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What This Talk Is

• … a position statement

• … a discussion of a research program

• … a review of some things I have been 

working on over the past decade
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Formal Methods

• Mathematically rigorous approaches to 

specifying, verifying systems

• Why?  To increase confidence!

– If the specification is trusted, verification yields 

trust in system

– If specification is not trusted, proving it is 

consistent with system builds trust in both
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The Elements of Formal Methods

• Formal semantics of systems

Systems must be mathematical objects!

• Formal specifications

Mathematical descriptions of desired behavior

• Formal verification

Proofs that systems satisfy specifications
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Verification = Proof

• Model checking

Proof constructed “automatically”

• Theorem proving

Proof constructed “automatedly”
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Example:  Temporal Logic

• Systems:  Kripke structures

• Specifications:  Temporal Formulas

– E.g. AG (¬i1 ∨ ¬i2)

– “It is always the case that either i1 or i2 is false.”

• Verification:  Model checking
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Another Example:  Design-By-

Contract

• Systems:  code (class definitions)

• Specifications

– Pre / postconditions

– Invariants

– asserts

• Verification:  Theorem proving
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Status of Formal Methods

• Noteworthy successes!

• We are not at the stage where success is 

expected
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Why?

• “Scalability”

Building proofs is laborious, even for machines

• Inability to predict level of effort

– Difficulty of proof not correlated to usual measures 

of system complexity

– Work needed to coax proof out of tools not easy to 

estimate

• Need for highly trained (= expensive) 

workforce
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My Perspective

• Proving is hard, but guarantees are very strong

• If proofs are not possible / feasible

– Must test to conduct V&V

– Benefits of formal specifications are difficult to 

explain in this case

• “Prove If You Can, Test If You Cannot” 

(PIYC/TIYC)

We should focus on formal specifications that 

support proof and testing!
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PIYC / TIYC

• “Pick-tick”
– Prove If You Can.

– Test If You Cannot.

• A formalism supports PIYC / TIYC if

– Full formal verification can be undertaken

– So can less complete V&V

• Testing

• Inspections

• Etc.

• In other words:  full and approximate verification are 
both possible
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What This Talk Is About

• PIYC / TIYC in practice

– Model-based testing (MBT)

• Models used as software specifications

• MBT used to check equivalence between specs, software

– Instrumentation-Based Verification (IBV)

• Specifications given in same notation as software

• Verification = instrument software, check for errors

• Context

– Automotive control software

– MATLAB® / Simulink® / Stateflow® / Reactis®
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Talk Agenda

• Automotive software and MBD

– MATLAB / Simulink / Stateflow

– Verification in MBD

• MBT (using Reactis®)

• IBV (also using Reactis)

• Conclusions
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Some Software Companies
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Automotive Software

• Driver of innovation

90% of new feature content based on software [GM]

• Rising cost

50% of Prius cost due to software [Toyota]

• Warranty, liability, quality

High-profile recalls in Germany, Japan, US
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A Grand Challenge

• Ensure high quality of automotive software while

– ... preserving time to market

– … containing cost

• Key approach:  Model-Based Development (MBD)

– Use executable models during development

– Dominant language:  MATLAB / Simulink / Stateflow
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Model-Based Development

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Main Motivation:  autocode
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More Benefits of MBD

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Models formalize specifications, design

Models facilitate communication among teams

Models support V&V, testing
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A Sample Automotive MBD Flow
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Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Requirements Documents

Specifications Floating-point models from controls engineers

Designs Fixed-point models from platform engineers

Implementation C from autocoding, software developers

Testing Hardware-in-the-loop (HIL) testing from test engineers
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MBD Verification Problem #1
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Requirements

Design

Specifications

Implementation

models

models

Do specifications satisfy requirements?
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MBD Verification Problem #2
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Requirements

Design

Specifications

Implementation

models

models

Does design meet specifications?
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MBD Verification Problem #3
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Requirements

Design

Specifications

Implementation

models

models

Does implementation meet design?
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PIYC / TIYC for MBD

• Formalize verification problems 

mathematically

– Formal semantics of systems

– Formal specifications

– Formal definition of satisfaction

• Give testing-based approximate verification 

strategies
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Simulink

• Block-diagram modeling 

language / simulator of 

The MathWorks, Inc.

• Hierarchical modeling

• Continuous- and 

discrete-time simulation
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Stateflow

24©2015 Rance Cleaveland



Semantics

• Simulink has different “solvers” (= semantics)

– Continuous:  inputs / outputs are signals

– Discrete:  inputs / outputs are data values

• Physical modeling:  continuous solvers

• (Digital) controller modeling: discrete solvers

– Synchronous

– Run-to-completion

– Time-driven
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state

vars

model

inputs

[ ]

[ ]
outputs

state

vars

model

inputs

[ ]

[ ]
outputs

state

vars

Example
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Discrete Simulink Semantics

• Simulink models are (deterministic) Mealy 

machines

– States are assignments of values to state variables

– Transitions are computed by model

• Can thus speak of language of model M

– I = set of possible input vectors for M

– O = set of possible output vectors for M

– L(M) = {w ∈ (I x O)* | w is (timed) sequence of 

transition labels of execution of M }
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Formalizing MBD Problem #2

• Specification, design models are both Mealy machines

• MBD Problem #2
– Given: (spec) model S, (design) model D

– Determine:  does L(S) = L(D)?

– Note:  some mappings between sequences in L(S), L(D) 
may be needed (e.g. if S is floating point, D fixed point)
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Requirements

Design

Specifications

Implementation

models

models
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Formalizing MBD Problem #3

• Semantics of implementation I needs to yield Mealy machine also!

• MBD Problem #3
– Given: (design) model D, implementation I

– Determine:  does L(D) = L(I)?

– Note:  some mappings between sequences in L(D), L(I) may be needed
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Requirements

Design

Specifications

Implementation

models

models
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PIYC / TIYC for Problem #2 (and #3)

• Can prove instances of Problem #2
– S, D are deterministic Mealy machines

– Can use language-equivalence checkers to compute L(M) = L(S)

– Not done in practice because state spaces too big

• Approximate verification:  use testing
– Standard model-based testing

• Generate test cases from S

• Run them on D

• Compare outputs

– “Back-to-back” testing (e.g. ISO 26262)
• Do MBT

• Also, generate tests from D, run them on S, compare results
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Reactis®, Reactis for C

Automatic testing tool from Reactive Systems Inc.

Tester Generate tests from models, C code

Simulator Run, fine-tune tests

Validator Validate models / code

Reactis
Simulink /

Stateflow /

C
model / code
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Reactis Tester
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• Model / code in; tests out

• Model / code, tests in; better tests out

Reactis

Tester

Test suite.mdl file
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Launching Tester
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Generated Test Data
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Test Generation with Reactis

• Test  = simulation run = sequence of I/O vectors = element of L(M)

• Goal:  maximize model coverage  (e.g. branch, state, MC/DC, etc.)

• Method:  guided simulation (US Patent 7,644,398)

– Think:  state-space search

• Models = Mealy machines

• Test generation = state-space traversal

• Search termination condition:  coverage of model (= transition computation)

– Choose input data to guide search to uncovered parts of model (= 
transition computation)

• Monte Carlo

• Constraint solving (currently, linear constraints, SAT)
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Experience

• Main use case for Reactis

• In use at 75+ companies around the world
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Summary So Far

• PIYC / TIYC = “Prove If You Can / Test If You 

Cannot”

– Formal specifications support both formal verification, 

testing

– Testing can be viewed as “approximate verification”

• Two examples of PIYC / TIYC in model-based 

practice

– The formalizations involve language equivalence

– The testing-based approximations rely on structural 

coverage for termination
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Formalizing MBD Problem #1

• We would like a PIYC / TIYC approach for this problem

• Need:
– Formalized requirements

– Formalized notion of satisfaction

• A useful idea:  Instrumentation-Based Verification
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Design
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IBV:  Requirements

• Formalize 
requirements as 
monitor models

• Example

If speed is < 30, 

cruise control must 

remain inactive
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IBV:  Satisfaction

• Instrument design model 
with monitors

• Model satisfies monitors if:

– For every input sequence …

– … every monitor model output 
remains true

• Reachability problem!

– Proof possible

– State space an issue
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Approximate Verification for 

Problem #1

• Use coverage testing on 
instrumented model
– Better scalability

– If booleans part of coverage 
criteria:
• Test generator tries to make 

monitor outputs false

• Skeptical testing!

• Reactis
– Supports instrumentation

– Acts as skeptical tester

– Reports violations

41©2015 Rance Cleaveland



Related Work

• Run-time monitoring

Havelund et al., Lee et al., Godefroid, …

• Automaton-based model-checking

Holzmann et al., Vardi et al., Kurshan et al., …

• Statistical model checking

Clarke et al., Legay et al., Smolka et al., …
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What About Model Checking?

• Temporal logic often used to formalize 

requirements

• Model checkers tell whether temporal-logic 

formulas are true or not

• Can this be adapted to Problem #1?
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Model Checking in (1/5) Slides:  

Linear-Time Temporal Logic (LTL)

• Temporal Logic:  modal (propositional) logics for 
time

– Usual propositional operators: atomic propositions
(aka propositional variables), ∧, ∨, ¬, ⇒, .... 

– Modal operator for evolution over time:  U (until)

– Derived modal operators:  F (eventually), G (always)

• Examples

– G (¬i1 ∨ ¬i2) “At least one process is not in its
critical section”

– G (w1 ⇒ (F i1))  “If a process is waiting then it eventual 
is in its critical section”
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Model Checking in (2/5) Slides:  

LTL Semantics

• LTL formulas interpreted with respect to 
executions of Kripke structures

Kripke structure Execution

s0→s1→s3→s0→s1 …

• Examples
– s0→s1→s3→s0→s1 … ⊨ G (¬i1 ∨ ¬i2)

– s0→s1→s3→s0→s1 … ⊭ G (w2 ⇒ (F i2))
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s0: w1, w2

s1: i1, w2 s2: w1, i2

s3: o1, w2 s4: w1, o2

s5: o1, i2 s7: i1, o2s6: o1, o2
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Model Checking in (3/5) Slides:  

CTL* / CTL
• CTL* / CTL support branching time

– Path quantifiers A (“all paths”), E (“some path”) mixed in with LTL

– (State) formulas interpreted with respect to states

– AG (¬i1 ∨ ¬i2):  “For all paths, it is always the case that i1 or i2 is false”

• Examples
– s0 ⊨ AG (¬i1 ∨ ¬i2)

– s0 ⊭ AG (w2 ⇒ (F i2))
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s0: w1, w2

s1: i1, w2 s2: w1, i2

s3: o1, w2 s4: w1, o2

s5: o1, i2 s7: i1, o2s6: o1, o2
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Model Checking in (4/5) Slides:

LTL / CTL Model Checking
• LTL

– System (Kripke Structure) satisfies (LTL) formula φ iff every 
execution satisfies φ

– Typical model-checking approach:  construct (Büchi) automaton 
accepting all (infinite) sequences satisfying φ

– Sample tool:  SPIN

• CTL
– Subset of CTL* that requires a path quantifier (A/E) in front of 

every modality (F/G/U)

– System satisfies CTL formula φ iff start state of Kripke structure 
does

– Typical model-checking approach:  use fixpoint iteration to 
compute all states satisfying subformulas of φ, then φ

– Typical tool: (nu)SMV
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Model Checking in (5/5) Slides:

Adding Time

• Metric Temporal Logic

– Add time bounds to modalities

– E.g. F[0,5] a:  “Between 0 and 5 time units from 

now, a will hold”

• Timed CTL

– Add path quantifiers to MTL

– E.g. AF[0,5] φ:  “Along all paths, it is the case that 

between 0 and 5 times units from now, a will 

hold”
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So, What About Temporal Logic? 

Can it be adapted to Problem #1?
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Of Course It Can

• “Whenever the brake pedal is pressed, the 

cruise control shall become inactive.”

AG (brake ⇒ ¬active)

• “Whenever actual, desired speeds differ by 

more than 1 km/h, the cruise control shall fix 

within 3 seconds.”

AG(|speed–dSpeed|>1 ⇒ AF≤3|speed–dSpeed|≤1)
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• Formulas hard to comprehend for non-specialists

Compare:

– AG (|speed–dSpeed| > 1 ⇒ AF≤3 |speed–dSpeed| ≤ 1)

–

• Complex formulas hard to develop, understand

An argument for simpler requirements?

Common Criticisms of Temporal Logic

©2015 Rance Cleaveland 51



Better Criticisms

• A second notation

• Specification debugging

• Scope issues

AG ( |speed – dSpeed| > 1 ⇒ AF≤3

|speed – dSpeed|  ≤ 1)

“dSpeed”?

– Not an input

– Not an output

– Internal variable!

• PIYC / TIYC?
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Verification via Model Checking

• Yes

– Full proofs of correctness (in principle)

– Automatic!

• No

– Combinatorial complexity

State-explosion:  number of states grows exponentially in 

number of bits

– When will it work?
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What about Temporal Logic and 

PIYC / TIYC?

• Relating testing to branching time, infinite 
executions not so obvious

• Run-time monitoring

– Needs updating of TL semantics (finite sequences)

– Need to relate specification-level concepts (“active”) 
to system level

– Usual focus has been on code, requirements

• Statistical model checking

– Another form of approximate verification

– Need probabilistic assumptions about different 
transitions
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IBV Intended to Address These 

Criticisms

• One notation; existing tools can support 

requirements formalization, debugging

• Scope issues addressed implicitly

• Instrumentation is executable, hence 

debuggable

• Testing currently scales better than proof
… but proof still possible with right tools
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Automotive Pilot Study #1

• Emergency Blinking Function (EBF)

– Part of body computer module

– Artifacts

• Requirements document (300+ pages)

• Code (200+ KLOC)

• Question:  Will IBV work?
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Pilot Study #1 (cont.)

• Tasks

– Code monitors from requirements

– Code Simulink design model from C

– Use Reactis to compare design, requirements

• Study details

– Time frame:  3 months

– Personnel:  PhD student, Fraunhofer employee
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From Requirements to Monitors

58

“[This] is the complete description of the 

control of the CAN output signals can1 

and can2 produced by Function A. 

Function A can be activated only with in = 

1. The activation takes place when either 

the CAN bus messages a or b is 

present….”
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From Code to Models

• Goal:  reverse-engineer model from code

– Model-based design not used in development

– Will IBV work for “production-strength” design?

• Part of EBF (250 SLOC) converted

– Inports / state variables:  read-before-write vars.

– Outports:  vars. written, not read

– Resulting model: about 75 blocks
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Conducting the Verification

• Reactis IBV features used

– Instrument model with monitors

– Generate tests automatically

• Results

– Test suites contained 80-120 test vectors

– Time needed: ±20 sec

– Omission in requirements discovered
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Requirement Issue

• Missing reset transitions in requirements

• Code was correct
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Effort Data (Person-hours)

Reqts. comp., 
40

Code comp., 
40

Rev. eng., 80

Monitors, 2

Instr., 0.5

Verification, 
0.25

Diagnosis, 0.5
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Preliminary Conclusion

• “It worked” … 

• … for one feature

• … one (very complex) requirement

• … using PhDs
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Automotive Pilot Study #2

• More exterior-lighting functions

• More monitor models

• No PhDs:  one intern

– B.S. in Computer Science

– Significant expertise in Simulink

– No automotive experience 
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Approach

• Identify number of requirements for each 

exterior-lighting function

– Count sentences

– Read sections, beginning with fewest sentences

• Formalize requirements as monitor models

• Develop design models for functions

• Verify
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Monitor Model Architecture Change

Needed for 

conditional 

requirements

– Behavior only 

specified for certain 

situations

– “If timeout occurs 

switch off light”
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Results

• 62 monitor, 10 design models created

• Enhancements to the monitor architecture

• Verification results

– 11 inconsistencies in requirements

“If the ignition is off, the light must be off”

“If the light switch is on, the light must be on”

– Why? 

• Evolving document

• Multiple teams

• “The implementors will know what to do”
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Effort (Person-hours)

Reqts. comp., 
40

Design, 26
Monitors, 53

Verification, 
25

Diagnosis, 10
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Discussion

• Requirements modeling

– First study:  2 hours (1.2% of total) 1 reqt. (2 hrs. / reqt.)

– Second study:  53 hours (34.4% of total) 62 reqts. (50 min. / reqt.)

• Design model development

– First study:  80 hrs. (49.0% of total) Reverse engg. (80 hrs. / model)

– Second study:  26 hours (16.9% of total) Forward engg. (2.6 hrs. / model)

• Verification

– First study:  45 min. (0.5% of total) 1 reqt. (45 min. / reqt.)

– Second study:  25 hours (16.2%) 62 reqts. (25 min. / reqt.) 

• Fault diagnosis

– First study:  30 min. (0.3% of total) 1 reqt., 1 error (30 min. / error)

– Second study:  10 hours (6.5% of total) 62 reqts., 11 errors (55 min. / error)
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More Discussion

• Was the requirements document was modified?

– No

– Reasons:

• Document developed with customer, requires customer 

sign-off to change

• Developers know domain better

• Requirements

– Not always the “gold standard” for system behavior

– Rather: one description of the system that should 

ideally be consistent with other descriptions
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Yet More Discussion

• When did we “prove if we could”?

– We didn’t …

– … because of lack of available tool support

• Did we debug monitor-models while 

developing them?

Yes!
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Summary

• PIYC / TIYC approaches identified, applied for model-based 
development

– Model-based testing:  equivalence checking

– Instrumentation-based verification (IBV):  requirements checking

• Idea of PIYC / TIYC:  gain benefit from formalism even if 
formal verification infeasible

– Model-based testing:  models serve as source of tests, oracles

– Instrumentation-based verification (IBV):  monitors act as oracles

• Requirements are not always what is required

Requirements documents are often “just another description”
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Ongoing / Future Work

• PIYC / TIYC

– How to characterize the “gap” between proof, 
testing?

– How to combine formal, approximate verification?

• IBV model checking for Simulink / Stateflow

• IBV for code

• System comprehension via testing, machine-
learning
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Thanks!

Rance Cleaveland

rance@cs.umd.edu
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