|f the bug is not réprodumble with decent -

probability), /
= Mock hardware components with software, etc.

/

© Andrzej Wasowski, IT Universi

ity of Copenhagen 73

L

Document context meta- data for researchers
Rule 8 ,;_n__.

® Bugs are deeply embedded in intricate functionality, architecture, and other
idiosyncratic aspects of the sUbject system.

m This creates a very high entry barrier for researchers and inhibits
usefulness of a benchmark.
m Meta-data lets the users understand the problem fast =T

m ROBUST and VBDB record detailed meta-data as hu‘rnan readable
descriptions to facrlltate thrs usage P

e
r

© Andrze] Wasowski, IT University of Copenhagen 74

Benchmark design rules

)‘\‘;

ez

El We need realistic benchmarks _

] Selection of bugs for a benchmark should be unbiased

E] Make benchmarks reprodﬁcible, and reproduce bugs in them
I3 Restore historical system source code

E Restore historical developnient ecosystem

[Facilitate automatic test reproductlon .

Add the regression test pOSS|bly non- lnvaswely .

] Document context meta-data A

A

/

© Andrze] Wasowski, IT University of Copenhagen 75

),
A=

m Problem — solution: EBA bug finder .
m Problem «+ understanding: Why variability bugs appear"
m Problem < research methods: How to collect bug data?

B AGENDA

© Andrzej Wasowski, IT University of Copenhagen 76

Pasteur’s Quadrant

Post-Conclusion

AN
(@]
£
©
P 3 . .
2 Basic - Use-inspired
g Research . basicresearch
c : .
> Niels Bohr : Louis Pasteur
< z
€
()
o S
©
-o -
E Applied
- Research
Rl
@ Thomas
g .
s} Edison

~

Consideration of use

Donald E. Stokes. Pasteur’s Quadrant: Basic Science and Technological Innovation.

© Andrzej Wasowski, IT University of Copenhagen 77

