System Validation: Modal μ -calculus

Mohammad Mousavi and Jeroen Keiren

<mark>Open</mark> Universiteit

General Overview

Using regular HML we cannot express some intuitive properties:

- \blacktriangleright all computations inevitably reach a state which satisfies φ
- for some execution φ holds everywhere

Modal μ -calculus

Extend syntax of regular HML with fixed points:

 $\begin{array}{l} true \\ false \\ \neg \varphi \\ \varphi \land \psi \\ \varphi \lor \psi \\ \varphi \Longrightarrow \psi \\ \langle \beta \rangle \varphi \\ [\beta] \varphi \end{array}$

Modal μ -calculus

Extend syntax of regular HML with fixed points:

true false $\neg \varphi$ $\varphi \wedge \psi$ $\varphi \lor \psi$ $\varphi \implies \psi$ $\langle \beta \rangle \varphi$ $[\beta]\varphi$ X a variable representing a set of states $\mu X. arphi$ the least set of states satisfying $X = \varphi$ $\nu X.\varphi$ the greatest set of states satisfying $X = \varphi$

X may only appear under even number of negations

Any set of states T satisfies the set-equation X = X

- $\mu X.X$ is the least such set, \emptyset
- $\nu X.X$ is the largest such set, S

A state can be reached where *a* cannot be executed:

A state can be reached where *a* cannot be executed:

```
\{\mu, \nu\} X.[a] false \lor \langle true \rangle X
```


A state can be reached where a cannot be executed:

```
\{\mu, \nu\} X.[a] false \lor \langle true \rangle X
```


Solutions:

• $\mu X.[a]$ false $\lor \langle true \rangle X: \{s_0, s_2\}$

A state can be reached where a cannot be executed:

```
\{\mu, \nu\} X.[a] false \lor \langle true \rangle X
```


Solutions:

- $\mu X.[a]$ false $\lor \langle true \rangle X: \{s_0, s_2\}$
- $\nu X.[a]$ false $\lor \langle true \rangle X: \{s_0, s_1, s_2\}$

A state can be reached where a cannot be executed:

```
\{\mu, \nu\} X.[a] false \lor \langle true \rangle X
```


Solutions:

• $\mu X.[a]$ false $\lor \langle true \rangle X$

A state can be reached where *a* cannot be executed:

```
\mu X.[a]false \lor \langle true \rangle X
```


A state can be reached where *a* cannot be executed:

 $\mu X.[a]$ false $\lor \langle true \rangle X$

Unique least solution for this equation is \emptyset

A state can be reached where *a* cannot be executed:

```
\mu X.[a]false \lor \langle true \rangle X
```


Unique least solution for this equation is $\boldsymbol{\emptyset}$

Property does not hold in the LTS

A state can be reached where a cannot be executed:

```
\mu X.[a]false \lor \langle true \rangle X
```


Unique least solution for this equation is \emptyset

Property does not hold in the LTS

Note: this property is equivalent to $\langle true^* \rangle [a]$ false

There is an infinite path along which an a-transition is always possible

 $\{\mu,\nu\}X.\langle a\rangle$ true $\land \langle$ true $\rangle X$

There is an infinite path along which an *a*-transition is always possible

 $\{\mu,\nu\}X.\langle a\rangle$ true $\land \langle$ true $\rangle X$

Three solutions to $X = \langle a \rangle true \land \langle true \rangle X$: { s_0 }, { s_1 }, and { s_0, s_1 }

There is an infinite path along which an a-transition is always possible

 $\{\mu, \nu\} X. \langle a \rangle$ true $\land \langle true \rangle X$

Three solutions to $X = \langle a \rangle true \land \langle true \rangle X$: { s_0 }, { s_1 }, and { s_0, s_1 }

We intended to describe the greatest solution!

 $\nu X.\langle a \rangle true \wedge \langle true \rangle X$

• Safe(φ): for some execution φ holds everywhere

 $u X. \varphi \land ([true] false \lor \langle true \rangle X)$

• Safe(φ): for some execution φ holds everywhere

 $\nu X. \varphi \land ([true] false \lor \langle true \rangle X)$

• $Even(\varphi)$: eventually φ will hold (in every execution)

 $\mu X. \varphi \lor (\langle true \rangle true \land [true]X)$

General Overview

Thank you very much.

