
Rance Cleaveland

Department of Computer Science

Approximate Formal Verification

Using Model-Based Testing

5th Halmstad Summer School on Testing10 June 2015

What This Talk Is

• … a position statement

• … a discussion of a research program

• … a review of some things I have been

working on over the past decade

1©2015 Rance Cleaveland

Formal Methods

• Mathematically rigorous approaches to

specifying, verifying systems

• Why? To increase confidence!

– If the specification is trusted, verification yields

trust in system

– If specification is not trusted, proving it is

consistent with system builds trust in both

2©2015 Rance Cleaveland

The Elements of Formal Methods

• Formal semantics of systems

Systems must be mathematical objects!

• Formal specifications

Mathematical descriptions of desired behavior

• Formal verification

Proofs that systems satisfy specifications

3©2015 Rance Cleaveland

Verification = Proof

• Model checking

Proof constructed “automatically”

• Theorem proving

Proof constructed “automatedly”

4©2015 Rance Cleaveland

Example: Temporal Logic

• Systems: Kripke structures

• Specifications: Temporal Formulas

– E.g. AG (¬i1 ∨ ¬i2)

– “It is always the case that either i1 or i2 is false.”

• Verification: Model checking

5

w1, w2

i1, w2 w1, i2

o1, w2 w1, o2

o1, i2 i1, o2o1, o2

©2015 Rance Cleaveland

Another Example: Design-By-

Contract

• Systems: code (class definitions)

• Specifications

– Pre / postconditions

– Invariants

– asserts

• Verification: Theorem proving

6©2015 Rance Cleaveland

Status of Formal Methods

• Noteworthy successes!

• We are not at the stage where success is

expected

7©2015 Rance Cleaveland

Why?

• “Scalability”

Building proofs is laborious, even for machines

• Inability to predict level of effort

– Difficulty of proof not correlated to usual measures

of system complexity

– Work needed to coax proof out of tools not easy to

estimate

• Need for highly trained (= expensive)

workforce

8©2015 Rance Cleaveland

My Perspective

• Proving is hard, but guarantees are very strong

• If proofs are not possible / feasible

– Must test to conduct V&V

– Benefits of formal specifications are difficult to

explain in this case

• “Prove If You Can, Test If You Cannot”

(PIYC/TIYC)

We should focus on formal specifications that

support proof and testing!

9©2015 Rance Cleaveland

PIYC / TIYC

• “Pick-tick”
– Prove If You Can.

– Test If You Cannot.

• A formalism supports PIYC / TIYC if

– Full formal verification can be undertaken

– So can less complete V&V

• Testing

• Inspections

• Etc.

• In other words: full and approximate verification are
both possible

10©2015 Rance Cleaveland

What This Talk Is About

• PIYC / TIYC in practice

– Model-based testing (MBT)

• Models used as software specifications

• MBT used to check equivalence between specs, software

– Instrumentation-Based Verification (IBV)

• Specifications given in same notation as software

• Verification = instrument software, check for errors

• Context

– Automotive control software

– MATLAB® / Simulink® / Stateflow® / Reactis®

11©2015 Rance Cleaveland

Talk Agenda

• Automotive software and MBD

– MATLAB / Simulink / Stateflow

– Verification in MBD

• MBT (using Reactis®)

• IBV (also using Reactis)

• Conclusions

12©2015 Rance Cleaveland

Some Software Companies

13©2015 Rance Cleaveland

Automotive Software

• Driver of innovation

90% of new feature content based on software [GM]

• Rising cost

50% of Prius cost due to software [Toyota]

• Warranty, liability, quality

High-profile recalls in Germany, Japan, US

14©2015 Rance Cleaveland

A Grand Challenge

• Ensure high quality of automotive software while

– ... preserving time to market

– … containing cost

• Key approach: Model-Based Development (MBD)

– Use executable models during development

– Dominant language: MATLAB / Simulink / Stateflow

15©2015 Rance Cleaveland

Model-Based Development

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Main Motivation: autocode

16©2015 Rance Cleaveland

More Benefits of MBD

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Models formalize specifications, design

Models facilitate communication among teams

Models support V&V, testing

17©2015 Rance Cleaveland

A Sample Automotive MBD Flow

18

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Requirements Documents

Specifications Floating-point models from controls engineers

Designs Fixed-point models from platform engineers

Implementation C from autocoding, software developers

Testing Hardware-in-the-loop (HIL) testing from test engineers

©2015 Rance Cleaveland

MBD Verification Problem #1

19

Requirements

Design

Specifications

Implementation

models

models

Do specifications satisfy requirements?

©2015 Rance Cleaveland

MBD Verification Problem #2

20

Requirements

Design

Specifications

Implementation

models

models

Does design meet specifications?

©2015 Rance Cleaveland

MBD Verification Problem #3

21

Requirements

Design

Specifications

Implementation

models

models

Does implementation meet design?

©2015 Rance Cleaveland

PIYC / TIYC for MBD

• Formalize verification problems

mathematically

– Formal semantics of systems

– Formal specifications

– Formal definition of satisfaction

• Give testing-based approximate verification

strategies

22©2015 Rance Cleaveland

Simulink

• Block-diagram modeling

language / simulator of

The MathWorks, Inc.

• Hierarchical modeling

• Continuous- and

discrete-time simulation

23©2015 Rance Cleaveland

Stateflow

24©2015 Rance Cleaveland

Semantics

• Simulink has different “solvers” (= semantics)

– Continuous: inputs / outputs are signals

– Discrete: inputs / outputs are data values

• Physical modeling: continuous solvers

• (Digital) controller modeling: discrete solvers

– Synchronous

– Run-to-completion

– Time-driven

25©2015 Rance Cleaveland

state

vars

model

inputs

[]

[]
outputs

state

vars

model

inputs

[]

[]
outputs

state

vars

Example

26©2015 Rance Cleaveland

Discrete Simulink Semantics

• Simulink models are (deterministic) Mealy

machines

– States are assignments of values to state variables

– Transitions are computed by model

• Can thus speak of language of model M

– I = set of possible input vectors for M

– O = set of possible output vectors for M

– L(M) = {w ∈ (I x O)* | w is (timed) sequence of

transition labels of execution of M }

27©2015 Rance Cleaveland

Formalizing MBD Problem #2

• Specification, design models are both Mealy machines

• MBD Problem #2
– Given: (spec) model S, (design) model D

– Determine: does L(S) = L(D)?

– Note: some mappings between sequences in L(S), L(D)
may be needed (e.g. if S is floating point, D fixed point)

28

Requirements

Design

Specifications

Implementation

models

models

©2015 Rance Cleaveland

Formalizing MBD Problem #3

• Semantics of implementation I needs to yield Mealy machine also!

• MBD Problem #3
– Given: (design) model D, implementation I

– Determine: does L(D) = L(I)?

– Note: some mappings between sequences in L(D), L(I) may be needed

29

Requirements

Design

Specifications

Implementation

models

models

©2015 Rance Cleaveland

PIYC / TIYC for Problem #2 (and #3)

• Can prove instances of Problem #2
– S, D are deterministic Mealy machines

– Can use language-equivalence checkers to compute L(M) = L(S)

– Not done in practice because state spaces too big

• Approximate verification: use testing
– Standard model-based testing

• Generate test cases from S

• Run them on D

• Compare outputs

– “Back-to-back” testing (e.g. ISO 26262)
• Do MBT

• Also, generate tests from D, run them on S, compare results

30©2015 Rance Cleaveland

Reactis®, Reactis for C

Automatic testing tool from Reactive Systems Inc.

Tester Generate tests from models, C code

Simulator Run, fine-tune tests

Validator Validate models / code

Reactis
Simulink /

Stateflow /

C
model / code

31©2015 Rance Cleaveland

Reactis Tester

32

• Model / code in; tests out

• Model / code, tests in; better tests out

Reactis

Tester

Test suite.mdl file

©2015 Rance Cleaveland

Launching Tester

33©2015 Rance Cleaveland

Generated Test Data

34©2015 Rance Cleaveland

Test Generation with Reactis

• Test = simulation run = sequence of I/O vectors = element of L(M)

• Goal: maximize model coverage (e.g. branch, state, MC/DC, etc.)

• Method: guided simulation (US Patent 7,644,398)

– Think: state-space search

• Models = Mealy machines

• Test generation = state-space traversal

• Search termination condition: coverage of model (= transition computation)

– Choose input data to guide search to uncovered parts of model (=
transition computation)

• Monte Carlo

• Constraint solving (currently, linear constraints, SAT)

35©2015 Rance Cleaveland

Experience

• Main use case for Reactis

• In use at 75+ companies around the world

36©2015 Rance Cleaveland

Summary So Far

• PIYC / TIYC = “Prove If You Can / Test If You

Cannot”

– Formal specifications support both formal verification,

testing

– Testing can be viewed as “approximate verification”

• Two examples of PIYC / TIYC in model-based

practice

– The formalizations involve language equivalence

– The testing-based approximations rely on structural

coverage for termination

37©2015 Rance Cleaveland

Formalizing MBD Problem #1

• We would like a PIYC / TIYC approach for this problem

• Need:
– Formalized requirements

– Formalized notion of satisfaction

• A useful idea: Instrumentation-Based Verification

38

Requirements

Design

Specifications

Implementation

models

models

©2015 Rance Cleaveland

IBV: Requirements

• Formalize
requirements as
monitor models

• Example

If speed is < 30,

cruise control must

remain inactive

39©2015 Rance Cleaveland

IBV: Satisfaction

• Instrument design model
with monitors

• Model satisfies monitors if:

– For every input sequence …

– … every monitor model output
remains true

• Reachability problem!

– Proof possible

– State space an issue

40©2015 Rance Cleaveland

Approximate Verification for

Problem #1

• Use coverage testing on
instrumented model
– Better scalability

– If booleans part of coverage
criteria:
• Test generator tries to make

monitor outputs false

• Skeptical testing!

• Reactis
– Supports instrumentation

– Acts as skeptical tester

– Reports violations

41©2015 Rance Cleaveland

Related Work

• Run-time monitoring

Havelund et al., Lee et al., Godefroid, …

• Automaton-based model-checking

Holzmann et al., Vardi et al., Kurshan et al., …

• Statistical model checking

Clarke et al., Legay et al., Smolka et al., …

42©2015 Rance Cleaveland

What About Model Checking?

• Temporal logic often used to formalize

requirements

• Model checkers tell whether temporal-logic

formulas are true or not

• Can this be adapted to Problem #1?

©2015 Rance Cleaveland 43

Model Checking in (1/5) Slides:

Linear-Time Temporal Logic (LTL)

• Temporal Logic: modal (propositional) logics for
time

– Usual propositional operators: atomic propositions
(aka propositional variables), ∧, ∨, ¬, ⇒,

– Modal operator for evolution over time: U (until)

– Derived modal operators: F (eventually), G (always)

• Examples

– G (¬i1 ∨ ¬i2) “At least one process is not in its
critical section”

– G (w1 ⇒ (F i1)) “If a process is waiting then it eventual
is in its critical section”

44©2015 Rance Cleaveland

Model Checking in (2/5) Slides:

LTL Semantics

• LTL formulas interpreted with respect to
executions of Kripke structures

Kripke structure Execution

s0→s1→s3→s0→s1 …

• Examples
– s0→s1→s3→s0→s1 … ⊨ G (¬i1 ∨ ¬i2)

– s0→s1→s3→s0→s1 … ⊭ G (w2 ⇒ (F i2))

45

s0: w1, w2

s1: i1, w2 s2: w1, i2

s3: o1, w2 s4: w1, o2

s5: o1, i2 s7: i1, o2s6: o1, o2

©2015 Rance Cleaveland

Model Checking in (3/5) Slides:

CTL* / CTL
• CTL* / CTL support branching time

– Path quantifiers A (“all paths”), E (“some path”) mixed in with LTL

– (State) formulas interpreted with respect to states

– AG (¬i1 ∨ ¬i2): “For all paths, it is always the case that i1 or i2 is false”

• Examples
– s0 ⊨ AG (¬i1 ∨ ¬i2)

– s0 ⊭ AG (w2 ⇒ (F i2))

46

s0: w1, w2

s1: i1, w2 s2: w1, i2

s3: o1, w2 s4: w1, o2

s5: o1, i2 s7: i1, o2s6: o1, o2

©2015 Rance Cleaveland

Model Checking in (4/5) Slides:

LTL / CTL Model Checking
• LTL

– System (Kripke Structure) satisfies (LTL) formula φ iff every
execution satisfies φ

– Typical model-checking approach: construct (Büchi) automaton
accepting all (infinite) sequences satisfying φ

– Sample tool: SPIN

• CTL
– Subset of CTL* that requires a path quantifier (A/E) in front of

every modality (F/G/U)

– System satisfies CTL formula φ iff start state of Kripke structure
does

– Typical model-checking approach: use fixpoint iteration to
compute all states satisfying subformulas of φ, then φ

– Typical tool: (nu)SMV

47©2015 Rance Cleaveland

Model Checking in (5/5) Slides:

Adding Time

• Metric Temporal Logic

– Add time bounds to modalities

– E.g. F[0,5] a: “Between 0 and 5 time units from

now, a will hold”

• Timed CTL

– Add path quantifiers to MTL

– E.g. AF[0,5] φ: “Along all paths, it is the case that

between 0 and 5 times units from now, a will

hold”

48©2015 Rance Cleaveland

So, What About Temporal Logic?

Can it be adapted to Problem #1?

49©2015 Rance Cleaveland

Of Course It Can

• “Whenever the brake pedal is pressed, the

cruise control shall become inactive.”

AG (brake ⇒ ¬active)

• “Whenever actual, desired speeds differ by

more than 1 km/h, the cruise control shall fix

within 3 seconds.”

AG(|speed–dSpeed|>1 ⇒ AF≤3|speed–dSpeed|≤1)

©2015 Rance Cleaveland 50

• Formulas hard to comprehend for non-specialists

Compare:

– AG (|speed–dSpeed| > 1 ⇒ AF≤3 |speed–dSpeed| ≤ 1)

–

• Complex formulas hard to develop, understand

An argument for simpler requirements?

Common Criticisms of Temporal Logic

©2015 Rance Cleaveland 51

Better Criticisms

• A second notation

• Specification debugging

• Scope issues

AG (|speed – dSpeed| > 1 ⇒ AF≤3

|speed – dSpeed| ≤ 1)

“dSpeed”?

– Not an input

– Not an output

– Internal variable!

• PIYC / TIYC?

52©2015 Rance Cleaveland

Verification via Model Checking

• Yes

– Full proofs of correctness (in principle)

– Automatic!

• No

– Combinatorial complexity

State-explosion: number of states grows exponentially in

number of bits

– When will it work?

©2015 Rance Cleaveland 53

What about Temporal Logic and

PIYC / TIYC?

• Relating testing to branching time, infinite
executions not so obvious

• Run-time monitoring

– Needs updating of TL semantics (finite sequences)

– Need to relate specification-level concepts (“active”)
to system level

– Usual focus has been on code, requirements

• Statistical model checking

– Another form of approximate verification

– Need probabilistic assumptions about different
transitions

54©2015 Rance Cleaveland

IBV Intended to Address These

Criticisms

• One notation; existing tools can support

requirements formalization, debugging

• Scope issues addressed implicitly

• Instrumentation is executable, hence

debuggable

• Testing currently scales better than proof
… but proof still possible with right tools

©2015 Rance Cleaveland 55

Automotive Pilot Study #1

• Emergency Blinking Function (EBF)

– Part of body computer module

– Artifacts

• Requirements document (300+ pages)

• Code (200+ KLOC)

• Question: Will IBV work?

56©2015 Rance Cleaveland

Pilot Study #1 (cont.)

• Tasks

– Code monitors from requirements

– Code Simulink design model from C

– Use Reactis to compare design, requirements

• Study details

– Time frame: 3 months

– Personnel: PhD student, Fraunhofer employee

57©2015 Rance Cleaveland

From Requirements to Monitors

58

“[This] is the complete description of the

control of the CAN output signals can1

and can2 produced by Function A.

Function A can be activated only with in =

1. The activation takes place when either

the CAN bus messages a or b is

present….”

©2015 Rance Cleaveland

From Code to Models

• Goal: reverse-engineer model from code

– Model-based design not used in development

– Will IBV work for “production-strength” design?

• Part of EBF (250 SLOC) converted

– Inports / state variables: read-before-write vars.

– Outports: vars. written, not read

– Resulting model: about 75 blocks

©2015 Rance Cleaveland 59

Conducting the Verification

• Reactis IBV features used

– Instrument model with monitors

– Generate tests automatically

• Results

– Test suites contained 80-120 test vectors

– Time needed: ±20 sec

– Omission in requirements discovered

60©2015 Rance Cleaveland

Requirement Issue

• Missing reset transitions in requirements

• Code was correct

61©2015 Rance Cleaveland

Effort Data (Person-hours)

Reqts. comp.,
40

Code comp.,
40

Rev. eng., 80

Monitors, 2

Instr., 0.5

Verification,
0.25

Diagnosis, 0.5

©2015 Rance Cleaveland 62

Preliminary Conclusion

• “It worked” …

• … for one feature

• … one (very complex) requirement

• … using PhDs

©2015 Rance Cleaveland 63

Automotive Pilot Study #2

• More exterior-lighting functions

• More monitor models

• No PhDs: one intern

– B.S. in Computer Science

– Significant expertise in Simulink

– No automotive experience

64©2015 Rance Cleaveland

Approach

• Identify number of requirements for each

exterior-lighting function

– Count sentences

– Read sections, beginning with fewest sentences

• Formalize requirements as monitor models

• Develop design models for functions

• Verify

©2015 Rance Cleaveland 65

Monitor Model Architecture Change

Needed for

conditional

requirements

– Behavior only

specified for certain

situations

– “If timeout occurs

switch off light”

©2015 Rance Cleaveland 66

Results

• 62 monitor, 10 design models created

• Enhancements to the monitor architecture

• Verification results

– 11 inconsistencies in requirements

“If the ignition is off, the light must be off”

“If the light switch is on, the light must be on”

– Why?

• Evolving document

• Multiple teams

• “The implementors will know what to do”

67©2015 Rance Cleaveland

Effort (Person-hours)

Reqts. comp.,
40

Design, 26
Monitors, 53

Verification,
25

Diagnosis, 10

©2015 Rance Cleaveland 68

Discussion

• Requirements modeling

– First study: 2 hours (1.2% of total) 1 reqt. (2 hrs. / reqt.)

– Second study: 53 hours (34.4% of total) 62 reqts. (50 min. / reqt.)

• Design model development

– First study: 80 hrs. (49.0% of total) Reverse engg. (80 hrs. / model)

– Second study: 26 hours (16.9% of total) Forward engg. (2.6 hrs. / model)

• Verification

– First study: 45 min. (0.5% of total) 1 reqt. (45 min. / reqt.)

– Second study: 25 hours (16.2%) 62 reqts. (25 min. / reqt.)

• Fault diagnosis

– First study: 30 min. (0.3% of total) 1 reqt., 1 error (30 min. / error)

– Second study: 10 hours (6.5% of total) 62 reqts., 11 errors (55 min. / error)

69©2015 Rance Cleaveland

More Discussion

• Was the requirements document was modified?

– No

– Reasons:

• Document developed with customer, requires customer

sign-off to change

• Developers know domain better

• Requirements

– Not always the “gold standard” for system behavior

– Rather: one description of the system that should

ideally be consistent with other descriptions

70©2015 Rance Cleaveland

Yet More Discussion

• When did we “prove if we could”?

– We didn’t …

– … because of lack of available tool support

• Did we debug monitor-models while

developing them?

Yes!

71©2015 Rance Cleaveland

Summary

• PIYC / TIYC approaches identified, applied for model-based
development

– Model-based testing: equivalence checking

– Instrumentation-based verification (IBV): requirements checking

• Idea of PIYC / TIYC: gain benefit from formalism even if
formal verification infeasible

– Model-based testing: models serve as source of tests, oracles

– Instrumentation-based verification (IBV): monitors act as oracles

• Requirements are not always what is required

Requirements documents are often “just another description”

72©2015 Rance Cleaveland

Ongoing / Future Work

• PIYC / TIYC

– How to characterize the “gap” between proof,
testing?

– How to combine formal, approximate verification?

• IBV model checking for Simulink / Stateflow

• IBV for code

• System comprehension via testing, machine-
learning

73©2015 Rance Cleaveland

Thanks!

Rance Cleaveland

rance@cs.umd.edu

74©2015 Rance Cleaveland

