Approximate Formal Verification

Using Model-Based Testing

Rance Cleaveland

Department of Computer Science

UNIVERSITY OF The

IACS Instltute for
puacs. B MARYLAND Syareiss

Research

10 June 2015 5th Halmstad Summer School on Testing

What This Talk Is

* ... a position statement
e ...adiscussion of a research program

e ...areview of some things | have been
working on over the past decade

©2015 Rance Cleaveland 1

Formal Methods

 Mathematically rigorous approaches to
specifying, verifying systems

* Why? To increase confidence!
— If the specification is trusted, verification yields
trust in system

— If specification is not trusted, proving it is
consistent with system builds trust in both

©2015 Rance Cleaveland 2

\QE/RSITJ,
Q% 7(}\.\ o)

2o
5

The Elements of Formal Methods ~ {*-

IRYLAS

 Formal semantics of systems

Systems must be mathematical objects!
* Formal specifications
Mathematical descriptions of desired behavior

* Formal verification

Proofs that systems satisfy specifications

©2015 Rance Cleaveland 3

Verification = Proof

* Model checking

Proof constructed “automatically”

* Theorem proving

Proof constructed “automatedly”

'
©2015 Rance Cleaveland 4

e Specifications: Temporal Formulas
— “It is always the case that either i, or i, is false.”

* Verification: Model checking

©2015 Rance Cleaveland 5

Another Example: Designh-By-

Contract

* Systems: code (class definitions)
e Specifications
— Pre / postconditions

— Invariants

— asserts

e Verification: Theorem proving

©2015 Rance Cleaveland 6

Status of Formal Methods

* Noteworthy successes!

 We are not at the stage where success is
expected

'
©2015 Rance Cleaveland 7

e “Scalability”

Building proofs is laborious, even for machines

* |nability to predict level of effort

— Difficulty of proof not correlated to usual measures
of system complexity

— Work needed to coax proof out of tools not easy to
estimate

* Need for highly trained (= expensive)
workforce

©2015 Rance Cleaveland 8

My Perspective

* Proving is hard, but guarantees are very strong

* If proofs are not possible / feasible
— Must test to conduct V&V

— Benefits of formal specifications are difficult to
explain in this case

* “Prove If You Can, Test If You Cannot”
(PIYC/TIYC)

We should focus on formal specifications that
support proof and testing!

©2015 Rance Cleaveland 9

PIYC / TIYC

e “Pick-tick”
— Prove If You Can.
— Test If You Cannot.

e A formalism supports PIYC / TIYC if

— Full formal verification can be undertaken
— So can less complete V&V

* Testing

* |nspections

* Etc.

* |n other words: full and approximate verification are
both possible

©2015 Rance Cleaveland 10

What This Talk Is About

* PIYC/TIYCin practice

— Model-based testing (MBT)

* Models used as software specifications
 MBT used to check equivalence between specs, software

— Instrumentation-Based Verification (IBV)
» Specifications given in same notation as software
* Verification = instrument software, check for errors

e Context

— Automotive control software
— MATLAB® / Simulink® / Stateflow® / Reactis®

©2015 Rance Cleaveland 11

Talk Agenda

e Automotive software and MBD
— MATLAB / Simulink / Stateflow
— Verification in MBD

 MBT (using Reactis®)
* |BV (also using Reactis)

* Conclusions

©2015 Rance Cleaveland 12

ﬁ-l-ﬂ.-l p];mm $ CATERPILLARR =uioan+

AD Vlcs éuj;ﬂflﬂﬂ

Providing safety and comfort on

Z Pratt & “‘Illlllli,

& Unitod Technoiogies Company

roads arcund the world @ ﬁ
HEI-I-H the cars of tomarrow LOCKMNEED MARTIN “‘MAGNASTEYR

AISIN 0 ARDI ER AR B G more valuesmore car
(00 fé e e
Aud JOHN DEERE HITACHI

Inspire the Next

O
TEMIC ﬁ FU"TSU

GENERAL DYNAMICS o=
DENSO bertrandt ga navl'hE"n

@ NATIONAL AERONAUTICS o United
P Cerror Diese AND SPACE ADMINISTRATION Tenhnulugles@
Dirving Plasslirs CORPORATION Holleywell @ KIA MOTORS
SI E M E Ns RENAULT
DELPHI % N,
Tomorrow’s Technoloay Elb] y —- VIStEDn

DAIMLER 5 .':-‘"":'i:‘-‘

D /A= Rockwell SmL't 'eNNEED "'"""/ :

hs
co“ ns ﬂTheMath%rks_ @

Matio IS urity Soluti

©2015 Rance Cleaveland 13

Automotive Software

* Driver of innovation

90% of new feature content based on software [GM]
* Rising cost

50% of Prius cost due to software [Toyota]

* Warranty, liability, quality

High-profile recalls in Germany, Japan, US

©2015 Rance Cleaveland 14

A Grand Challenge

e Ensure high quality of automotive software while

— ... preserving time to market

— ... containing cost

e Key approach: Model-Based Development (MBD)
— Use executable models during development
— Dominant language: MATLAB / Simulink / Stateflow

'
©2015 Rance Cleaveland 15

Model-Based Development

Requirements Final test
models | Specifications System test
models Design Unit test

\ /

Implementation

Main Motivation: autocode

©2015 Rance Cleaveland 16

More Benefits of MBD

Requirements Final test
models | Specifications System test
models Design Unit test

\ Implementation

Models formalize specifications, design
Models facilitate communication among teams
Models support V&V, testing

©2015 Rance Cleaveland 17

A Sample Automotive MBD Flow

Requirements Final test
models | Specifications System test
models Design Unit test

\ /

Implementation

Requirements Documents

Specifications Floating-point models from controls engineers

Designs Fixed-point models from platform engineers
Implementation C from autocoding, software developers

Testing Hardware-in-the-loop (HIL) testing from test engineers

'
©2015 Rance Cleaveland 18

MBD Verification Problem #1

Requirements

N\

models | Specifications

Do specifications satisfy requirements?

©2015 Rance Cleaveland 19

MBD Verification Problem #2

models | Specifications

N\

models Design

Does design meet specifications?

©2015 Rance Cleaveland 20

MBD Verification Problem #3

models Design

\ Implementation

Does implementation meet design?

©2015 Rance Cleaveland 21

PIYC / TIYC for MBD

* Formalize verification problems
mathematically
— Formal semantics of systems
— Formal specifications

— Formal definition of satisfaction

* Give testing-based approximate verification
strategies

©2015 Rance Cleaveland 22

Simulink

* Block-diagram modeling

| cruize_validator/User-defined target: LowSpeedOn E@g
Ia nguage / SImU|at0r Of File Edit Yiew Simulation Format Tecls Help
D HdE| BB 4|5 -WW
The MathWorks, Inc.
* Hierarchical modeling & "
o AND
e Continuous- and o |
discrete-time simulation N
Ready 1100% | |odeds Y

©2015 Rance Cleaveland 23

Stateflow

J Stateflow <link= (chart) cruise/CruiseMain/CruiseMDL/CruiseMDL/Mode

| N

o
=
=

e

4

.

Offf
® entry - mode =1
ar
o [onOff == 0] [onOff == 1]
On
- -
Inactive/] [activate == 1] Active/ [set == 1 && i
: _ : _ == -~ Jinit/
entry : mode = 3 entry - mode =4 1 ;o ctivate == 0] [entry - mode = 2
: [deactivate == 1] l

J

o

IReauy (LOCKED)

©2015 Rance Cleaveland

24

Semantics

* Simulink has different “solvers” (= semantics)
— Continuous: inputs / outputs are signals
— Discrete: inputs / outputs are data values

* Physical modeling: continuous solvers

* (Digital) controller modeling: discrete solvers
— Synchronous
— Run-to-completion

— Time-driven

©2015 Rance Cleaveland 25

Example

inputs Inputs

[|]
Q— mojdel @_ mo:del {)

state state state

v v
vars [] vars [] vars

outputs outputs

©2015 Rance Cleaveland 26

Discrete Simulink Semantics

* Simulink models are (deterministic) Mealy
machines

— States are assignments of values to state variables
— Transitions are computed by model

e Can thus speak of language of model M
— | = set of possible input vectors for M
— O = set of possible output vectors for M

—L(M) ={w € (I xO)* | wis (timed) sequence of
transition labels of execution of M }

©2015 Rance Cleaveland 27

Formalizing MBD Problem #2

models | Specifications

NN

models Design

» Specification, design models are both Mealy machines

e MBD Problem #2
— Given: (spec) model S, (design) model D
— Determine: does L(S) = L(D)?

— Note: some mappings between sequences in L(S), L(D)
may be needed (e.g. if S is floating point, D fixed point)

©2015 Rance Cleaveland 28

Formalizing MBD Problem #3

models Design

AN

Implementation

* Semantics of implementation / needs to yield Mealy machine also!

e MBD Problem #3
— Given: (design) model D, implementation /
— Determine: does L(D) = L(/)?
— Note: some mappings between sequences in L(D), L(I) may be needed

©2015 Rance Cleaveland 29

QERSITJ,

PIYC / TIYC for Problem #2 (and #3) j{ﬁ,‘\ﬁz

ARy LN

e Can prove instances of Problem #2
— S, D are deterministic Mealy machines
— Can use language-equivalence checkers to compute L(M) = L(S)
— Not done in practice because state spaces too big

* Approximate verification: use testing

— Standard model-based testing
* Generate test cases from S
* RunthemonD
* Compare outputs
— “Back-to-back” testing (e.g. ISO 26262)
* Do MBT
* Also, generate tests from D, run them on S, compare results

©2015 Rance Cleaveland 30

Reactis®, Reactis for C

Automatic testing tool from Reactive Systems Inc.

Tester Generate tests from models, C code
Simulator Run, fine-tune tests
Validator Validate models / code
@ 5 (O[] @

Simulink /
Stateflow / e Reactis
C

) —>

©2015 Rance Cleaveland 31

Reactis Tester

« Model / code in; tests out
« Model / code, tests in; better tests out

Reactis

Crame D 00 <o Crmnne)

Tester

©2015 Rance Cleaveland 32

aunching Tester

Reactis: cruise.md| - cruise2.rsi =1ol x|
File Edit ‘View Simulate | TestSuite Valdate Coverage Window Help
S| ole| BlEle] & e N TR = EEEEET
e P, Rl
o-sL Cruise Sae A5
sF Observer Save hs, .,
sL Flant
Import...
Export.. » trigger)
ad active
Browse... IE——" onOff Observer
Browse current. . noOff active
7 —» active
Add/Extend Test cirln ARGRIRES NG
IFesume
Rermaye Test
3 cancel
¥ Compare Suibuts ancel
Update OUmpUEs... IT——- decelSet
decelSet
(5 »————+brake
hrake throttleDelta ¥ 7
() ———*gas throttleDelta
gas
* zpeed
Cruise
throttleDelta |
: active [+
SpEE
inactive ThrottleDelta [« D,
drag 'S D inactiveThrottleDelta
Plant drag

©2015 Rance Cleaveland

33

Generated Test Data

Reactis Test-Suite Browser: cruise.rst -|0| x|
Ble \iew Help
2| & sofs[-1] W s]s]en] @] [restzis steps) -
Port | stepi1| stpz| steps| step4a|l steps|
InpLts
1: onOff 0.0 1.0 0.0 1.0 1.0
2. accelPesume 0.0 1.0 1.0 1.0 1.0
3 cancel 1.0 0.0 0.0 1.0 1.0
& decelSet 0.0 0.0 1.0 0.0 1.0
5: brake 1.0 1.0 0.0 1.0 0.0
& gas 1.0 0,0 1.0 0.0 1.0
7 inactveThrotdeDelta 0.1 0.0 0.1 -1 0.0
8 drag -0.0023,, -0.0039,., -000%4,,, -00033,. -0.0039,..
OUpUIES
1 active 0,0 0,0 0,0 0.0 0.0
2 throtdeDelts -0.1 0.0 -0.1 0.0 0.0
I 0.0 1.0 2.0 3.0 4,0
Configuration Yariatle Wal e
Initialspesad 15, 791795358827
P

©2015 Rance Cleaveland 34

\qERSITJ)

S
18

%
2,
ARy LN

Test Generation with Reactis

* Test =simulation run = sequence of I/0O vectors = element of L(M)
* Goal: maximize model coverage (e.g. branch, state, MC/DC, etc.)
 Method: guided simulation (US Patent 7,644,398)

— Think: state-space search
* Models = Mealy machines
» Test generation = state-space traversal
» Search termination condition: coverage of model (= transition computation)

— Choose input data to guide search to uncovered parts of model (=
transition computation)

* Monte Carlo

* Constraint solving (currently, linear constraints, SAT)

©2015 Rance Cleaveland 35

Experience

* Main use case for Reactis
* |[n use at 75+ companies around the world

'
©2015 Rance Cleaveland 36

Summary So Far

e PIYC/TIYC = “Prove If You Can / Test If You
Cannot”

— Formal specifications support both formal verification,
testing

— Testing can be viewed as “approximate verification”

 Two examples of PIYC / TIYC in model-based
practice
— The formalizations involve language equivalence

— The testing-based approximations rely on structural
coverage for termination

©2015 Rance Cleaveland 37

Formalizing MBD Problem #1

Requirements

N\

models | Specifications

 We would like a PIYC / TIYC approach for this problem

e Need:
— Formalized requirements
— Formalized notion of satisfaction

A useful idea: Instrumentation-Based Verification

©2015 Rance Cleaveland 38

IBV: Requirements

 Formalize
requirements as

monitor models DEH& i@ estac] sfir e
 Example o,
] Ct
If speed is < 30, EEE i g
cruise control must D g
remain inactive
Ready [100% lode45 4

©2015 Rance Cleaveland 39

IBV: Satisfaction

° Instrument design mOdeI . Reatis:crui.mdl-crui.rsi [diﬁed] .
. . File Edit View Simulate TestSuite Validate Coverage Window Help
with monitors = oo 4 & aaq (ol
* Model satisfies monitors if:
— For every input sequence ... D | oo
onQff
— ... every monitor model output = Jooorecums
remainS true accelResume
e @ ¥ cancel L}
» Reachability problem!
¥ decelSet
— Proof possible —
— State space an issue 9 e e
rare throttleDetta [————
< | 3

©2015 Rance Cleaveland 40

Approximate Verification for (,\,

Problem #1

) U Se Cove rage testi ng O n Reactis: cruise.mdl - cruise.rsi [modified]

File Edit View Simulate TestSuite Validate Coverage Window Help

iInstrumented model B oo 4 & aaQq 1 [0l
— Better scalability 1
. T s |.-5.sserﬁ|:un: 5 EEu:I,."u:uk'|
— If booleans part of coverage g =
criteria: D oot i
- Test generator tries to make o
monitor outputs false ? : + scceResure
« Skeptical testing! -
@ M cancel 4
« Reactis
. . @ M decelSet
— Supports instrumentation
— Acts as skeptical tester D » orske speed
braks throttleDetta [———

— Reports violations

@
[£

SIS

|A
|

©2015 Rance Cleaveland 41

Related Work

* Run-time monitoring

Havelund et al., Lee et al., Godefroid, ...

 Automaton-based model-checking

Holzmann et al., Vardi et al., Kurshan et al., ...

 Statistical model checking

Clarke et al., Legay et al., Smolka et al,, ...

©2015 Rance Cleaveland 42

What About Model Checking?

 Temporal logic often used to formalize
requirements

 Model checkers tell whether temporal-logic
formulas are true or not

e Can this be adapted to Problem #1?

©2015 Rance Cleaveland 43

Model Checking in (1/5) Slides:

Linear-Time Temporal Logic (LTL)

 Temporal Logic: modal (propositional) logics for
time
— Usual propositional operators: atomic propositions
(aka propositional variables), A, V, -, =,
— Modal operator for evolution over time: U (until)
— Derived modal operators: F (eventually), G (always)

 Examples

— G (=i V =i,) “At least one process is not in its
critical section”

— G (w, > (Fi;)) “Ifaprocessis waiting then it eventual
is in its critical section”

©2015 Rance Cleaveland 44

Model Checking in (2/5) Slides:

LTL Semantics

e LTL formulas interpreted with respect to
executions of Kripke structures

Kripke structure Execution
Sg—S1>S3>Sp—>S1 -

 Examples
— Sq—>S;=>S3>55=>S; ... EG (=i V =1,)
— Su—=5,5325,—S; ... G (w, = (F /,))

©2015 Rance Cleaveland 45

JERSIP

Model Checking in (3/5) Slides: s
£

>
OK&
56
Q)

Z)
IRYLAS

CTL* / CTL

 CTL* / CTL support branching time
— Path quantifiers A (“all paths”), E (“some path”) mixed in with LTL
— (State) formulas interpreted with respect to states
— AG (=i V =iy): “Forall paths, it is always the case that i, or i, is false”

e Examples
— 5, £ AG (=i, V ~i,)
— s, AG (w, = (Fiy))

©2015 Rance Cleaveland 46

Model Checking in (4/5) Slides: (

‘ﬁi\\foﬁ
.u“;
LTL / CTL Model Checking ”f«%%’éz”‘“

 LTL

— System (Kripke Structure) satisfies (LTL) formula ¢ iff every
execution satisfies ¢

— Typical model-checking approach: construct (Blichi) automaton
accepting all (infinite) sequences satisfying ¢

— Sample tool: SPIN

 CTL

— Subset of CTL* that requires a path quantifier (A/E) in front of
every modality (F/G/U)

— System satisfies CTL formula ¢ iff start state of Kripke structure
does

— Typical model-checking approach: use fixpoint iteration to
compute all states satisfying subformulas of ¢, then ¢

— Typical tool: (nu)SMV

©2015 Rance Cleaveland 47

Model Checking in (5/5) Slides:

Adding Time

 Metric Temporal Logic
— Add time bounds to modalities

—E.g8. Fjg5;0: “Between 0 and 5 time units from
now, a will hold”

 Timed CTL
— Add path quantifiers to MTL

— E.8. AFy 5, d: “Along all paths, it is the case that

between 0 and 5 times units from now, a will
hold”

©2015 Rance Cleaveland 48

So, What About Temporal Logic?

Can it be adapted to Problem #17?

©2015 Rance Cleaveland 49

Of Course It Can

 “Whenever the brake pedal is pressed, the
cruise control shall become inactive.”
AG (brake = -active)

* “Whenever actual, desired speeds differ by
more than 1 km/h, the cruise control shall fix
within 3 seconds.”

AG(|speed—dSpeed|>1 = AF_;|speed—dSpeed|<1)

©2015 Rance Cleaveland 50

Common Criticisms of Temporal Logic

 Formulas hard to comprehend for non-specialists

Compare:

— AG (|speed—dSpeed| >1 = AF_, |speed—dSpeed| < 1)
T H(-pPEtst! Prcnsuio = Ky e(2)
s+C ;
Output(t) = Peontrib + Leontrin + Deontrib I eomtrin = Hi/ e(T)dr
0
d
Deontrib, = Kdd_i

 Complex formulas hard to develop, understand
An argument for simpler requirements?

___|
51

©2015 Rance Cleaveland

Better Criticisms

e A second notation

E! Link: cruise/CruiseMain/CruiseMDL *

File Edit Wiew Simulation Fo

Tools Help

cpe , N | |
* Specification debugging ZHS » s o0 (BuBS
* Scope issues
AG (|speed —dSpeed| > 1= AF_, ot
speed —dSpeed| <1 i o
[speed = dspeed] =1) o N -
“dSpeed”? = n s
— Not an input e
— Not an output §
J— 1 I brake "
Internal variable! S
+ PIYC/TIYC? S
= iseMDL
Ready 100%% ode45

©2015 Rance Cleaveland

52

Verification via Model Checking

* Yes

— Full proofs of correctness (in principle)
— Automatic!

* NoO

— Combinatorial complexity

State-explosion: number of states grows exponentially in
number of bits

— When will it work?

©2015 Rance Cleaveland 53

What about Temporal Logic and

PIYC / TIYC?

e Relating testing to branching time, infinite
executions not so obvious

* Run-time monitoring
— Needs updating of TL semantics (finite sequences)

— Need to relate specification-level concepts (“active”)
to system level

— Usual focus has been on code, requirements
e Statistical model checking

— Another form of approximate verification

— Need probabilistic assumptions about different
transitions

©2015 Rance Cleaveland 54

IBV Intended to Address These

Criticisms

* One notation; existing tools can support
requirements formalization, debugging

* Scope issues addressed implicitly

* Instrumentation is executable, hence
debuggable

e Testing currently scales better than proof
... but proof still possible with right tools

©2015 Rance Cleaveland 55

Automotive Pilot Study #1

 Emergency Blinking Function (EBF)
— Part of body computer module
— Artifacts
* Requirements document (300+ pages)
e Code (200+ KLOC)
* Question: Will IBV work?

'
©2015 Rance Cleaveland 56

Pilot Study #1 (cont.)

* Tasks

— Code monitors from requirements

— Code Simulink design model from C

— Use Reactis to compare design, requirements
e Study details

— Time frame: 3 months

— Personnel: PhD student, Fraunhofer employee

'
©2015 Rance Cleaveland 57

From Requirements to Monitors

“[This] is the complete description of the “""‘e"e‘ﬁ—iﬁ"—s”’”pf”"ﬁ Li... - B]X
B Clle Edit Miew simulanon armat loals nelp
control of the CAN output signals can1 DGEH®B 08| 2| =0

and can2 produced by Function A.

Function A can be activated only with in = Monitor Model

1. The activation takes place when either T— s
. in CEnT_sx —{ o3nT_sx
the CAN bus messagesaorb is)
present....” = B NN e
“d Requirement_Models_Light_...|= ||| » @D
= imulaﬁnFma Hl_l i Veligstion lazsl > o]l
! Requirement_Models_Ligh... |;||E||E| a - - . - - > > - mﬂa B
File Edit WView Simulation Format Tools Help N |E E % | 3’-' E | "5 ? | - -
=) - e 2302zt
NFEHE| s 2R [E F | Comparison Model an2_act
Comparison Model
Validation Model e fodeds y
canl_sx == -
p () cant_sct g
cani_sx - ok
{: | can2_sx == -
canZ_act
’ﬁ““D 100% | lodess
b canl_sx
Fl100% | | |odes

'
©2015 Rance Cleaveland 58

From Code to Models

* Goal: reverse-engineer model from code

— Model-based design not used in development

— Will IBV work for “production-strength” design?

Part of EBF (250 SLOC) converted

— Inports / state variables: read-before-write vars.
— Qutports: vars. written, not read

— Resulting model: about 75 blocks

©2015 Rance Cleaveland 59

Conducting the Verification

e Reactis IBV features used
— Instrument model with monitors

— Generate tests automatically
e Results
— Test suites contained 80-120 test vectors

— Time needed: 20 sec

— Omission in requirements discovered

©2015 Rance Cleaveland 60

Requirement Issue

* Missing reset transitions in requirements

e Code was correct

'
©2015 Rance Cleaveland 61

Effort Data (Person-hours)

Verification,
0.25

Diagnosis, 0.5

Instr., 0.5

Monitors, 2

Rev. eng., 80 Code comp.,

40

'
©2015 Rance Cleaveland 62

Preliminary Conclusion

* “It worked” ...

e ...for one feature

e ...one (very complex) requirement
e ...using PhDs

'
©2015 Rance Cleaveland 63

Automotive Pilot Study #2

More exterior-lighting functions
More monitor models

No PhDs: one intern
— B.S. in Computer Science
— Significant expertise in Simulink

— No automotive experience

'
©2015 Rance Cleaveland 64

Approach

ldentify number of requirements for each
exterior-lighting function

— Count sentences

— Read sections, beginning with fewest sentences

Formalize requirements as monitor models

Develop design models for functions

e Verify

©2015 Rance Cleaveland 65

Monitor Model Architecture Change

¥ monitorArch

Needed for File Edit Yiew Simulation Format Tools Help

o, o D|EE§|%E|@$‘?| ------ |P m [10.0 INun‘naI
conditional '
requirements N

' check|— pInNOT|—
— Behavior only "
specified for certain || || 10wl o] [ZO
situations =i N A R
i In2_actual O ——
py . i @ | Cutt_sc
— “If timeout occurs
. .) Dugual S

switch off light :

Ready 100% | | \oded5 |

©2015 Rance Cleaveland 66

Results

62 monitor, 10 design models created
* Enhancements to the monitor architecture

e Verification results

— 11 inconsistencies in requirements

“If the ignition is off, the light must be off”
“If the light switch is on, the light must be on”

— Why?

e Evolving document
* Multiple teams
 “The implementors will know what to do”

©2015 Rance Cleaveland 67

Effort (Person-hours)

Diagnosis, 10
Verification,

Monitors, 53 Design, 26

'
©2015 Rance Cleaveland 68

Discussion

Requirements modeling

— First study: 2 hours (1.2% of total) 1 reqt. (2 hrs. / reqt.)
— Second study: 53 hours (34.4% of total) 62 regts. (50 min. / reqt.)

Design model development

— First study: 80 hrs. (49.0% of total) Reverse engg. (80 hrs. / model)
— Second study: 26 hours (16.9% of total) Forward engg. (2.6 hrs. / model)

e Verification
— First study: 45 min. (0.5% of total) 1 reqt. (45 min. / reqt.)
— Second study: 25 hours (16.2%) 62 reqts. (25 min. / reqt.)

Fault diagnosis

— First study: 30 min. (0.3% of total) 1 reqt., 1 error (30 min. / error)
— Second study: 10 hours (6.5% of total) 62 reqts., 11 errors (55 min. / error)

'
©2015 Rance Cleaveland 69

More Discussion

 Was the requirements document was modified?
— No
— Reasons:

 Document developed with customer, requires customer
sign-off to change

* Developers know domain better
* Requirements
— Not always the “gold standard” for system behavior

— Rather: one description of the system that should
ideally be consistent with other descriptions

©2015 Rance Cleaveland 70

Yet More Discussion

 When did we “prove if we could”?
— We didn’t ...
— ... because of lack of available tool support

* Did we debug monitor-models while
developing them?

Yes!

©2015 Rance Cleaveland 71

Summary

e PIYC /TIYC approaches identified, applied for model-based
development

— Model-based testing: equivalence checking

— Instrumentation-based verification (IBV): requirements checking

* |dea of PIYC / TIYC: gain benefit from formalism even if
formal verification infeasible

— Model-based testing: models serve as source of tests, oracles

— Instrumentation-based verification (IBV): monitors act as oracles

 Requirements are not always what is required
Requirements documents are often “just another description”

©2015 Rance Cleaveland 72

Ongoing / Future Work

* PIYC/TIYC

— How to characterize the “gap” between proof,
testing?

— How to combine formal, approximate verification?

* |IBV model checking for Simulink / Stateflow
* |BV for code

e System comprehension via testing, machine-
learning

©2015 Rance Cleaveland 73

Thanks!

Rance Cleaveland
rance@cs.umd.edu

©2015 Rance Cleaveland 74

