
Real Bugs
Real Projects
Real Impact
—

Andrzej Wąsowski
joint work with (lexicographically)
Iago Abal, Claus Brabrand
Jonathan Hechtbauer
Gijs van der Hoorn
Alexandru F. Iosif Lazar
Jean Melo, Marcio Ribeiro
Stefan Stanciulescu
Andre Santos, Chris Timperley

pyrrhocoris apterus (firebug)

c© Andrzej Wąsowski, IT University of Copenhagen 1

Im
ag

es
 u

se
d

w
ith

 p
er

m
iss

io
n.

 C
op

yr
ig

ht
s a

re
 a

s f
ol

lo
w

s:
IT

 U
ni

ve
rs

ity
 B

ui
ld

in
g

(©
 IT

 U
ni

ve
rs

ity
) ,

 N
yh

av
n

 (©
 Ja

co
b

 S
ch

jø
rr

in
g,

 S
im

on
 L

au
 a

nd
 C

op
en

ha
ge

n
M

ed
ia

 C
en

te
r)

,
Ro

se
nb

or
g

(©
 Th

om
-

as
 H

øy
ru

p
C

hr
ist

en
se

n
an

d
C

op
en

ha
ge

n
M

ed
ia

 C
en

te
r)

, O
pe

n
Fa

ce
 S

an
dw

itc
h

(©
 C

op
en

ha
ge

n
M

ed
ia

 C
en

te
r)

, O
pe

ra
 B

ui
ld

in
g

(W
on

de
rf

ul
 C

op
en

ha
ge

n)
, I

T
U

ni
ve

rs
ity

 (©
 IT

 U
ni

ve
rs

ity
).

Silvija Seres

Martijn Wisse

James R. Cordy

Independent
Advisor & Investor

Prof. of Biorobotics
Delft University of Technology

Prof. of Computer Science
Queen’s University at Kingston

Keynote

 Keynote

 Keynote

October 14th -19th

The ACM/IEEE 21th International Conference on Model Driven Engineering Languages
and Systems (MODELS) has since 1998 covered all aspects of modeling, from languages
and methods, to tools and applications. Attendees of MODELS come from diverse back-
grounds, including researchers, academics, engineers and industrial professionals.

MODELS 2018 is a forum for participants to exchange cutting-edge research results and
innovative practical experiences around modeling and model-driven software and sys-
tems. This year’s edition will provide an opportunity for the modeling community to fur-
ther advance the foundations of modeling, and come up with innovative applications of
modeling in emerging areas of cyber-physical systems, embedded systems, socio-technical
systems, cloud computing, big data, security, open source, and sustainability.

The
Premier
Conference on
Model-Driven Engineering

Industry Day (17th) · SysML Workshop (16th) · Practice and Innovation
Track (18th) · Foundations Track (17th-19th) · SAM Conference (15th-16th)
· Tutorials & Workshops (14th-16th) · Much more at www.modelsconference.org

www.modelsconference.org

c© Andrzej Wąsowski, IT University of Copenhagen 2

Ariane V (1996)
A floating point cast bug,
Throws overflow exception
A decade of development,
$7B development budget,
$0.5B lost rocket & cargo,
but ...

c© Andrzej Wąsowski, IT University of Copenhagen 3

Ariane V (2013)

� 98 launches since 1996
� 3 crashes since 1996
� Only the first linked to a software bug

(Is HW really more reliable?)
� Most recent launch: Apr 5th, 2018

Have you heard about it?
� They never show you this slide ...

c© Andrzej Wąsowski, IT University of Copenhagen 4

1.27 fatality per 100 million miles

including human failures

0.76 fatality per 100 million miles

0.03 fatalities per 100 million miles
including human errors

If we are
Doing so well,

Why are we still
SO OBSESSED

with correctness ?
c© Andrzej Wąsowski, IT University of Copenhagen 5

c© Andrzej Wąsowski, IT University of Copenhagen 6

Lesson 1

Don’t drive your research
by problems that are

abstract (remote) for you

c© Andrzej Wąsowski, IT University of Copenhagen 7

c© Andrzej Wąsowski, IT University of Copenhagen 8

AGENDA

(variability) Bugs in the Linux kernel
Bugs in the Robot Operating System (ROS)

c© Andrzej Wąsowski, IT University of Copenhagen 9

Bugs are beautiful and fascinating

You are not a V&V researcher if you don’t touch real bugs and
systems in your work.
Real data gives a rich research context, enables a lot of
fascinating work.
Real data does not exclude work in clean "lab conditions"
when appropriate. It supports it.

c© Andrzej Wąsowski, IT University of Copenhagen 10

What is Linux Kernel ?
Incredibly versatile operating system

GNU/Linux runs
supercomputers and
internet servers

Android
phones
tablets
smartTVs
etc.

Routers, storage servers,
entertainment systems,
robots, IoT devices, ...Cloud infrastructure

68-98% webservers
run on Linux

$0.5M/Y platinum membership fee

The most popular OS kernel on the planet!

Sources: Gartner and https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://techcrunch.com/2016/11/16/microsoft-joins-the-linux-foundation/ c© Andrzej Wąsowski, IT University of Copenhagen 11

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://techcrunch.com/2016/11/16/microsoft-joins-the-linux-foundation/

Linux Kernel is very large

The source code has 700 million characters, 21 million lines of code
(quick measurements on the Raspberry Pi version of Linux)

Boeing 747 has 6 million mechanical parts, half of them simple fasteners
Are humans able to understand the entire kernel?

c© Andrzej Wąsowski, IT University of Copenhagen 12

Linux Kernel Moves Fast

� 4000 programmers from 440 companies contributed to the kernel
(approximate numbers from 2015 only)

� 10,800 lines of code added, 5,300 removed, 1,875 modified
Every. Single. Day. (on average)

� Over 8 changes per second

� Is any human able to comprehend this evolution speed?

� Incidentally, this makes it impossible to verify with current state of the art
� Nobody has access to all hardware on which others work
� Each potentially breaks things for others

c© Andrzej Wąsowski, IT University of Copenhagen 13

Let’s indulge! Look! A bug!
Dereferencing uninitialized pointer causes Kernel crash

1 #ifdef CONFIG_DEVPTS_MULTIPLE_INSTANCES
2 if (inode->i_sb->s_magic == ...) . . .
3 #endif

void pts_sb_from_inode(struct inode * inode)

4 #ifdef CONFIG_UNIX98_PTYS
5 pts_sb_from_inode (tty->driver_data);
6 #endif

void pty_close(struct tty_struct * tty)

7 tty = kzalloc(sizeof (*tty), GFP_KERNEL);
8 pty_close (tty)

· · ·

Domain knowledge
Data flow
Inter-procedural data-flow
Pointers
Nested structs
[real bug] cross
compilation unit and
subsystem
[real bug] function
pointers (pty_close)

Bug 7acf6cd, see http://vbdb.itu.dk/#bug/linux/7acf6cd

Iago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand, Márcio Ribeiro, Andrzej Wasowski: Variability Bugs in Highly Configurable
Systems: A Qualitative Analysis. TOSEM 26(3): 10:1-10:34 (2018)

c© Andrzej Wąsowski, IT University of Copenhagen 14

http://vbdb.itu.dk/#bug/linux/7acf6cd

Let’s look at another bug
Control-flow

Unsafe casts help generic
programing of data
structures
Type casts, pointers to ints;
Do not loose shapes and
aliasing info
Function pointers used
heavily (OO)
Inter-procedural data-flow not
possible without control-flow
[elsewhere] conditional
struct components (with
incompatible casts)

Bug 657e964e74, http://vbdb.itu.dk/#bug/linux/7acf6cd c© Andrzej Wąsowski, IT University of Copenhagen 15

http://vbdb.itu.dk/#bug/linux/657e964
http://vbdb.itu.dk/#bug/linux/7acf6cd

Lesson 2: Hunting bugs in software
Is for tough warriors

Not for those of faint heart

It’s not (only) about λ-calculus
or the tiny term grammar in Fig. 2, your paper

c© Andrzej Wąsowski, IT University of Copenhagen 16

Warning!
You may get dirty

c© Andrzej Wąsowski, IT University of Copenhagen 17

A closer look at a bug

http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=7acf6cd80b201f77371a5374a786144153629be8
c© Andrzej Wąsowski, IT University of Copenhagen 18

http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=7acf6cd80b201f77371a5374a786144153629be8

See http://vbdb.itu.dk/, and add your own bugs
c© Andrzej Wąsowski, IT University of Copenhagen 19

http://vbdb.itu.dk/

Subject Systems
As of December 2015

System Domain LOC #Features #Commits

Marlin 3D-printer firmware 0.04M 821 2,783

BusyBox UNIX utilities 0.20M 551 13,878

Apache Web Server 0.20M 681 27,677

Linux kernel Operating system 12.70M 14,295 448,314

Iago Abal. Claus Brabrand. Andrzej Wąsowski.
42 variability bugs in the Linux kernel: A qualitative analysis. ASE 2014 + TOSEM’18 c© Andrzej Wąsowski, IT University of Copenhagen 20

What do we see? Diversity!

15 memory errors CWE ID
4 null pointer dereference 476
3 buffer overflow 120
3 read out of bounds 125
2 insufficient memory -
1 memory leak 401
1 use after free 416
1 write on read only -
8 compiler warnings CWE ID
5 uninitialized variable 457
1 unused function (dead code) 598
1 unused variable 563
1 void pointer dereference -
7 type errors CWE ID
5 undefined symbol -
1 undeclared identifier -
1 wrong number of args to function -
7 assertion violations CWE ID
5 fatal assertion violation 617
2 non-fatal assertion violation 617
2 API violations CWE ID
1 Linux API contract violation -
1 double lock 764
1 arithmetic errors CWE ID
1 numeric truncation 197

Linux

4 memory errors: CWE ID
2 null pointer dereference 476
1 memory leak 401
1 use after free 416
6 compiler warnings: CWE ID
3 unused variable 563
2 uninitialized variable 457
1 incompatible types 843
5 type errors: CWE ID
3 undefined symbol -
2 undeclared identifier -
3 logic errors: CWE ID
3 behavior violation 440

BusyBox

c© Andrzej Wąsowski, IT University of Copenhagen 21

Lesson 3

Other researchers will be glad
if you help them avoiding dirt.

You will help research quality
in your field.

c© Andrzej Wąsowski, IT University of Copenhagen 22

c© Andrzej Wąsowski, IT University of Copenhagen 23

AGENDA

(variability) Bugs in the Linux kernel
Bugs in the Robot Operating System (ROS)

c© Andrzej Wąsowski, IT University of Copenhagen 24

Software engineering for robotics
Why is it so hard?

Programs for robots are not input → output mappings
Intelligence, planning, mapping, vision, proximity, kinematics
Operating under uncertainty and lack of predictability
Huge diversity: simple robots to very complex autonomous
robots, difficult to generalize (no one-size fits all)
HW abstractions easily fall short
Complex systems made of many components parallel, distributed
Reliability and safety requirements
Complex vendor market (OEMs, component providers,
integrators, end users)

c© Andrzej Wąsowski, IT University of Copenhagen 25

. . . an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between pro-
cesses, and package management. It also provides tools and libraries for obtaining, build-
ing, writing, and running code across multiple computers.

communication
middleware

with uniform
API

100s
integrated

HW drivers
& SW

components

separates
logics and
algos from

HW

infrastructure
for test,

simulation,
logging

more tutorials
than you can
read; active

friendly
community

Linux, Python,
C++, C, Java

c© Andrzej Wąsowski, IT University of Copenhagen 26

Does ROS matter?
Is ROS the OSS platform for robotics?

In 2016: 1M+ unique page views a month at wiki.ros.org
Yearly interest growth 21%
Biggest reception in USA and China (comparable share)
In July 2016: 300K+ visits to answers.ros.org
(your support channel)
17 new questions a day, 21K+ questions answered
More than 100K+ unique IP addresses downloading ROS
packages in July 2016
4400 papers citing the ROS report

source: Tully Foote. Community Metrics Report. 2016
c© Andrzej Wąsowski, IT University of Copenhagen 27

wiki.ros.org
answers.ros.org

c© Andrzej Wąsowski, IT University of Copenhagen 28

Yes! Finally a pretty bug from ROS!
Context: argument processing code in main

This ought to crash the node immediately, shouldn’t it?

Access out of bounds!

Wait! the element outside
is zero, so NULL

A printf-like fun gets
NULL, accesses to crash!

Wait! ROS_FATAL is a
macro (call-by-name) →
might not access

Nested macros expand to
::ros::console::print,
several calls reach
vsnprintf that accesses
NULL and crashes

Wait! In glibc vsnprintf
typesets "(null)" for a
NULL string, exits safely

So no major bug! Just a
misprinted error message.

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f c© Andrzej Wąsowski, IT University of Copenhagen 29

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f

Above in the same file ...

The first thing a ROS node main does is to initialize the framework (line 37)
Includes processing of framework arguments (usually quite a few, never zero)
Arguments argc and argv are passed by reference
Processed arguments are removed

argv is re-sorted so that only non-framework arguments are in front
argc is decreased accordingly

What does it mean? There was never any access out of bounds!
(this is just a minor formatting error on a failing execution)

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f c© Andrzej Wąsowski, IT University of Copenhagen 30

https://github.com/ros/geometry2/pull/167/commits/1957a441092d0bd90f115924f54831657ac6161f

c© Andrzej Wąsowski, IT University of Copenhagen 31

Lesson 4: Reproduce!

c© Andrzej Wąsowski, IT University of Copenhagen 32

Lesson 1

Don’t drive your research
by problems that are

abstract (remote) for you

c© Andrzej Wąsowski, IT University of Copenhagen 6

Lesson 2: Hunting bugs in software
Is for tough warriors

Not for those of faint heart

It’s not (only) about λ-calculus
or the tiny term grammar in Fig. 2, your paper

c© Andrzej Wąsowski, IT University of Copenhagen 14

Lesson 3

Other researchers will be glad
if you help them avoiding dirt.

You will help research quality
in your field.

c© Andrzej Wąsowski, IT University of Copenhagen 20

Lesson 4: Reproduce!

c© Andrzej Wąsowski, IT University of Copenhagen 30

c© Andrzej Wąsowski, IT University of Copenhagen 34

c© Andrzej Wąsowski, IT University of Copenhagen 35

Part 2: Bug Hunting
Is for tough warriors,
But even warriors need the right weapons

c© Andrzej Wąsowski, IT University of Copenhagen 36

Real Problems will take you
to interesting work

Sometimes not
where you planned to go

c© Andrzej Wąsowski, IT University of Copenhagen 37

Problem→ Solution
Problem← Understanding

c© Andrzej Wąsowski, IT University of Copenhagen 38

AGENDA

Problem → solution: EBA bug finder
Problem ← understanding: Why variability bugs appear?
Problem ↔ research methods: How to collect bug data?

c© Andrzej Wąsowski, IT University of Copenhagen 39

Another Bug: double lock

1 @@
2 expression E;
3 @@
4 * spin_lock(E);
5 ... when != spin_unlock(E);
6 * spin_lock(E);

Coccinelle matches patterns over traces

Supports CPP, efficient,

Integrated into the kernel build system

Intra procedural, unaware of aliasing

See http://coccinelle.lip6.fr/ by Julia Lawall, Rene Rydhof Hansen, and many others c© Andrzej Wąsowski, IT University of Copenhagen 40

http://coccinelle.lip6.fr/

Welcome to EBA!
Effect-Based Analyzer

For this to work we need to know about effects
And about memory objects (to detect aliasing)

See http://iagoabal.eu/eba c© Andrzej Wąsowski, IT University of Copenhagen 41

http://iagoabal.eu/eba

0xCAFE

0xC0DE

mem. addr. shape

ρ
ref

42 ⊥

ref
ρ'0xCAFE ptr

Shape term: refρ′ ptr refρ⊥
Polymorphic in regions and shapes (abstraction)

Iago Abal. Claus Brabrand. Andrzej Wasowski. Effective Bug Finding in C Programs with Shape and Effect Abstractions. VMCAI 2017
c© Andrzej Wąsowski, IT University of Copenhagen 42

Syntax
Used to show the type system

We use a specialized language only for presentation
The type system is formalized and implemented for CIL
Entire C is translatable to CIL

Iago Abal. Claus Brabrand. Andrzej Wasowski. Effective Bug Finding in C Programs with Shape and Effect Abstractions. VMCAI 2017
c© Andrzej Wąsowski, IT University of Copenhagen 43

Inference of Shapes & Effects

` : Env × Exp× Shape× Effect

Formalized and implemented for entire C
Including spec. of selected kernel functions, e.g:

c© Andrzej Wąsowski, IT University of Copenhagen 44

Bug Pattern Definitions
Formalize bug patterns in CTL with nominals over effects
A simple reachability checker finds paths matching a formula
E.g. double lock = lock, then take same lock again without unlocking

c© Andrzej Wąsowski, IT University of Copenhagen 45

Does this work?
Precision (false positives), new bugs

Nine thousand files in drivers analyzed (you do get dirty!)
9 reports for 9K lines is not a lot of noise
Each reported bug classified as either a true or a false positive.
Still a lot of work to filter out false positives (you get dirty!)
You talk to devs: they want you to fix bugs! (you may get dirty!)
We right now have 14 new bugs and >=5 fixed in the Linux kernel
project (some in the main tree already)

c© Andrzej Wąsowski, IT University of Copenhagen 46

Does this work?
Experimental Evaluation, time in seconds, recall on historical bugs

hash ID depth E S C

1173ff0 0 0.6 1.3 0.1
149a051 0 0.7 0.6 0.3
16da4b1 0 0.4 0.8 0.1
344e3c7 0 0.7 1.3 0.1
2904207 0 5.8 2.0 2.8
59a1264 0 0.2 0.6 0.1
5ad8b7d 0 0.6 3.4 0.1
8860168 0 0.7 1.0 0.1
a7eef88 0 0.6 1.2 0.2
b838396 0 3.3 2.8 1.1
ca9fe15 0 0.4 0.7 1.8
e1db4ce 0 0.4 1.1 0.2
e50fb58 0 0.5 0.9 0.1
023160b 0 1.0 2.6 0.1
09dc3cf 0 1.2 1.4 0.1
0adb237 0 1.1 1.5 0.2
0e6f989 0 0.4 1.0 0.3

(17 historical bugs, intra-proc, double-lock, in Linux kernel, biased against EBA)

Bug depth E S C

00dfff7 2 5.0 1.5 0.1
5c51543 2 2.3 1.5 0.3
b383141 2 6.1 2.9 0.3
1c81557 1 5.0 1.9 0.6
328be39 1 8.9 1.7 0.2
5a276fa 1 0.9 1.2 0.2
80edb72 1 6.3 2.1 0.7
872c782 1 1.7 2.8 1.9
d7e9711 1 21 1.3 2.7

(9 historical bugs, inter-proc, double-lock, in kernel, biased against

EBA)

Iago Abal. Claus Brabrand. Andrzej Wasowski. Effective Bug Finding in C Programs with Shape and Effect Abstractions. VMCAI 2017
c© Andrzej Wąsowski, IT University of Copenhagen 47

1173ff0
149a051
16da4b1
344e3c7
2904207
59a1264
5ad8b7d
8860168
a7eef88
b838396
ca9fe15
e1db4ce
e50fb58
023160b
09dc3cf
0adb237
0e6f989
00dfff7
5c51543
b383141
1c81557
328be39
5a276fa
80edb72
872c782
d7e9711

Advertisement

We are hiring!

c© Andrzej Wąsowski, IT University of Copenhagen 49

After all, lambdas, types,
and model checking

are useful for
solving real problems.

(but we wouldn’t know without
trying on real problems)

c© Andrzej Wąsowski, IT University of Copenhagen 50

AGENDA

Problem → solution: EBA bug finder
Problem ← understanding: Why variability bugs appear?
Problem ↔ research methods: How to collect bug data?

c© Andrzej Wąsowski, IT University of Copenhagen 51

What do we find in the variability bugs ?
A quick extract

Bugs appear in unanticipated configurations
The programmer did not think about other configurations
Essentially all 98 VBDB bugs appear to be such ...

Bugs may involve non-locally defined features (defined in other subsystems)
30 out of 43 Linux bugs in VBDB have this feature

The interviewed developer: cross-cutting features are a frequent source of
problems; Developers are often experts only in a particular subsystem.

“Code cluttered with ifdefs is difficult to read and maintain. Don’t do it.
Instead put your ifdefs in a header, and conditionally define ‘static inline’
functions or macros, which are used in the code.” [submitting patches]

Iago Abal. Claus Brabrand. Andrzej Wąsowski.
42 variability bugs in the Linux kernel: A qualitative analysis. ASE 2014 + TOSEM’18 c© Andrzej Wąsowski, IT University of Copenhagen 52

An interesting pattern with negative conditions
(a presence conditions for a bug to trigger)

49 some-enabled
21 a
21 a ∧ b

6 a ∧ b ∧ c
1 a ∧ b ∧ c ∧ d ∧ e

45 some-enabled-one-disabled
20 ¬a
20 a ∧ ¬b incl.: (a ∨ a′) ∧ ¬b
4 a ∧ b ∧ ¬c
1 a ∧ b ∧ c ∧ d ∧ ¬e
4 other configurations
1 ¬a ∧ ¬b
1 a ∧ ¬b ∧ ¬c
2 a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e

structure of the sufficient presence condition for the bug
pattern frequency in our bug collection

In Linux commit 60e233a5660 function
add_uevent_var with HOTPLUG disabled overflows a
buffer
Originally we spinned this for testing and sampling
Second thought: isn’t this a symptom of forgetting
to “mentally” enable/disable a feature?
The kernel developer: you hardly can think of more
than 5 involved configs (features) when coding,
debugging or profiling.

Iago Abal. Claus Brabrand. Andrzej Wąsowski.
42 variability bugs in the Linux kernel: A qualitative analysis. ASE 2014 + TOSEM’18 c© Andrzej Wąsowski, IT University of Copenhagen 53

What are
the cognitive
challenges?

c© Andrzej Wąsowski, IT University of Copenhagen 54

This program contains a
simple coding bug

How would you debug it?

Where is the bug?

What configurations con-
tain the bug?

import java.util.Random;

public class Http {
 String subject = null;
 int totalLength = 600;
 final int HTTP_UNAUTHORIZED = 401;
 final int HTTP_NOT_IMPLEMENTED = 501;
 String REQUEST_GET = "GET";

 public void sendHeaders(int responseNum) {
 int buf = 0;
 buf = totalLength - responseNum;
 subject = "response header";

 if (subject.isEmpty())
 subject = "Void response";

 System.out.println("Done");
 }

 private void handleIncoming(String requestType) {
 boolean http_unauthorized = new Random().nextBoolean();
 if (http_unauthorized)
 sendHeaders(HTTP_UNAUTHORIZED);

 if (!requestType.equals(REQUEST_GET))
 sendHeaders(HTTP_NOT_IMPLEMENTED);
 }

 public static void main(String[] args) {
 Http http = new Http();
 http.handleIncoming("POST");
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

c© Andrzej Wąsowski, IT University of Copenhagen 55

Controlled Experiment I
How does the degree of variability affect ...

... the time of bug finding?

... the accuracy of bug finding?

RQs
public class Netpoll {
 boolean UNK_FALSE = true;
 boolean IPV4_SUPPORT = true;

 public String netpollSetup() {
 String errMessage;
 boolean type = true;

 if (UNK_FALSE)
 type = false;

 if (type){
 errMessage = "Destination address required";
 //...
 return errMessage;
 }

 if (IPV4_SUPPORT)
 return errMessage;

 return "done";
 }

 public static void main(String[] args) {
 Netpoll netpoll = new Netpoll();
 netpoll.netpollSetup();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

NO (|F | = 0)

P1

public class Netpoll {
 boolean UNK_FALSE = false;
 boolean IPV4_SUPPORT = true;

 public String netpollSetup() {
 String errMessage;
 boolean type = true;

 if(UNK_FALSE)
 type = false;

 if (type) {
 errMessage = "Destination address required";
 //...
 return errMessage;
 }

 if (IPV4_SUPPORT)
 return errMessage;

 return "done";
 }

 public static void main(String[] args) {
 Netpoll netpoll = new Netpoll();
 netpoll.netpollSetup();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

LO (|F | = 1)

public class Netpoll {
 boolean IPV4_SUPPORT = true;

 public String netpollSetup() {
 String errMessage;
 boolean type = true;

 type = false;

 if (type) {
 errMessage = "Destination address required";
 //...
 return errMessage;
 }

 if (IPV4_SUPPORT)
 return errMessage;

 return "done";
 }

 public static void main(String[] args) {
 Netpoll netpoll = new Netpoll();
 netpoll.netpollSetup();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

HI (|F | = 3)

public class Http {
 String subject = null;
 int totalLength = 600;
 boolean LARGE_FORMAT = false;
 final int HTTP_UNAUTHORIZED = 401;
 final int HTTP_NOT_IMPLEMENTED = 501;
 String REQUEST_GET = "GET";

 private void sendHeaders(int responseNum) {
 int buf = 0;
 if (LARGE_FORMAT) {
 buf = totalLength - responseNum;
 subject = "Response";
 }
 if (subject.isEmpty())
 subject = "Void response";

 System.out.println("Done");
 }

 private void handleIncoming(String requestType) {
 boolean http_unauthorized = false;
 if (http_unauthorized)
 sendHeaders(HTTP_UNAUTHORIZED);

 if (!requestType.equals(REQUEST_GET))
 sendHeaders(HTTP_NOT_IMPLEMENTED);
 }

 public static void main(String[] args) {
 Http http = new Http();
 http.handleIncoming("POST");
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

P2

import java.util.Random;

public class Http {
 String subject = null;
 int totalLength = 600;
 boolean LARGE_FORMAT = false;
 final int HTTP_UNAUTHORIZED = 401;
 final int HTTP_NOT_IMPLEMENTED = 501;
 String REQUEST_GET = "GET";

 private void sendHeaders(int responseNum) {
 int buf = 0;
 if (LARGE_FORMAT) {
 buf = totalLength - responseNum;
 subject = "Response";
 }
 if (subject.isEmpty())
 subject = "Void response";

 System.out.println("Done");
 }

 private void handleIncoming(String requestType) {
 boolean http_unauthorized = new
Random().nextBoolean();
 if (http_unauthorized)
 sendHeaders(HTTP_UNAUTHORIZED);

 if (!requestType.equals(REQUEST_GET))
 sendHeaders(HTTP_NOT_IMPLEMENTED);
 }

 public static void main(String[] args) {
 Http http = new Http();
 http.handleIncoming("POST");
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

import java.util.Random;

public class Http {
 String subject = null;
 int totalLength = 600;
 final int HTTP_UNAUTHORIZED = 401;
 final int HTTP_NOT_IMPLEMENTED = 501;
 String REQUEST_GET = "GET";

 public void sendHeaders(int responseNum) {
 int buf = 0;
 buf = totalLength - responseNum;
 subject = "response header";

 if (subject.isEmpty())
 subject = "Void response";

 System.out.println("Done");
 }

 private void handleIncoming(String requestType) {
 boolean http_unauthorized = new
Random().nextBoolean();
 if (http_unauthorized)
 sendHeaders(HTTP_UNAUTHORIZED);

 if (!requestType.equals(REQUEST_GET))
 sendHeaders(HTTP_NOT_IMPLEMENTED);
 }

 public static void main(String[] args) {
 Http http = new Http();
 http.handleIncoming("POST");
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

public class GameScreen {
 private int totalScore = 0;
 private int penalty;
 private final int TIME_BONUS = 2;
 private final int PERFECT_CURVE = 4;
 private final int PERFECT_STRAIGHT = 1;

 private void setScore(int score) {
 if(score >= 0) {
 totalScore = score;
 } else {
 totalScore = 0;
 }
 }
 private void setPenalty(int penalty) {
 this.penalty = penalty;
 }
 private void gc_computeLevelScore() {
 assert totalScore == 0;
 totalScore = PERFECT_CURVE + PERFECT_STRAIGHT;
 totalScore += TIME_BONUS;
 totalScore -= penalty;

 assert totalScore != 0;
 setScore(totalScore);
 assert totalScore < 0;
 }
 public static void main(String[] args) {
 GameScreen game = new GameScreen();
 game.setPenalty(10);
 game.gc_computeLevelScore();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

P3

public class GameScreen {
 private int totalScore = 0;
 private int penalty;
 private final int TIME_BONUS = 2;
 private final int PERFECT_CURVE = 4;
 private final int PERFECT_STRAIGHT = 1;

 private void setScore(int score) {
 if(score >= 0) {
 totalScore = score;
 } else {
 totalScore = 0;
 }
 }
 private void setPenalty(int penalty) {
 this.penalty = penalty;
 }
 private void gc_computeLevelScore() {
 assert totalScore == 0;
 totalScore = PERFECT_CURVE + PERFECT_STRAIGHT;
 totalScore += TIME_BONUS;
 totalScore -= penalty;

 assert totalScore < 0;
 setScore(totalScore);
 assert totalScore < 0;
 }
 public static void main(String[] args) {
 GameScreen game = new GameScreen();
 game.setPenalty(10);
 game.gc_computeLevelScore();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public class GameScreen {
 private int totalScore = 0;
 private int penalty;
 private final int TIME_BONUS = 2;
 private final int PERFECT_CURVE = 4;
 private final int PERFECT_STRAIGHT = 1;

 private void setScore(int score) {
 if(score >= 0) {
 totalScore = score;
 } else {
 totalScore = 0;
 }
 }
 private void setPenalty(int penalty) {
 this.penalty = penalty;
 }
 private void gc_computeLevelScore() {
 assert totalScore == 0;
 totalScore = PERFECT_CURVE + PERFECT_STRAIGHT;
 totalScore += TIME_BONUS;
 totalScore -= penalty;

 assert totalScore < 0;
 setScore(totalScore);
 assert totalScore < 0;
 }
 public static void main(String[] args) {
 GameScreen game = new GameScreen();
 game.setPenalty(10);
 game.gc_computeLevelScore();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Programs: 3 programs from 3 systems
Linux, open source, 12MLOC/13K features
Busy Box, open source, 204KLOC/600 features
Best Lap, Commercial game, 15 KLOC

Subjects: N=69 [31×Msc+32×Phd+6×post-doc]
Task: find the bug
Metrics: time and accuracy
Small, fit on screen—no scrolling (25-35 LOC)
Bugs: uninitialized var, null ptr deref, assert violation
Deactivate features in NO/LO version, keep the bug

Cross-over Design

Jean Melo. Claus Brabrand. Andrzej Wąsowski.
How does the degree of variability affect bug finding? ICSE 2016 c© Andrzej Wąsowski, IT University of Copenhagen 56

Your guess?

How does the time change
from P-NO via LO to HI?

c© Andrzej Wąsowski, IT University of Copenhagen 57

Bug Finding Time Increases Linearly with |F|
Variance of the time is amplified by variability

Mean debugging time [minutes]

Variability makes debugging harder but not terribly so
Might explain why FOSD/SPLE works !!!
Humans “reason family-based” (at least until |F|=3)
We’ve got some innate ability for meta-programming !

I tried to keep all dif-
ferent paths in mind,
but it was especially
difficult with multiple
colors [HI]

Time distributions [min]

Obvious consequence of the former, but meaningful

Variability amplifies differences in bug finding competences

Jean Melo. Claus Brabrand. Andrzej Wąsowski.
How does the degree of variability affect bug finding? ICSE 2016 c© Andrzej Wąsowski, IT University of Copenhagen 58

Finding Variability Bugs is Easy
Linking them to configurations is harder

Most developers correctly identify bugs regardless of the variability degree
Many fail to identify the of erronous configurations; give too few or too many (!)
Precision decreases with increasing variability degree
We can expect this to be harder in presence of constraints (feature models)
Speculation: devs don’t think about configurability all the time; Afterthought, reversed staging
We likely make the same mistakes when coding (vbdb!) as when debugging;

c© Andrzej Wąsowski, IT University of Copenhagen 59

What’s
in your head
when you
work with
variability?

c© Andrzej Wąsowski, IT University of Copenhagen 60

Tobii

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wąsowski.
Variability through the eyes of the programmer. ICPC 2017 c© Andrzej Wąsowski, IT University of Copenhagen 61

Controlled Experiment II

2 buggy programs
1 derived from Busy Box, 1 derived from Best Lap
Same programs as before, but using #ifdefs not colors
We wanted to see whether people look at #ifdefs

Same two bugs
Null pointer dereference, assertion violation
Both bugs in HI (3 features) and NO (0 features) versions

N=20 subjects, 7 BSc, 1 MSc, 7 PhD, 5 post-doc
Task: What is the bug? where is the bug? and in which
configurations it appears? while we track your gaze
Latin square: subject solves two tasks order on different
programs (randomized order and assignments)
No time limit (effectively 4–12 minutes per task)

import java.util.Random;

public class Http {
 String subject = null;
 int totalLength = 600;
 final int HTTP_UNAUTHORIZED = 401;
 final int HTTP_NOT_IMPLEMENTED = 501;
 boolean LARGE_FORMAT = false;
 String REQUEST_GET = "GET";

 public void sendHeaders(int responseNum) {
 if (LARGE_FORMAT) {
 int buf = 0;
 buf = totalLength - responseNum;
 subject = "response header";
 }
 if (subject.isEmpty())
 subject = "Void response";
 System.out.println("done");
 }

 private void handleIncoming(String requestType) {

 boolean http_unauthorized = new Random().nextBoolean();
 if (http_unauthorized)
 sendHeaders(HTTP_UNAUTHORIZED);

 if (!requestType.equals(REQUEST_GET))
 sendHeaders(HTTP_NOT_IMPLEMENTED);

 }

 public static void main(String[] args) {
 Http http = new Http();
 http.handleIncoming("POST");
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import java.util.Random;

public class Http {
 String subject = null;
 int totalLength = 600;
 final int HTTP_UNAUTHORIZED = 401;
 final int HTTP_NOT_IMPLEMENTED = 501;
 #ifdef CONFIG_FEATURE_HTTPD_CGI
 String REQUEST_GET = "GET";
 #endif

 public void sendHeaders(int responseNum) {
 #ifdef CONFIG_LFS
 int buf = 0;
 buf = totalLength - responseNum;
 subject = "response header";
 #endif
 if (subject.isEmpty())
 subject = "Void response";
 System.out.println("done");
 }

 private void handleIncoming(String requestType) {
 #ifdef CONFIG_FEATURE_HTTPD_BASIC_AUTH
 boolean http_unauthorized = new Random().nextBoolean();
 if (http_unauthorized)
 sendHeaders(HTTP_UNAUTHORIZED);
 #endif
 #ifdef CONFIG_FEATURE_HTTPD_CGI
 if (!requestType.equals(REQUEST_GET))
 sendHeaders(HTTP_NOT_IMPLEMENTED);
 #endif
 }

 public static void main(String[] args) {
 Http http = new Http();
 http.handleIncoming("POST");
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

public class GameScreen {
 private int totalScore = 0;

 private int penalty;

 private final int PERFECT_CURVE_AND_STRAIGHT = 7;

 private final int TIME_BONUS = 1;

 private void setScore(int score) {
 totalScore = (score >= 0) ? score : 0;
 }

 private void setPenalty(int penalty) {
 this.penalty = penalty;
 }
 private void gc_computeLevelScore() {
 assert totalScore == 0;
 totalScore = PERFECT_CURVE_AND_STRAIGHT;

 totalScore += TIME_BONUS;

 totalScore -= penalty;

 setScore(totalScore);

 assert totalScore < 0;

 }
 public static void main(String[] args) {
 GameScreen game = new GameScreen();

 game.setPenalty(10);

 game.gc_computeLevelScore();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

public class GameScreen {
 private int totalScore = 0;
 #ifdef CONFIG_NEGATIVE_SCORE
 private int penalty;
 #endif
 private final int PERFECT_CURVE_AND_STRAIGHT = 7;
 #ifdef CONFIG_BONUS
 private final int TIME_BONUS = 1;
 #endif
 #ifdef CONFIG_ARENA
 private void setScore(int score) {
 totalScore = (score >= 0) ? score : 0;
 }#endif
 #ifdef CONFIG_NEGATIVE_SCORE
 private void setPenalty(int penalty) {
 this.penalty = penalty;
 }#endif
 private void gc_computeLevelScore() {
 assert totalScore == 0;
 totalScore = PERFECT_CURVE_AND_STRAIGHT;
 #ifdef CONFIG_BONUS
 totalScore += TIME_BONUS;
 #endif
 #ifdef CONFIG_NEGATIVE_SCORE
 totalScore -= penalty;
 #endif
 #ifdef CONFIG_ARENA
 setScore(totalScore);
 #endif
 #ifdef CONFIG_NEGATIVE_SCORE
 assert totalScore < 0;
 #endif
 }
 public static void main(String[] args) {
 GameScreen game = new GameScreen();
 #ifdef CONFIG_NEGATIVE_SCORE
 game.setPenalty(10);
 #endif
 game.gc_computeLevelScore();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wąsowski.
Variability through the eyes of the programmer. ICPC 2017 c© Andrzej Wąsowski, IT University of Copenhagen 62

Analyzing the Eye Tracker Data
Eye tracker gives a fixation sequence: triples (x, y, t) of locations and time stamps

Connect-the-dots diagram

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wąsowski.
Variability through the eyes of the programmer. ICPC 2017 c© Andrzej Wąsowski, IT University of Copenhagen 63

Variability Attracts Attention (or Confusion)

Observation: Variability appears to increase debugging time
of the areas of the program that contain variability.

Time doubles from no to hi for both programs
Consistent with the previous study,
but now for #ifdefs not colors
Heatmaps similar (KL divergence),
but there is a small shift

Observation: Time increases for fragments without variability
in proximity of code fragments that do contain variability

area of interest variability increase
lines area without with factor
4-9 fields 26 s 58 s 2.2 x

12-21 sendHeaders 63 s 120 s 1.9 x
23-33 handleIncoming 56 s 98 s 1.8 x
35-38 main 8.2 s 5.3 s 0.7 x

Σ all four areas 153 s 281 s 1.8 x

Jean Melo. Fabricio Batista Narcizo. Dan Witzner Hansen. Claus Brabrand. Andrzej Wąsowski.
Variability through the eyes of the programmer. ICPC 2017 c© Andrzej Wąsowski, IT University of Copenhagen 64

Variability Intensifies Eye Movements (or Confusion)

Variability appears to increase the number of gaze transitions
between definitions-usages for fields and call-returns for methods.

Observation

Could alterna-
tive code organi-
zation help?

c© Andrzej Wąsowski, IT University of Copenhagen 65

AGENDA

Problem → solution: EBA bug finder
Problem ← understanding: Why variability bugs appear?
Problem ↔ research methods: How to collect bug data?

c© Andrzej Wąsowski, IT University of Copenhagen 66

We need realistic bug benchmarks
Rule 1

Most interesting questions about programs are undecidable.
More theoretical misbehaviours than what occurrs in real systems
Bugs not caused by meticulously contrived computations and
circumstances.
But by simple misconceptions: omissions, misspellings, confusion,
miscommunication, misunderstandings, misusage of a library, or simply lack
of information about the intended behavior of the system
Human cognition functions that determine the errors
Historical bugs approximate problems introduced by human cognition
Need benchmarks reflecting real problems to guide research

c© Andrzej Wąsowski, IT University of Copenhagen 67

Selection of bugs should be unbiased
Rule 2

Avoid sampling bias.
You can limit the bug category (ROS bugs, Linux bugs, variability bugs,
concurrency bugs, etc.)
But do question correctness of sampling within the category
Do the bugs collected represent anything more than your collection
Using a particular tool introduces bias

c© Andrzej Wąsowski, IT University of Copenhagen 68

Reproducible bugs, reproducible benchmarks!
Rule 3

It should be possible for another researcher to recreate a reasonably similar
benchmark by following your method
Each bug should be reproducible
Recall what are the risks of misunderstanding the bug
Hard to achieve for flaky non-testable bugs (concurrency!), bugs relying on hardware
that you don’t have etc. For instance:

Robotics is diverse: actuators, sensors, control, distribution, communication, planning,
simulation and visualization, diagnostics, perception (incl. object and collision detection),
HRI (human-robot interaction), SLaM (Simultaneous Localization and Mapping), artificial
intelligence
Specialist skills required!
Robotics software depends on hardware and a physical environment.
hardware might be unavailable, intermittent environmental conditions irreproducible

Consequently, not all historical bugs will be reproducible

c© Andrzej Wąsowski, IT University of Copenhagen 69

Restoration of buggy version of the system code
Rule 4

Get it from the code repository (git)
Use the time of reporting or fixing the bug (travel in git history)

The bug has likely been fixed since it was reported which means that it can
be only reproduced on an older snapshot
ROS is a moving target with ever changing properties which means that the
newest ROS version is likely to prevent reproduction in a repeatable manner.

The problem is however not only getting the file with the bug at the right
time. You need the entire system source code.
in Robust, we obtain the entire source distribution of ROS from a given
point in time for each bug (compute only dependencies of the buggy
package; credits: rosinstall generator)
Really irritating to hit more than one bug in this snapshot (for instance a
build problem prevents reproducing a dynamic problem)

c© Andrzej Wąsowski, IT University of Copenhagen 70

Restoration of historical development ecosystem
Rule 5

Compilers and interpreters (for all the languages), runtime library, build
system, operating system and all dependent distribution libraries.
In ROBUST we use docker containers (one per bug) in which the
environment for a bug is re-established.
We use bugzoo∗ to manage the containers uniformly.
Code repositories and branches disappear
In ROBUST we fork all involved repositories (for the source of buggy
packages).
We store all dependencies in a docker container and store the container
on dockerhub.
We keep a redundant copy at the university.

https://github.com/squaresLab/BugZoo
c© Andrzej Wąsowski, IT University of Copenhagen 71

https://github.com/squaresLab/BugZoo

Facilitate automatic test reproduction
Rule 6

In the fork we develop a test case (bug witness, regression test)
Make available both in the textbffixed and the broken branch

We provide scripts to manipulate the container state: build, test, fix/unfix
The test case has to be non-intrusive

c© Andrzej Wąsowski, IT University of Copenhagen 72

Add the test-case non-invasively
Rule 7

The test case contaminates the original historic source
Because we require realism, the invasion shall be minimal
Modifying existing code should be avoided (but often impossible)
The legacy code often exhibits bugs outside the testable surfaces
We use a number of patterns to minimize the invasion:

Inject short assertions (if the property cannot be tested on an output of a
function),
Determinize control-flow (if the bug is not reproducible with decent
probability),
Mock hardware components with software, etc.

c© Andrzej Wąsowski, IT University of Copenhagen 73

Document context meta-data for researchers
Rule 8

Bugs are deeply embedded in intricate functionality, architecture, and other
idiosyncratic aspects of the subject system.
This creates a very high entry barrier for researchers and inhibits
usefulness of a benchmark.
Meta-data lets the users understand the problem fast
ROBUST and VBDB record detailed meta-data as human-readable
descriptions to facilitate this usage

c© Andrzej Wąsowski, IT University of Copenhagen 74

Benchmark design rules

1 We need realistic benchmarks

2 Selection of bugs for a benchmark should be unbiased

3 Make benchmarks reproducible, and reproduce bugs in them

4 Restore historical system source code

5 Restore historical development ecosystem

6 Facilitate automatic test reproduction

7 Add the regression test possibly non-invasively

8 Document context meta-data

c© Andrzej Wąsowski, IT University of Copenhagen 75

AGENDA

Problem → solution: EBA bug finder
Problem ← understanding: Why variability bugs appear?
Problem ↔ research methods: How to collect bug data?

c© Andrzej Wąsowski, IT University of Copenhagen 76

Pasteur’s Quadrant
Post-Conclusion

Consideration of use

Q
ue

st
fo

rf
un

da
m

en
ta

lu
nd

er
st

an
di

ng

Basic
Research

Niels Bohr

Applied
Research

Thomas
Edison

Use-inspired
basic research

Louis Pasteur

Donald E. Stokes. Pasteur’s Quadrant: Basic Science and Technological Innovation. c© Andrzej Wąsowski, IT University of Copenhagen 77

