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The debugging problem

• Given:
– Source code of a program
– A test suite comprising at least one failing test 

case

• Wanted:
– Root cause for the detected misbehavior

(statement, expression,..)
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Debugging – A (very) short intro

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end; x = 1, y = 2, o1 = 8, o2 = 4

Debugger

Diagnoses?
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Debugging using constraints

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end;

Ab(2)	Ú i	=	2	*	x;
Ab(3)	Ú j	=	2	*	y;
Ab(4)	Ú o1	=	i	+	j;
Ab(5)	Ú o2	=	i	*	i;

x = 1, y = 2, o1 = 8, o2 = 4

x	=	1
y	=	2
o1	=	8
o2	=	4

Programm	execution
Constraint solving /	
equation solving14.06.17 HSST	2017	Halmstad,	Sweden 5



Finding bugs using constraints

Ab(2)	Ú i	=	2	*	x;
Ab(3)	Ú j	=	2	*	y;
Ab(4)	Ú o1	=	i	+	j;
Ab(5)	Ú o2	=	i	*	i;

x	=	1
y	=	2
o1	=	8
o2	=	4

¬Ab(2) Ù Ab(3) Ù ¬Ab(4) Ù ¬Ab(5)

i	=	2	*	1	=	2
o1	=	8	=	2	+	j	® j	=	6
o2	=	4	=	i	*	i	=	2	*	2	

Ab(2) Ù ¬Ab(3) Ù ¬Ab(4) Ù ¬Ab(5)

j =	2	*	2	=	4
o1	=	i	+	j	=	8	=	i	+	4	® i	=	4
o2	=	4	=	i	*	i	=	4	*	4	® FAIL!!!!

And	so	on	...	finally leading to	2	
possible diagnoses statement 3	and	
statement 4	
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Observations

• Reasoning in „all directions“ (from input to 
outputs and vice versa)

• Make assumptions about the correctness of 
„components“ 

• Use in-consistencies for accepting or refuting
assumptions
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Additional remarks
We might try to	find	root
causes by tracing back	
dependencies and	
eliminating candidates
that also	contribute to	
correct output values.

This	should NOT	be done because of failure masking:

0
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Basic definitions

¬AB(M1) ® x = a * c (or AB(M1) Ú x = a * c)
¬AB(M2) ® y = b * d
....
AB...Abnormal / Assumption
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Diagnosis
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What is needed?

• Mapping of programs to a model!

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end;

Ab(2)	Ú i	=	2	*	x;
Ab(3)	Ú j	=	2	*	y;
Ab(4)	Ú o1	=	i	+	j;
Ab(5)	Ú o2	=	i	*	i;
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CONVERTING PROGRAMS TO 
CONSTRAINTS

Debugging / Testing
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Assumptions

• Sequential programming language without
OO constructs

• The program terminates
• No exception handling
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Challenges

• Loops / recursive function calls
• Variables defined more than once in a 

program
int power(int a, int exp)
1. int e = exp;
2. int res = 1;
3. while (e > 0) {
4.    res = res * a;
5.    e = e - 1; }
6. return res;
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Handling loops

• Execution of 
while (e > 0) { ... }

leads to:
if (e > 0) { ...

if (e > 0) { ...
if (e > 0) { ... }}}
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Loop unrolling
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Summary loop unrolling

• No influence on semantics if nesting depth set
appropriately
– Nesting depth > maximum number of iterations

caused by a test case

• Increase in size of the pogram (accordingly to 
the complexity of the program)
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Example (cont.)

int power_loopfree(int a, int exp)
1. int e = exp;
2. int res = 1;
3. if (e > 0) {
4.    res = res * a;
5.    e = e - 1;
6.    if (e > 0) {
7.       res = res * a;
8.       e = e - 1; } }
9. return res; 
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Static single assignment form 
(SSA form)

• In order to convert programs to constraints
every variable is only allowed to be defined
once!

• Solution: convert the loop-free program
into its SSA form
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SSA form

• Property: No two left-side (=defined) 
variables have the same name

• Assign each defined variable an unique index.
• If a variable is used afterwards in the program, 

refer to the last given index.
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Conditional statements

• Statement of the form

if C then B1 else B2 end if;

• Convert B1 and B2 separately using a 
distinguished set of indices
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Conditional statements

• Introduce a new function Φ. 
• Add a new statement

x_C = C;

• For each defined variable x in either B1 or B2 add the
following assignment:

x_i = Φ(x_index(B1),x_index(B2),x_C);
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Semantics of F
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Example (cont.)
int power_SSA(int a, int exp) {
1. int e_0 = exp;
2. int res_0 = 1;
3. bool cond_0 = (e_0 > 0);
4. int res_1 = res_0 * a;
5. int e_1 = e_0 - 1;
6. bool cond_1 = cond_0 Ù (e_1 > 0);
7. int res_2 = res_1 * a;
8. int e_2 = e_1 - 1;
9. int res_3 = F (res_2, res_1, cond_1);
10. int e_3 = F (e_2, e_1, cond_1);
11. int res_4 = F (res_3, res_0, cond_0);
12. int e_4 = F (e_3, e_0, cond_0); }
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Summary SSA conversion

• Only assignment statements!
• Direct conversion to constraints possible
• The conditions used in theF function are

equivalent to the path conditions
• No substantial increase of size
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Conversion to CSPs

• Convertion only needed for assignments
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ComputeExpression

• Input: An expression Eexpr and an empty set M 
for storing the MINION constraints.

• Output: A set of minion constraints
representing the expression stored in M, and a 
variable or constant where the result of the
conversion is finally stored.
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ComputeExpression (cont.)

1. If Eexpr is a variable or constant, then
return Eexpr.

2. Otherwise, Eexpr is of the form E1
expr op E2

expr.
a) Let aux1 = ComputeExpression (E1

expr)
b) Let aux2 = ComputeExpression (E2

expr)
c) Generate a new MINON variable result and create

MINON constraints accordingly to the given operator
op, which defines the relationship between aux1, aux2, 
and result, and add them to M.

3. Return result.
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Example

• Example: Given expression

a_0 + b_0 – c_0
• Minion constraints:

sumleq([a_0,b_0],aux1)
sumgeq([a_0,b_0],aux1)
weightedsumleq([1,-1],[aux1,c_0], aux2)
weightedsumgeq([1,-1],[aux1,c_0], aux2)
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Summary conversion process

• Conversion in 3 steps:
1. Convert program to loop-free variant (loop

unrolling)
2. Convert loop-free variant to SSA form
3. Convert SSA form to constraint system (Minion)

14.06.17 HSST	2017	Halmstad,	Sweden 30



USING CONSTRAINTS FOR 
DEBUGGING

Debugging / Testing
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Input to the debugging problem

• A debugging problem comprises
– A program, and

– A failing test case

1. i = 2 * x;
2. j = 2 * y;
3. o1 = i + j;
4. o2 = i * i; 

x	=	1,	y	=	2,	o1	=	8,	o2	=	4;

14.06.17 HSST	2017	Halmstad,	Sweden 32



Introduce new variable Ab

• Use variable to state whether a statement is
assumed to work correctly or not!

1. Ab1 Ú i = 2 * x;
2. Ab2 Ú j = 2 * y;
3. Ab3 Ú o1 = i + j;
4. Ab4 Ú o2 = i * i; 
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Debugging = CSP solving

1. Ab1 Ú i_1 = 2 * x;
2. Ab2 Ú j_1 = 2 * y;
3. Ab3 Ú o1_1 = i_1 + j_1;
4. Ab4 Ú o2_1 = i_1 * i_1; 

x	=	1,	y	=	2,	o1_1	=	8,	o2_1	=	4;

Convert to	
constraints

A	solution to	
the resulting
CSP	is a	solution
to	the
debugging
problem!
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Tool 
demo
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Diagnosis algorithm

Nica, I., Wotawa, F.: Condiag - computing minimal diagnoses using a constraint solver. In: Proceedings of the
International Workshop on Principles of Diagnosis (DX). pp. 185-191 (2012)
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Some remarks

• Focus on small solutions (single faults)
– Use constraint solver that searches for solutions

where only on Ab variable is true!

• There must be a mapping back from the Ab 
variables to the statements of the original 
program
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Results obtained

• Java implementation of the conversion
process

• Use Minion V0.8 as constraint solver
• Intel Pentium Dual Core 2 GHz with 4 GB of 

RAM.
• AIM is a model-based debugging tool based

on abstract interpretation (from Wolfgang 
Mayer, Markus Stumptner)
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Remarks

• Debugging using constraints is feasible for
smaller programs (e.g., at the method level)

• Pre and post conditions can be easily
integrated as well as loop invariants

• The quality of the results (e.g., number of 
statements) depend on the underlying model
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Remarks (cont.)

• In order to distinguish diagnosis candidates
new knowledge is necessary:
– Knowledge about intermediate values
– Specification knowledge
– New test cases!
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DISTINGUISHING TEST CASES
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Motivation

• In Vidroha Debroy and W. Eric Wong. Using
mutation to automatically suggest fixes for
faulty programs, ICST 2010, the authors
introduce the notation of possible fixes.

• There might be many of them!
• How to minimize the number of possible

fixes?
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Motivation (cont.)
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Distinguishing test cases

• Use new (distinguishing) test cases for removing diagnosis
candidates!

• Note:
– A diagnosis candidate can be eliminated if the new test 

case is in contradiction with its behavior. 
– Hence, we compute distinguishing test cases for each pair 

of candidates and ask the user (or another oracle) for the
expected output values.

– The problem of distinguishing diagnosis candidates is
reduced to the problem of computing distinguishing test 
cases!
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Some definitions
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Def. distinguishing test case
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Example (cont.)
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Computing distinguishing test cases

• Given two programs.
1. Convert programs into their constraint

representation
2. Add constraints stating that the inputs have to be

equivalent
3. Add constraints stating that at least one output has 

to be different
4. Use the constraint solver to compute the

distinguishing test case
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Experimental results
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Experimental 
results
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Remarks

• Computing distinguishing test cases from
constraints is possible

• Impact for debugging
• Allows extending test suites

• But: Require mutants for each fault candidate
computed using model-based debugging
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SPECIFICATION KNOWLEDGE
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Specification knoweldge

• Pre and post conditions
• Invariants
– Loop invariants
– Class invariants

• Can be used for improving debugging of 
loops, recursive functions, and function calls
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Loop invariants & more

• Given the following program:

int power(int a, int exp)
PRE: { a ≥ 0, exp ≥ 0 }
1. int e = exp;
2. int res = 1;
3. while (e > 0) {

INV: { res = aexp-e }
4.    res = res * a;
5.    e = e - 1; }
6. return res;
POST: { res = aexp }
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Loop invariants & more (cont)

int power_SSA(int a, int exp) {
a >= 0 && exp >= 0;
1. int e_0 = exp;
2. int res_0 = 1;
3. bool cond_0 = (e_0 > 0);
4. int res_1 = res_0 * a;
5. int e_1 = e_0 - 1;
res_1 == a^(exp-e_1);
6. bool cond_1 = cond_0 Ù (e_1 > 0);
7. int res_2 = res_1 * a;
8. int e_2 = e_1 - 1;
res_2 == a^(exp-e_2);
...
11. int res_4 = F (res_3, res_0, cond_0);
...
res_4 == a^exp;
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Intermediate observation

• Pre and post conditions as well as invariants
can be easily integrated in the SSA 
representation (and therefore also the
constraint representation).
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Handling large programs

• But how to debug larger programs using
constraints?

– Summarizing all constraints -> large constraint
representation to be solved!

– Use pre and post conditions instead of the
constraints of methods -> modularization
possible!
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Modularized debugging

• Idee: replace every function call where the pre and 
post conditions are available with pre && post

foo ()	{
int a	=	2;
int exp =	4;
int result =	power(a,exp);

} foo ()	{
int a	=	2;
int exp =	4;
a	>=	0	&&	exp >=	0	&&	result =	a^exp;	

}
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Another observation

• When considering pre and post conditions the
problem of debugging even for larger 
programs is feasible!

14.06.17 HSST	2017	Halmstad,	Sweden 62



Summary specification knowledge

• Specification knowledge is important for
debugging
– Reduce the model size used for debugging
– Gain information that helps to remove fault 

candidates

• Integration of specification knowledge into
the constraint representation is straight
forward
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Summary

• Constraints for testing and debugging
• Able to remove up to 93 % of the source code

for imperative programs on average using
filtering and distinguishing test cases.

• Able to remove 99 % of statements for
combinatorial circuits/programs and 97 % for
sequential circuits/programs

• Better results than other approaches but
computationally more demanding!   
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Conclusions

• Model-based debugging ensures optimal 
results

• For small programs (methods,..)
• Allows combining testing and fault 

localization under one general framework
• There is no silver bullet!

14.06.17 HSST	2017	Halmstad,	Sweden 65



Open challenges

• Combining different debugging approaches
– Spectrum-based
– Mutation-based
– Dependency-based
– Model-based
– ...

• Improving performance
• Handling OO constructs still open research question
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END OF PART 2

QUESTIONS?
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