
2013-06-05

1

QuickCheck at Work

John Hughes

Exercises � Practice

• Changes the balance of effort

Small scale

Property-driven

development

Trivial inputs

Large scale

Testing legacy

code

Complex inputs

�

�

�

2013-06-05

2

Example: Ericsson Media Proxy

Megaco

request

Megaco

response

Megaco

request

Megaco

response

Many, many

parameters, can

be 1—2 pages

per message!

Lots of work

to write

generators

State machine

models fit the

problem well

A Media Proxy Bug

• Test adding and removing callers from a call

Add Add Sub Add Sub Add Sub

Call Full

2013-06-05

3

OK

3G Radio Base Station

Setup

Setup

OK

Reject

4G LTE Radio Base Stations

Google:

Graham Crowe,

Erlang Factory

2013-06-05

4

AUTOSAR Basic Software

2013-06-05

5

Theory

Car manufacturers should be

able to buy code from different

providers and have them work

seamlessly together

Practice

VOLVO's experience has been

that this is often not the case

2013-06-05

6

The Plan

2013-06-05

7

Testing strategy
API calls generated

from a QuickCheck

state machine

specification
Check the

right calls

are made to

other

components

Example bug in vendor code

2013-06-05

8

Example bug in vendor code

Test code for Flexray Interface

• The code is 16x smaller!

0

10000

20000

30000

40000

50000

XML Code

Standard

test cases

QuickCheck

and Erlang

2013-06-05

9

The Problem of Scale

QuickCheck

state

machine

Essentially an

implementation

of AUTOSAR in

Erlang!

0

5000

10000

15000

20000

Implementation

Specification

Results…

• Testing code from 6 suppliers

• 200+ issues identified

• 100+ bugs identified in the standard

2013-06-05

10

"We know there is a lurking bug somewhere

in the dets code. We have got 'bad object'

and 'premature eof' every other month the

last year. We have not been able to track the

bug down since the dets files is repaired

automatically next time it is opened.“

Tobbe Törnqvist, Klarna, 2007

What is it?

Application

Mnesia

Dets

File system

Invoicing services for web shops

Distributed database:

transactions, distribution,

replication

Tuple storage

300

people in

5 years

Race

conditions?

2013-06-05

11

Imagine Testing This…

dispenser:take_ticket()

dispenser:reset()

A Unit Test in Erlang

test_dispenser() ->

reset(),

take_ticket(),

take_ticket(),

take_ticket(),

reset(),

take_ticket().

ok =

1 =

2 =

3 =

ok =

1 =

Expected

results
BUT…

2013-06-05

12

A Parallel Unit Test

• Three possible correct

outcomes!

reset

take_ticket

take_ticket

take_ticket

1

2

3

1

3

2

1

2

1

ok

Another Parallel Test

• 42 possible correct outcomes!

reset

take_ticket

take_ticket

take_ticket

take_ticket

reset

2013-06-05

13

Property-Based Testing to the rescue!

• Enumerating possible results is impractical!

• Only properties of the correct results make

sense

– e.g. sort([A,B,C]) == [1,2,3]

• Reuse sequential models to decide if parallel

tests pass

Sequential testing…

API

Calls

API

Calls

API

Calls

API

Calls

Model

state

Model

state

Model

state

Model

state

postconditions

2013-06-05

14

The Model

• Just an integer!

• State transitions

• Postconditions

next_state(S,_V,{call,_,reset,_}) ->

0;

next_state(S,_V,{call,_,take_ticket,_}) ->

S+1.

postcondition(S,{call,_,take_ticket,_},Res) ->

Res == S+1;

Parallel Test Cases

• Use the same model!

2013-06-05

15

prop_parallel() ->

?FORALL(Cmds,parallel_commands(?MODULE),

begin

start(),

{H,Par,Res} =

run_parallel_commands(?MODULE,Cmds),

Res == ok)

end)).

Generate parallel

test cases

Run tests, check for a

matching serialization

Prefix:

Parallel:

1. take_ticket() --> 1

2. take_ticket() --> 1

Result: no_possible_interleaving

take_ticket() ->

N = read(),

write(N+1),

N+1.

2013-06-05

16

dets

• Tuple store:

{Key, Value1, Value2…}

• Operations:

– insert(Table,ListOfTuples)

– delete(Table,Key)

– insert_new(Table,ListOfTuples)

– …

• Model:

– List of tuples

200 LOC

vs.

6.3 KLOC

Bug #1

Prefix:

open_file(dets_table,[{type,bag}]) -->

dets_table

Parallel:

1. insert(dets_table,[]) --> ok

2. insert_new(dets_table,[]) --> ok

Result: no_possible_interleaving

insert_new(Name, Objects) -> Bool

Types:

Name = name()

Objects = object() | [object()]

Bool = bool()

2013-06-05

17

Bug #2

Prefix:

open_file(dets_table,[{type,set}]) --> dets_table

Parallel:

1. insert(dets_table,{0,0}) --> ok

2. insert_new(dets_table,{0,0}) --> …time out…

=ERROR REPORT==== 4-Oct-2010::17:08:21 ===

** dets: Bug was found when accessing table dets_table

Bug #3

Prefix:

open_file(dets_table,[{type,set}]) --> dets_table

Parallel:

1. open_file(dets_table,[{type,set}]) --> dets_table

2. insert(dets_table,{0,0}) --> ok

get_contents(dets_table) --> []

Result: no_possible_interleaving !

2013-06-05

18

Bug #4

Prefix:

open_file(dets_table,[{type,bag}]) --> dets_table

close(dets_table) --> ok

open_file(dets_table,[{type,bag}]) --> dets_table

Parallel:

1. lookup(dets_table,0) --> []

2. insert(dets_table,{0,0}) --> ok

3. insert(dets_table,{0,0}) --> ok

Result: ok

premature eof

Bug #5

Prefix:

open_file(dets_table,[{type,set}]) --> dets_table

insert(dets_table,[{1,0}]) --> ok

Parallel:

1. lookup(dets_table,0) --> []

delete(dets_table,1) --> ok

2. open_file(dets_table,[{type,set}]) --> dets_table

Result: ok

false

bad object

2013-06-05

19

"We know there is a lurking bug somewhere

in the dets code. We have got 'bad object'

and 'premature eof' every other month the

last year.”

Tobbe Törnqvist, Klarna, 2007
Each bug fixed the day

after reporting the

failing case

How come?
• dets is mature software that has been heavily

used in production for >15 years

• Race conditions are hard to write test cases
for

– So people don’t!

– Usually left until integration testing

• If it’s not tested, why should it work?

2013-06-05

20

Property-Based Testing

==

Lightweight Formal Methods

• Formal Methods can bring great benefits, but
are too costly or impractical in many
situations, because proofs are so very hard

• PBT lets you use formal methods

– Write a formal spec, and check it against the code!

– Cheaply—often cheaper than ordinary testing!

• It’s working, at Ericsson, Basho, Motorola, …

The Initial Phases

• Lots of work to develop specification

– Understanding and generating test inputs

• Many errors to fix in the specification, due to…

– New code is buggy

– Misunderstandings of the informal spec

– Undocumented features of the system

– Undocumented limitations of the system

• ”happy case” programming

2013-06-05

21

Making Progress

• QuickCheck tends to find the same problem in

every run

– There is a ”most likely bug”

– Other bugs usually shrink to the most likely one

• To make progress, the most likely bug must be

excluded

– Bug preconditions document the limitations of the

system

The Payoff

• Once the spec is corrected, and limitations

accounted for, real bugs start to appear

• Each extension to the spec yields a non-linear

improvement in the variety of tests

• The same spec can find many, many bugs

2013-06-05

22

Property-Based Testing

Makes Quality Affordable

