
Automated debugging – the past, the
now, and the future

Part 2: Debugging based on models

Franz Wotawa
TU Graz, Institute for Software Technology

wotawa@ist.tugraz.at

Content

• The debugging problem
• Conversion of programs into constraints
• Specification knowledge / handling functions
• Testing

• Joint work with: Bernhard Aichernig, R. Ceballos, Gerhard
Friedrich, Wolfgang Maier, Julia Nica, Mihai Nica, Simona Nica,
Ingo Pill, Markus Stumptner, Jörg Weber, Dominik Wieland.

14.06.17 HSST	2017	Halmstad,	Sweden 2

The debugging problem

• Given:
– Source code of a program
– A test suite comprising at least one failing test

case

• Wanted:
– Root cause for the detected misbehavior

(statement, expression,..)

14.06.17 HSST	2017	Halmstad,	Sweden 3

Debugging – A (very) short intro

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end; x = 1, y = 2, o1 = 8, o2 = 4

Debugger

Diagnoses?
14.06.17 HSST	2017	Halmstad,	Sweden 4

Debugging using constraints

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end;

Ab(2)	Ú i	=	2	*	x;
Ab(3)	Ú j	=	2	*	y;
Ab(4)	Ú o1	=	i	+	j;
Ab(5)	Ú o2	=	i	*	i;

x = 1, y = 2, o1 = 8, o2 = 4

x	=	1
y	=	2
o1	=	8
o2	=	4

Programm	execution
Constraint solving /	
equation solving14.06.17 HSST	2017	Halmstad,	Sweden 5

Finding bugs using constraints

Ab(2)	Ú i	=	2	*	x;
Ab(3)	Ú j	=	2	*	y;
Ab(4)	Ú o1	=	i	+	j;
Ab(5)	Ú o2	=	i	*	i;

x	=	1
y	=	2
o1	=	8
o2	=	4

¬Ab(2) Ù Ab(3) Ù ¬Ab(4) Ù ¬Ab(5)

i	=	2	*	1	=	2
o1	=	8	=	2	+	j	® j	=	6
o2	=	4	=	i	*	i	=	2	*	2	

Ab(2) Ù ¬Ab(3) Ù ¬Ab(4) Ù ¬Ab(5)

j =	2	*	2	=	4
o1	=	i	+	j	=	8	=	i	+	4	® i	=	4
o2	=	4	=	i	*	i	=	4	*	4	® FAIL!!!!

And	so	on	...	finally leading to	2	
possible diagnoses statement 3	and	
statement 4	

14.06.17 HSST	2017	Halmstad,	Sweden 6

Observations

• Reasoning in „all directions“ (from input to
outputs and vice versa)

• Make assumptions about the correctness of
„components“

• Use in-consistencies for accepting or refuting
assumptions

14.06.17 HSST	2017	Halmstad,	Sweden 7

Additional remarks
We might try to	find	root
causes by tracing back	
dependencies and	
eliminating candidates
that also	contribute to	
correct output values.

This	should NOT	be done because of failure masking:

0

14.06.17 HSST	2017	Halmstad,	Sweden 8

Basic definitions

¬AB(M1) ® x = a * c (or AB(M1) Ú x = a * c)
¬AB(M2) ® y = b * d
....
AB...Abnormal / Assumption

14.06.17 HSST	2017	Halmstad,	Sweden 9

Diagnosis

14.06.17 HSST	2017	Halmstad,	Sweden 10

What is needed?

• Mapping of programs to a model!

1.begin
2. i = 2 * x;
3. j = 2 * y;
4. o1 = i + j;
5. o2 = i * i;
6.end;

Ab(2)	Ú i	=	2	*	x;
Ab(3)	Ú j	=	2	*	y;
Ab(4)	Ú o1	=	i	+	j;
Ab(5)	Ú o2	=	i	*	i;

14.06.17 HSST	2017	Halmstad,	Sweden 11

CONVERTING PROGRAMS TO
CONSTRAINTS

Debugging / Testing

14.06.17 HSST	2017	Halmstad,	Sweden 12

Assumptions

• Sequential programming language without
OO constructs

• The program terminates
• No exception handling

14.06.17 HSST	2017	Halmstad,	Sweden 13

Challenges

• Loops / recursive function calls
• Variables defined more than once in a

program
int power(int a, int exp)
1. int e = exp;
2. int res = 1;
3. while (e > 0) {
4. res = res * a;
5. e = e - 1; }
6. return res;

14.06.17 HSST	2017	Halmstad,	Sweden 14

Handling loops

• Execution of
while (e > 0) { ... }

leads to:
if (e > 0) { ...

if (e > 0) { ...
if (e > 0) { ... }}}

14.06.17 HSST	2017	Halmstad,	Sweden 15

Loop unrolling

14.06.17 HSST	2017	Halmstad,	Sweden 16

Summary loop unrolling

• No influence on semantics if nesting depth set
appropriately
– Nesting depth > maximum number of iterations

caused by a test case

• Increase in size of the pogram (accordingly to
the complexity of the program)

14.06.17 HSST	2017	Halmstad,	Sweden 17

Example (cont.)

int power_loopfree(int a, int exp)
1. int e = exp;
2. int res = 1;
3. if (e > 0) {
4. res = res * a;
5. e = e - 1;
6. if (e > 0) {
7. res = res * a;
8. e = e - 1; } }
9. return res;

14.06.17 HSST	2017	Halmstad,	Sweden 18

Static single assignment form
(SSA form)

• In order to convert programs to constraints
every variable is only allowed to be defined
once!

• Solution: convert the loop-free program
into its SSA form

14.06.17 HSST	2017	Halmstad,	Sweden 19

SSA form

• Property: No two left-side (=defined)
variables have the same name

• Assign each defined variable an unique index.
• If a variable is used afterwards in the program,

refer to the last given index.

14.06.17 HSST	2017	Halmstad,	Sweden 20

Conditional statements

• Statement of the form

if C then B1 else B2 end if;

• Convert B1 and B2 separately using a
distinguished set of indices

14.06.17 HSST	2017	Halmstad,	Sweden 21

Conditional statements

• Introduce a new function Φ.
• Add a new statement

x_C = C;

• For each defined variable x in either B1 or B2 add the
following assignment:

x_i = Φ(x_index(B1),x_index(B2),x_C);

14.06.17 HSST	2017	Halmstad,	Sweden 22

Semantics of F

14.06.17 HSST	2017	Halmstad,	Sweden 23

Example (cont.)
int power_SSA(int a, int exp) {
1. int e_0 = exp;
2. int res_0 = 1;
3. bool cond_0 = (e_0 > 0);
4. int res_1 = res_0 * a;
5. int e_1 = e_0 - 1;
6. bool cond_1 = cond_0 Ù (e_1 > 0);
7. int res_2 = res_1 * a;
8. int e_2 = e_1 - 1;
9. int res_3 = F (res_2, res_1, cond_1);
10. int e_3 = F (e_2, e_1, cond_1);
11. int res_4 = F (res_3, res_0, cond_0);
12. int e_4 = F (e_3, e_0, cond_0); }

14.06.17 HSST	2017	Halmstad,	Sweden 24

Summary SSA conversion

• Only assignment statements!
• Direct conversion to constraints possible
• The conditions used in theF function are

equivalent to the path conditions
• No substantial increase of size

14.06.17 HSST	2017	Halmstad,	Sweden 25

Conversion to CSPs

• Convertion only needed for assignments

14.06.17 HSST	2017	Halmstad,	Sweden 26

ComputeExpression

• Input: An expression Eexpr and an empty set M
for storing the MINION constraints.

• Output: A set of minion constraints
representing the expression stored in M, and a
variable or constant where the result of the
conversion is finally stored.

14.06.17 HSST	2017	Halmstad,	Sweden 27

ComputeExpression (cont.)

1. If Eexpr is a variable or constant, then
return Eexpr.

2. Otherwise, Eexpr is of the form E1
expr op E2

expr.
a) Let aux1 = ComputeExpression (E1

expr)
b) Let aux2 = ComputeExpression (E2

expr)
c) Generate a new MINON variable result and create

MINON constraints accordingly to the given operator
op, which defines the relationship between aux1, aux2,
and result, and add them to M.

3. Return result.

14.06.17 HSST	2017	Halmstad,	Sweden 28

Example

• Example: Given expression

a_0 + b_0 – c_0
• Minion constraints:

sumleq([a_0,b_0],aux1)
sumgeq([a_0,b_0],aux1)
weightedsumleq([1,-1],[aux1,c_0], aux2)
weightedsumgeq([1,-1],[aux1,c_0], aux2)

14.06.17 HSST	2017	Halmstad,	Sweden 29

Summary conversion process

• Conversion in 3 steps:
1. Convert program to loop-free variant (loop

unrolling)
2. Convert loop-free variant to SSA form
3. Convert SSA form to constraint system (Minion)

14.06.17 HSST	2017	Halmstad,	Sweden 30

USING CONSTRAINTS FOR
DEBUGGING

Debugging / Testing

14.06.17 HSST	2017	Halmstad,	Sweden 31

Input to the debugging problem

• A debugging problem comprises
– A program, and

– A failing test case

1. i = 2 * x;
2. j = 2 * y;
3. o1 = i + j;
4. o2 = i * i;

x	=	1,	y	=	2,	o1	=	8,	o2	=	4;

14.06.17 HSST	2017	Halmstad,	Sweden 32

Introduce new variable Ab

• Use variable to state whether a statement is
assumed to work correctly or not!

1. Ab1 Ú i = 2 * x;
2. Ab2 Ú j = 2 * y;
3. Ab3 Ú o1 = i + j;
4. Ab4 Ú o2 = i * i;

14.06.17 HSST	2017	Halmstad,	Sweden 33

Debugging = CSP solving

1. Ab1 Ú i_1 = 2 * x;
2. Ab2 Ú j_1 = 2 * y;
3. Ab3 Ú o1_1 = i_1 + j_1;
4. Ab4 Ú o2_1 = i_1 * i_1;

x	=	1,	y	=	2,	o1_1	=	8,	o2_1	=	4;

Convert to	
constraints

A	solution to	
the resulting
CSP	is a	solution
to	the
debugging
problem!

14.06.17 HSST	2017	Halmstad,	Sweden 34

Tool
demo

14.06.17 HSST	2017	Halmstad,	Sweden 35

Diagnosis algorithm

Nica, I., Wotawa, F.: Condiag - computing minimal diagnoses using a constraint solver. In: Proceedings of the
International Workshop on Principles of Diagnosis (DX). pp. 185-191 (2012)
14.06.17 HSST	2017	Halmstad,	Sweden 36

Some remarks

• Focus on small solutions (single faults)
– Use constraint solver that searches for solutions

where only on Ab variable is true!

• There must be a mapping back from the Ab
variables to the statements of the original
program

14.06.17 HSST	2017	Halmstad,	Sweden 37

Results obtained

• Java implementation of the conversion
process

• Use Minion V0.8 as constraint solver
• Intel Pentium Dual Core 2 GHz with 4 GB of

RAM.
• AIM is a model-based debugging tool based

on abstract interpretation (from Wolfgang
Mayer, Markus Stumptner)

14.06.17 HSST	2017	Halmstad,	Sweden 38

14.06.17 HSST	2017	Halmstad,	Sweden 39

14.06.17 HSST	2017	Halmstad,	Sweden 40

Remarks

• Debugging using constraints is feasible for
smaller programs (e.g., at the method level)

• Pre and post conditions can be easily
integrated as well as loop invariants

• The quality of the results (e.g., number of
statements) depend on the underlying model

14.06.17 HSST	2017	Halmstad,	Sweden 41

Remarks (cont.)

• In order to distinguish diagnosis candidates
new knowledge is necessary:
– Knowledge about intermediate values
– Specification knowledge
– New test cases!

14.06.17 HSST	2017	Halmstad,	Sweden 42

DISTINGUISHING TEST CASES

14.06.17 HSST	2017	Halmstad,	Sweden 43

Motivation

• In Vidroha Debroy and W. Eric Wong. Using
mutation to automatically suggest fixes for
faulty programs, ICST 2010, the authors
introduce the notation of possible fixes.

• There might be many of them!
• How to minimize the number of possible

fixes?

14.06.17 HSST	2017	Halmstad,	Sweden 44

Motivation (cont.)

14.06.17 HSST	2017	Halmstad,	Sweden 45

Distinguishing test cases

• Use new (distinguishing) test cases for removing diagnosis
candidates!

• Note:
– A diagnosis candidate can be eliminated if the new test

case is in contradiction with its behavior.
– Hence, we compute distinguishing test cases for each pair

of candidates and ask the user (or another oracle) for the
expected output values.

– The problem of distinguishing diagnosis candidates is
reduced to the problem of computing distinguishing test
cases!

14.06.17 HSST	2017	Halmstad,	Sweden 46

Some definitions

14.06.17 HSST	2017	Halmstad,	Sweden 47

Def. distinguishing test case

14.06.17 HSST	2017	Halmstad,	Sweden 48

Example (cont.)

14.06.17 HSST	2017	Halmstad,	Sweden 49

Computing distinguishing test cases

• Given two programs.
1. Convert programs into their constraint

representation
2. Add constraints stating that the inputs have to be

equivalent
3. Add constraints stating that at least one output has

to be different
4. Use the constraint solver to compute the

distinguishing test case

14.06.17 HSST	2017	Halmstad,	Sweden 50

14.06.17 HSST	2017	Halmstad,	Sweden 51

Experimental results

14.06.17 HSST	2017	Halmstad,	Sweden 52

Experimental
results

14.06.17 HSST	2017	Halmstad,	Sweden 53

Remarks

• Computing distinguishing test cases from
constraints is possible

• Impact for debugging
• Allows extending test suites

• But: Require mutants for each fault candidate
computed using model-based debugging

14.06.17 HSST	2017	Halmstad,	Sweden 54

SPECIFICATION KNOWLEDGE

14.06.17 HSST	2017	Halmstad,	Sweden 55

Specification knoweldge

• Pre and post conditions
• Invariants
– Loop invariants
– Class invariants

• Can be used for improving debugging of
loops, recursive functions, and function calls

14.06.17 HSST	2017	Halmstad,	Sweden 56

Loop invariants & more

• Given the following program:

int power(int a, int exp)
PRE: { a ≥ 0, exp ≥ 0 }
1. int e = exp;
2. int res = 1;
3. while (e > 0) {

INV: { res = aexp-e }
4. res = res * a;
5. e = e - 1; }
6. return res;
POST: { res = aexp }

14.06.17 HSST	2017	Halmstad,	Sweden 57

Loop invariants & more (cont)

int power_SSA(int a, int exp) {
a >= 0 && exp >= 0;
1. int e_0 = exp;
2. int res_0 = 1;
3. bool cond_0 = (e_0 > 0);
4. int res_1 = res_0 * a;
5. int e_1 = e_0 - 1;
res_1 == a^(exp-e_1);
6. bool cond_1 = cond_0 Ù (e_1 > 0);
7. int res_2 = res_1 * a;
8. int e_2 = e_1 - 1;
res_2 == a^(exp-e_2);
...
11. int res_4 = F (res_3, res_0, cond_0);
...
res_4 == a^exp;

14.06.17 HSST	2017	Halmstad,	Sweden 58

Intermediate observation

• Pre and post conditions as well as invariants
can be easily integrated in the SSA
representation (and therefore also the
constraint representation).

14.06.17 HSST	2017	Halmstad,	Sweden 59

Handling large programs

• But how to debug larger programs using
constraints?

– Summarizing all constraints -> large constraint
representation to be solved!

– Use pre and post conditions instead of the
constraints of methods -> modularization
possible!

14.06.17 HSST	2017	Halmstad,	Sweden 60

Modularized debugging

• Idee: replace every function call where the pre and
post conditions are available with pre && post

foo ()	{
int a	=	2;
int exp =	4;
int result =	power(a,exp);

} foo ()	{
int a	=	2;
int exp =	4;
a	>=	0	&&	exp >=	0	&&	result =	a^exp;	

}
14.06.17 HSST	2017	Halmstad,	Sweden 61

Another observation

• When considering pre and post conditions the
problem of debugging even for larger
programs is feasible!

14.06.17 HSST	2017	Halmstad,	Sweden 62

Summary specification knowledge

• Specification knowledge is important for
debugging
– Reduce the model size used for debugging
– Gain information that helps to remove fault

candidates

• Integration of specification knowledge into
the constraint representation is straight
forward

14.06.17 HSST	2017	Halmstad,	Sweden 63

Summary

• Constraints for testing and debugging
• Able to remove up to 93 % of the source code

for imperative programs on average using
filtering and distinguishing test cases.

• Able to remove 99 % of statements for
combinatorial circuits/programs and 97 % for
sequential circuits/programs

• Better results than other approaches but
computationally more demanding!

14.06.17 HSST	2017	Halmstad,	Sweden 64

Conclusions

• Model-based debugging ensures optimal
results

• For small programs (methods,..)
• Allows combining testing and fault

localization under one general framework
• There is no silver bullet!

14.06.17 HSST	2017	Halmstad,	Sweden 65

Open challenges

• Combining different debugging approaches
– Spectrum-based
– Mutation-based
– Dependency-based
– Model-based
– ...

• Improving performance
• Handling OO constructs still open research question

14.06.17 HSST	2017	Halmstad,	Sweden 66

Some papers...

• Bernhard Peischl and Franz Wotawa. Automated Source Level Error
Localization in Hardware Designs. IEEE Design & Test of Computers, Jan-
Feb, 2006

• Wotawa, F.; Nica, M.; Aichernig, B.: Generating DistinguishingTests using
the MINION Constraint Solver. - in: Proc. of the 2nd Workshop on
Constraints in Software Testing, Verification and Analysis (CSTVA'10),
2010.

• Franz Wotawa. Fault localization based on dynamic slicing and hitting-set
computation. In Proc. 10th International Conference on Quality Software
(QSIC), China, 2010.

• M. Nica, S. Nica, and F. Wotawa. Does testing help to reduce the number of
potentially faulty statement in debugging? In Proc. Testing: Academic &
Industrial Conference Practice and Research Techniques (TAIC-PART),
2010.

14.06.17 HSST	2017	Halmstad,	Sweden 67

…and some more...
• Cristinel Mateis, Markus Stumptner, Dominik Wieland, and Franz

Wotawa, Model-Based Debugging of Java Programs, Proc. Intl. Workshop
on Automated and Algorithmic Debugging (AADEBUG), Munich,
Germany, 2000.

• Wolfgang Mayer, Markus Stumptner, Dominik Wieland, and Franz
Wotawa, Can AI help to improve debugging substantially? Debugging
experiences with value-based models, Proc. European Conference on
Artificial Intelligence (ECAI), Lyon, France, 2002.

• Wolfgang Mayer. Static and Hybrid Analysis in Model-based Debugging.
PhD thesis, School of Computer and Information Science, University of
South Australia, Adelaide, Australia, July 2007.

• Wolfgang Mayer and Markus Stumptner. Evaluating Models for Model-
Based Debugging. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), pages 128–137, L'Aquila,
Italy, September 2008. IEEE Computer Society Press.

14.06.17 HSST	2017	Halmstad,	Sweden 68

END OF PART 2

QUESTIONS?

14.06.17 HSST	2017	Halmstad,	Sweden 69

