Checking and Deriving Module Paths in Verilog
Cell Library Descriptions

Matthias Raffelsieper MohammadReza Mousavi Chris Strolenberg
CS Dept., TU/Eindhoven CS Dept., TU/Eindhoven Fenix,
Eindhoven, The Netherlands Eindhoven, The Netherlands Eindhoven, The Netherlands
Email: M.Raffelsieper@tue.nl Email: M.R.Mousavi@tue.nl Email: chris@fenix-da.com

Abstract—Module paths are often used to specify the delays since at this level, we are only concerned with their necessity
of cells i.n a Verilog cell library description, which define the gnd realizability, i.e., the need and use of their presence
propagation delay for an event from an input to an output. o gapsence. This forms the basis for any subsequent timing
Specifying such paths manually is an error prone task; a N . .
forgotten path is interpreted as a zero delay, which can cause analysis, i.e., one has to first determine whether g module path
further flaws in the subsequent design steps. Moreover, one can ¢an actually occur or not before one can determine the delays
specify superfluous module paths, i.e., module paths that can specified by module paths. Furthermore, when considering all
never occur in any practical run of the model apd henge., make. of the specified paths of a cell, one might datse paths
excessive restrictions on the subsequent des_lgn decision. Th'sduring the timing closure of a larger design composed of
paper presents a method to check whether the given module paths
are reflected in the functional implementation. Complementing multiple cells, which m'ght reject correct designs. Thereforg,
this check, we also present a method to derive module paths from We check whether the given module paths are consistent with
a functional description of a cell. the functional description.

Complementing the check, we also present a technique to
derive module paths from a functional description. This allows

A cell library is a collection of logic cores used to constructo guarantee that all possible delay behaviors of a cell have
larger chip designs, consisting of combinational cells (e.deen considered. If some module path would be forgotten, then
and and xor) and sequential cells (e.g., latches and flipsimulators will treat this as a zero delay, i.e., the output will
flops). Cell libraries are usually described at multiple levelshange instantly. This can cause further flaws in the subsequent
of abstraction, such as a transistor implementation that wiésign steps and the timing simulation of such a circuit does
finally be manufactured and a Verilog description that is usewbt reflect the actual behavior.
for simulation. In [8] a formal semantics for theE®ICELL The rest of this paper is structured as follows. In Section |
subset of Verilog was provided, which was used as a bagie introduce the ¥RICELL subset of Verilog that we are
for formal conformance checking between the two levels dfterested in. Furthermore, this section also shortly explains
abstraction. The ¥RICELL subset of Verilog is the subsetour representation of transition systems, which is used to rep-
commonly used for the functional description of cell librariegesent the semantics ofB®ICELL defined in [8]. Section IlI
However, Verilog descriptions of cells also contain timinghen defines the formal requirements imposed by a module
specifications, in terms ofmodule path delaygalso called path onto the functional description. These requirements are
timing arcs delay arc$ andtiming checks used to check whether the module paths specified for a cell

Using symbol execution for detecting paths has been studiae consistent with its functional description, thereby finding
in various domains, see e.g., [3], [2]. The main goal ahodule paths that are superfluous and can be removed. For the
these studies has been to make the calculation of delaysotiver direction, namely searching for missing module paths,
worst case execution times more precise. For example, anmethod is presented in Section IV. There, the functional
[3] an accurate timing analysis for combinational circuits idescription of a cell is analyzed and changes of an output
introduced and in [2] symbolic simulation is used to verify thas a result of a changing input are extracted. Together with
timing of FSM models of sequential circuits. Since the goal alome additional analysis of the output value, we thereby derive
the work reported in [2] is different, some extra assumptioral possible module paths from the functional description of
on the structure of circuits had to be made in [2] to make cell. Our research is driven by a cooperation with Fenix
the timing verification feasible. Elsewhere, in [7], an analysis industrial partner. Hence, we applied both methods to
technique was presented to detect missing timing checks.itustrial cell libraries and present some of our experimental
this paper, we focus on analyzing module path delays. Wesults in Section V. We conclude the paper in Section VI.
present techniques to check whether a given module path
is consistent with the functional description, and to derive
module paths from the functional description. The actual In this paper, we are concerned with a subset of Verilog,
delays put on module paths are irrelevant for our analysialled VERICELL in [8], which is the subset used in the

I. INTRODUCTION

Il. PRELIMINARIES

functional description of cell libraries. Hence, in this sectiorPrimitive latch(g, d, ck, rb);

we introduce this subset. In Verilog, variables can take the?;';ﬁe‘“ g, reg q; input ck, d, rb;

values0, 1, X, and Z, corresponding to the Boolean values ;" 4 o« b - q:q

false and true, an unknown value, and a high impedance, « 0 ? 1?:-;
respectively. However, in FRICELL, the valuesX and Z ? 0 1 :7?2:-;
behave equivalently. Hence, our domain of interest are the o 1 2 :?2:0;
ternary valuesT = {0, 1, X}. ,1) ,1) é Z (1) '

A cellis a module that contains only instantiations of built- o, apje
in and user defined primitives. Furthermore, it may containeddprimitive
timing specification, specifying propagation delays for events.
We illustrate the syntax of WRICELL by means of the module dff(q, ck, d, rb);
following example. g“}p“t qt Jinput ¢k, d, rb;

Consider the cell depicted in Figure 1, which is the func- Ial:ch(?ciin?,mizq', ck, rb);
tional description of a D flip-flop with active low reset and |atch(iq, d, ckb, rb);
the module paths of its timing specification. This cell is not (ckb, ck);
constructed from two instances of the built-in primitives _
andnot . Furthermore, it contains two instances of the User SPECifY _ . _ .
Defined Primitive (UDP)latch , whose definition is given (negedge 1b => (q +: 0)) = LISt

. / ’ . if (rb==1) (posedge ck => (q +: d)) = t_ck;

at the top. This UDP implements a storage latch that is endspecify
transparent when itsk input is 1 and that stores its currentendmodule
value if theck input is 0. Furthermore, it can be reset by
setting inputb to 0. This behavior is implemented in the table
given in the UDP. The UDP is evaluated by looking up a row
that matches the (previous and the current) input values and
the previous value of the output and then copying the defined _))
value to the output (from left to right, the values before the fir§duations, using the semantics presented in [8]. Here, we let
colon are those of inputs, the one between the two colons/jglenote the space of all possible inputs= T, O denote
the previous value of the output and the one after the secditiPoSsible output®) =T™, and S denote all possible states
colon is the prescribed next value of the output). Entdes © :_ka’ in which we also remember the previous values of
1, andx match exactly their corresponding values, wherzasthe inputs, denoted’, ..., i, to detect transitions. Fdre N
matches any value. Entriés1, x and? are calledevels Next and avector = (vi, ..., u) € T', we letd]; = v; denote the
to levels, one can also giwslgespecifications, which not only J-th component of that vector, for all< j < /. This definition
match the current value of the input, but transitions of an inpug. lifted to sets of vectors by defining’|; = Ugey {0]:}
Entry » in the table specifies an edge specification, whide" V' € T'. Furthermore, we define theoncatenationof
matches a transition of an input from any value to any oth¥gCtorsd = (u1,...,u.) € T* and v’ = (vy,...,v) € T®
value. Finally, the last column may, besides the specificatiof® @7 = (u1, ..., Ua,v1,..., 1) € T**". Given a vector
0, 1, andx, also contain the entry. This represents a non-% = (1, .-, w) G.Tl’_ a valuev € T, and somel < j <
changing output, i.e., if such a row matches, the old outpY define thesubstitutionof the j-th component ofi with the
value is also the new output value. In case no row matchesVlue v asilj := v = (u,. .., uj—1,0, w11, -,).
a UDP, then the new value of the output is defined toXbé& Because ¥RICELL programs might be non-deterministic as
formal definition of evaluating UDPs and built-in primitives isobserved in [7], we represent the computation of next states by
given in [8]. the functiond : I xS — P(S), whereP(S) denotes the power

In the timing specification of our example cell, there are twset of states, computing for a given input vectar I and state
module paths which are botige-sensitivpaths, i.e., they are §++i? € S the set of all possible next staté@, §++z‘7’). Given
active whenever a certain change in an input is exhibited. Thestates++i? € S, the function\ : S — O computes the
first module path describes that when the reset has a fallivgjues\(5++i?) of the outputs in that state. We exteficand
edge (i.e., an edge towar@, then the output; changes its)\ to sets of states in the natural wayi, S") = Uses 5(i, ")
value aftet_rst time units. Thedata source expression 0 and A(S') = U, g A(s’) for eachS” C S. As stated in the
describes that the output will change its valuedt@imilarly, Verilog standard [5], the initial state, of a cell is the state
the second module path defines that on a positive edge of thewhich all variables have the valug. A states € S is
clock, the outputg will change its value to the value af. calledreachableif there exist states,, ..., s, € S and inputs
However, this module path is state-dependennodule path, i0,...,in_1 € I such thats,, = s and for all0 < j < n we
since it only applies when the conditich == 1 is true, as haveé(z?j,sj) > sjy1. Furthermore, we define a constrained
specified inif preceding the module path. evaluation of§ for an input vector; € I, states € S, and

We interpret such a cell with inputsi,, ..., i, m outputs constraint values’ € T* asd(i A & s) = d(i,s) if for all
¢ ---,qm, andn sequential variables,,...,s, as Boolean 1 < j < k eitheri; = ¢; orc; = X. Otherwiseﬁ(f/\c“, s)=10.

Fig. 1. Verilog Source of a Resettable D Flip-Flop

In the following, we interpret anedge specification no polarity p = "™) the output is free to change into any
edge € {posedge ,negedge ,"™ } as the set of transitions direction. Note that any (state-dependent) simple module path
that it matches, wher@osedge = {(0,1),(0,X),(X,1)}, can be written in the above format, by insertiddor c¢; when
negedge = {(1,0), (X,0),(1,X)}, and furthermor&" =+ = inputi, is not constrained in the original module path.

{(u,v) | u# v} = posedge U negedge . We define the semantics of module paths as imposing two
constraints on the transition system of cells. First, we require
that a state can be reached from which the specified output

A module pathdescribes a delay between an input andill change as a result of only changing the specified input. If
an output of the cell. There are two basic types of moduthis was not the case, then the output would never change as
paths: simple pathsand edge-sensitive pathsAn example a result of the changing input, hence this module path would
of a simple path is(ck => q) = 10 , expressing that a never be active and could be removed. The second constraint
change of inputck influences outputg after a delay of deals with the polarity: If it is either or -, then we also
10 time units. An example of an edge-sensitive path igquire that in case the output changes, it changes into the
(posedge ck => (q +: d)) = 12 , expressing that a pos-direction specified by the polarity. Formally, we express these
itive edge of inputck affects the output), which takes the two constraints as follows:

value d (+ indicates that the value of is passed in non- 1) There exists a reachable state-i?, a valuev € T, and

inverted form), after a delay of 12 time units. an output value\' € A(6(iP[j := v] A & §++iP))|; such
Basic paths can be used to construct #hate-dependent that X' # \(3++iP)];.

module paths which are module paths equipped with a 2) |f , ¢ {+-}, then for all reachable statei?,

condition. An example of a state-dependent module path = g|| valuesv € T, A = A(5+iP)|;, and every\ ¢

is if (b == 1) (posedge ck => (q +: d) =12 , MO(iP[j := v] A G §+riP))|; the following holds:

which specifies the same delay as the previous edge-sensitive « If p=+ then

path example, but this delay only occurs if the condition » oy ,

tb == 1 holds. A condition is defined to hold if it does not — If (ij,v) € posedge , thenA = X" or (A,) €

IIl. CHECKING MODULE PATHS

evaluate ta0, i.e., if it evaluates to eithet or X. posedge
We will only consider state-dependent module paths in the = If (if,v) € negedge , then A = X' or (A, X') €
following, since the others can be expressed as such paths by negedge
simply adding If (i==X) ” for some input;, as a comparison o If p=- then
with the valueX will always make the equality evaluate Xo — If (i%,v) € posedge , thenX = X" or (\,\) €
A. Requirements for Simple Module Paths _ ﬂe%%f%e) ¢ negedge , then) = X or (\,\') €
A simple module path, as its name indicates, is the simplest posedge

form of specifying that an input influences the value of an . .
output. However, it is desirable that such an effect do&s Requirements for Edge-Sensitive Module Paths
actually take place. For example, one could add the simpleAn edge-sensitive module path specifies that a certain
module path(d => q) = 1; to the example in Figure 1, change of the input influences the output. Hence, we again
stating that a change of input affects the value of output require that this effect on the output does exist when the
g one time unit after the change of inpdt However, the input exhibits one of the specified transitions, like for simple
output of a flip-flop will never change as a result of onlynodule paths. Furthermore, an edge-sensitive module path also
changing the data input, for the output to change a positispecifies the value of the output after the change by means of
edge of the clock is required. Hence this is a module patihe data source expression. It should also be verified that this
that never occurs in practice, which might result in too seveexpression reflects the actual computation of the output value
restrictions in the timing analysis such that a circuit using this the functional description.
flip-flop with the above module path would fail to meet its When given a state-dependent edge-sensitive module path
timing requirements, although an implementation would neviér ((i1==c1) &&...&& (ix==cx)) (edge i; => (q p: d))
suffer from this problem. with polarity p € Pol andedge € {posedge ,negedge ,™ },
We aim to give a formal definition of the requirements fowe again have two constraints to be satisfied. The first one is
a module path to beonsistentvith the functional description. the same as constraint (1) for simple module paths, except that
Letif ((41==c1) &&...&& (ix==cx)) (i; p=> q;) be a we now restrict the input change to be one of the transitions
state-dependent simple module path, wheres called the contained in the specified edge. The second constraint deals
polarity of the module path, and € Pol = {+,-,™ } (with with the polarity and the data source expression specified
representing the empty string). The polarity expresses time an edge-sensitive module path. We require that when
direction of the output change: For positive polarity= +) if the polarity is either positive or negative, respectively, then
the output changes, then the change is into the same directioe output has the value of the data source expression or
as the input. For negative polarity € -) the output changes its negation (depending on the polarity) whenever the input
into the opposite direction of the input, if it does change. Fonakes one of the specified transitions. Hence, we require that

the module path is realizable in some reachable state and thét again amounts to viewinX as either0 or 1. These
its data source expression corresponds to the output valudwo strengthenings can be enabled by options passed to our
all reachable states triggering the module path. implementation. It will then check the conditions as described
Formally, we require constraint (1) to hold for one of thebove for the strengthened module paths. If they are consistent
given input transitions and furthermore, if € {+, -}, we with the functional description, then they faithfully specify the
require for all reachable stat@+i? and valuesy € T with behavior of the functional description, under the condition that
edge > (i} v) that \(§(iP[j := v] A & 5+iP))|; = {¢]}, where the strengthenings hold.
q=dif p=+andg =-dif p=-. For our example cell in Figure 1, the non-strengthened
N) module paths are not consistent with the functional description.
C. Reachability Checking of Module Paths The first module patffnegedge b => (q +: 0)) speci-
Using the formal requirements of module paths as givdies that the outputy changes to the value if the inputrb
above, one can check them in the functional implementatiexhibits one of the transitions that are considerewgedge .
of the circuit. For this purpose, we use the semantics developaftien looking at the table of the UDRtch in Figure 1,
in [8] to get a symbolic representation of the functional dehen one can observe that the output is sed wwhen input
scription of a cell. By definition, all variables in Verilog haverb is 0. However, as defined in Section Il, we also have the
initially the valueX. Starting from this state, we then searclransition (1, X) € negedge , i.e., the value of inputb after
for a reachable state that satisfies condition (1) using ahis transition isX. For this transition, the value of output
implementation of a symbolic simulator. If no such state existg, will be set to X, since none of the rows of UDRitch
then the input of the module path never affects the outpubatch in this case. Similarly for the second module path: The
hence this module path is infeasible and can be removelhta value is only latched if the clock has valiiehowever
Otherwise, we perform another reachability check. This timéhe posedge allows it to change fron® to X. Furthermore,
we check whether from the initial state another state can for this module path the conditiob == 1 is true if input
reached in which a counterexample to the specified behavibr is either1 or X, sinceX == v is true for all valuesv. If
occurs. For simple module paths, this occurs when a polariigwever the inputb has the value, then the data input will
is specified, but the output changes in the opposite directiorot be latched since it is unclear whether the reset is active or
For an edge-sensitive module path with specified polarity, wet. Hence, in this case the data source expression does not
check that the data source expression always determines dlveays correspond to the value of the outpyteven when
value of the output after the specified input transition of thestricting to binary values for inpuk . If we also strengthen
input. For this purpose, we search for a reachable statetfire condition, and require that both sides of it have equal
which one of the given input transitions has been applied, brdlues, then this module path is only active when the reset
the output does not have the value given by the data sousignalrb has valuel. In this case, the data source expression
expression. If such a state is reachable, then we have foundoas express the value of the outgytas intended.
counterexample to the module path and output it as incorrect.
Otherwise, for all reachable states the data source expression
represents the value of the output. When given a cell library, all possible module paths have to
However, with the above notion of inconsistent modulbe specified, otherwise the simulation will use no delay and
paths, usually only a very small number of module pattiberefore might not faithfully model the real implementation.
are feasible. This is usually due to the vakieSince digital Hence, a method is desirable to automatically extract all
circuits only operate on two logical values (the Boolean valug®ssible module paths from a functional description.
false andtrue), this value is commonly interpreted as unknown To determine module paths for a given cell, we construct a
in the two-valued logic. For example, a transition fra@nto set of Boolean equations using the semantics faRNELL
X could either be a transition frorh to 1 or no transition given in [8]. This gives us, for each signal in the cell, an equa-
at all. In order to cope with practical examples we allow tton computing its next output value given the current values
strengthen the module paths by deviating from the behavigirthe inputs to the primitive driving the wire. Such a primitive
defined in the Verilog standard [5], which defin¥sto be might either be a built-in primitive or a combinational UDP,
a third value unrelated to both and 1 (see [9] for an in- which then results in a combinational equation, or a sequential
depth discussion of the problems associated with the value UDP, for which we also consider the current output value as
If for example we have an edge specificatigssedge , then an input, i.e., we model this as a feedback loop.
we only consider the binary transitiq, 1) that is contained Using these equations, we then consider each triple of
in the set of transitions it matches. This amounts to viewirngpsedge or negedge , input, and output of the given cell. For
X as representing eithd¥ or 1, since (0,0) is not an edge such a triple, we construct a formula describing those states
we do not have to consider it. Furthermore, we also allofer which the specified input makes a transition matched by
to strengthen the conditions: Previously, and as required the edge specification and for which the output changes its
the Verilog standard [5], a condition was active if it eithevalue. Furthermore, the formula requires the remaining inputs
evaluates tol or to X. Now we require both sides of anto remain unchanged, since we want to determine the influence
equation to be equal. For comparisons with Boolean valu@d,a single input on the output.

IV. DERIVING MODULE PATHS

TABLE |

Formally, for a triple(edge, j,!) we check reachability of cjecking MODULE PATHS IN THENANGATE OPEN CELL L IBRARY

a states+i” such that there exist € T, (i,v) € edge,
and\ € A(6(iP[j := v], ++iP))|; with X' # A(5++P)|,. This Cell #MPs Direct Edge Cond Cond & Time [s] Time [s]
reachability check is performed using a symbolic simulator. If Edge no-pp pp

no such state is reachable, then the considered input transitioPis™ 2 0 2 0 2 0.49 0.20
never have an effect on the currently considered output arﬁiFR 6 0 4 0 6 6.06 0.24
SUSEN FS 6 0 4 0 6 2.36 0.24
hence there should not be a module path. Otherwise, if WerFrs 14 4 6 4 14 75.48 0.41
find such a reachable state, then the considered transition @fH 2 1 2 1 2 0.69 0.20
the input can change the output value and therefore a modL@%L 2 ! 2 L 2 0.48 0.20
. X ' _ FF 2 0 0 0 2 28.96 0.21
path should exist for this configuration. We then perform aprrr 6 0 4 0 6 43.18 0.35
symbolic simulation of the specified transitions of the edge fofDFFS 6 0 4 0 6 115.50 0.32
DFFRS 14 4 6 4 14 438.23 0.87

the currently considered output, using the Boolean equation§
This approximates the data source expression for the module

path. It is only an approximation, since we only simulate two

input vectors: One where the currently considered input hgaths that were consistent directly are still consistent. Also,
the previous value of its transition and one where the currentijodule paths that were consistent after strengthening either
considered input has the new value after the transition. Sugie edge or the condition are still consistent after strengthening
a transition might occur at any time, therefore we allow theoth. Finally, in the last two columns we give the time it
state in which the symbolic simulation starts to be arbitrar{ook to check all module paths. The column “Time no-pp”
This however includes unreachable states, i.e., states whiiives the time taken without preprocessing the model, whereas
are never reached during the operation of the cell. We simpliéplumn “Time pp” gives the time required for preprocessing
the data source expression by removing unreachable states.ast checking the module paths. The preprocessing results in a
this purpose, we convert the found data source expression igytnbolic next-state functiohsuch as considered in this paper,

its sum-of-products representation and check every produdtereas without preprocessing we have to consider multiple
(representing a state) for reachability. If one of these stat®®aller steps to reach a next stable state.

is unreachable, then it can never contribute to the value ofWe tried the strengthenings in the order of the columns,
the output, and hence it can be removed. From the reachalfte if we found a module path to be inconsistent with the
products we finally construct our data source expression aéictional description, we first replaced the edge by an edge

print out the module path. that does not contain an¢values, and if this module path was
still inconsistent we strengthened the condition, first with the
V. EXPERIMENTAL RESULTS general edge specification, then with the strengthened edge.

We have applied the presented methods for checking moduléAs it can be seen in the results, none of the module paths in
paths against and for deriving module paths from functiontile library were found to be inconsistent with the functional
descriptions to cells from the Nangate Open Cell Library [@]escription of the cell when both strengthenings are used, since
and from proprietary cell libraries provided by our industriathe numbers in the column “Cond & Edge” are the same
partner Fenix. In the following, we mainly present our resul@s the total number of module paths in column “# MPs”.
for the Nangate Open Cell Library, since it is publicly availFurthermore, it was never sufficient to only strengthen the
able, and we only briefly comment on the observations madendition, module paths that still were inconsistent after
for proprietary cells. We had to leave out the cellBUF, ~ strengthening the edge required strengthening of the condition
TNOT and TLAT, since these distinguish the fourth valde and of the edge. This can be seen in the results, as the numbers
that is currently not supported in our semantics &WCELL. in the column “Direct” are always equal to the numbers

. in the column “Cond”. We want to stress again that these
A. Checking Module Paths strengthenings reflect a misconception between the semantics

The results of checking the module paths contained implied by the Verilog standard and the common perception
the Nangate Open Cell Library are shown in Table |, whers Verilog designers. Finally, we observe that the time it took
we only present the results for the sequential cells. For the check all module paths in a cell is negligible when using
combinational cells, all module paths were directly realizabléhe preprocessing, even when including the time preprocessing
In columns “Cell” and “# MPs” we give the name and numbetakes, as shown in the last column of Table I. Hence, this
of module paths in that cell, respectively; “Direct” specifiesheck can easily be done before doing timing analysis of larger
how many module paths hold directly without any strengtleircuits using such a cell library. When not preprocessing the
ening, “Edge” is the number of consistent module paths wheells, then the time required to check the module paths is
strengthening the edge, “Equiv” is the number of consistesbmetimes much larger, as shown in the penultimate column
module paths when strengthening the condition, and “Equiv & Table I.

Edge” is the number of consistent module paths when strength¥or cells from proprietary cell libraries, we also observed
ening both the condition and the edge. Note that in genethht the time taken to check all module paths was usually
after strengthening either the edge or the condition, modudmall. Only for 2 cells, each having 224 module paths,

checking the module paths with enabled preprocessing togbosedge SN => (QN +: IRN)) , which correspond to the
up to 19 seconds. However, for the proprietary cells quitedeactivation of the reset and set signals, respectively. When
number of module paths were inconsistent with the functioniaoking at the functional description of this cell, one sees that
description, even after strengthening. For example, in a cilsets both outputQ andQNto 0 if both reset and set are active
containing a scanable flip-flop, the scan logic was forgottéhe., when bottRNand SN are0). When either set or reset is

in the data source expression of a module path, i.e., the scdeactivated, then the respective other signal is still active, and
enable input was assumed to be alway#nother reason for for just one active signal the outpusandQNare the inverses
module path inconsistency was the assumption that all inpatseach other. Hence, these module paths do exist in the cell,
to a cell are binary, i.e., eithéror 1. An example of this is the something that could easily be overlooked.

module path(posedge CK => (Q +: ISE&D | SE&SI)) ,
which was specified for another scanable flip-flop with clock VI. CoNcLUSION

input CK data input, scan-enabl&E and scan-inpus! . The We have presented a method for checking module paths
idea is that whersE is 0 then the value oD will become @gdainst the functional description of cells contained in a cell
visible at the output), whereas the output value will be thdibrary. This method is useful to achieve timing closure by
value ofSI if the input SE is 1. However, in this case a non-identifying infeasible module paths. Furthermore, we devel-
pessimistic multiplexer was used to select betwpeandsi. ©OPed a technique to extract module paths from a functional
This multiplexer also outputd when bothD and SI are 1, description of a cell. This method complements the first one,
even whersE is X. Then however, the data source expressigihich allows to remove module paths, by identifying module
does not describe the behavior of the circuit, since it evaluafR&ths that have not been considered before and therefore would
to X whereas the flip-flop outputs & Hence, such a module!éad to no delay being used. We have implemented both
path is only consistent with the functional description if onEethods and shown that they are applicable to industrial cell
strengthens even more to allow only binary input values, whi¢Rraries.

can also be done in our implementation. Another possibility In the future, we plan to extend the presented methods,
to make the module path consistent is the description of ttigPecially the derivation of module paths, to other forms of

non-pessimistic behavior of the multiplexer, by using the dafi@rdware descriptions, such as transistor netlists and behav-
source expressiolSE&D | SE&SI | D&SI . ioral Verilog. Our idea is to extract Boolean equations from

o a transistor netlist using techniques such as [1] and then
B. Deriving Module Paths performing a similar analysis as that of Section IV. However,
We applied our method for the derivation of module paths &ince in transistor netlists there are no initial states from which
the Nangate Open Cell Library and to proprietary cell librariegachability analysis could start, the technique requires some
provided by our industrial partner Fenix. We restricted thadaptions. For behavioral Verilog we intend to use existing
inputs to be binary, i.e., eithér or 1. For the combinational semantics such as [4] to obtain a formal description. However,
cells, it found the expected dependency of all inputs on tlsince these descriptions are often quite large, we plan to
outputs. More interesting are the results for the sequentige slicing techniques, e.g., [10], to restrict the analysis to
cells, for which we give as a representative the output for tlhaly those parts that might contribute to the value of some
cell SDFFRSfrom the Nangate Open Cell Library, describingonsidered output.
a scanable flip-flop with active-low reseNand active-low set

SN (where we modified the data source expressions slightly to REFERENCES
be more readable): [1] R. Bryant. B_oolean Analysis of MOS CircuitdEEE Transactions on
Computer-Aided Desigr6(4):634—649, 1987.
(posedge CK => (Q +: RN & (ISN | !SE&D [2] A.J. Daga and W.P. Birmingham. A symbolic-simulation approach to
| SE&SI))); the timing verification of interacting FSMs. IRroc. of ICCD’95 pp.
(posedge CK => (QN +: SN & (IRN | ISE&ID 584-589, 1995. , o
| SE&!SI)); [3] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified timing
(negedge RN => (Q +: 0)); ’ ’ verification and the transition delay of a logic circulEEE Trans.
9 dg RN == (G 1 19k): VLSI Syst2(3):333-342, 1994.
Eﬁgzzdgee BN :> E((%N . Slzl))’)' [4] J. Dimitrov. Operational semantics for Verilog. Rroc. of APSEC'01
= : ; pp. 161-168. 2001.
(negedge SN => (Q +: RN)); [5] IEEE Std 1364-2005: IEEE Standard for Verilog Hardware Description
(negedge SN => (QN +: 0)); Language. IEEE CS, 2006.
(posedge SN => (QN +: IRN)); [6] Nangate Inc. Open Cell Library v20085, 2008. Downloadable from

) http://www.nangate.com/openlibrary/.
The output of our method gives a number of module pathg] M. Raffelsieper, M.R. Mousavi, J.-W. Roorda, C. Strolenberg, and H.

that were found for the cell. In that output, we see the expected Zantema. Formal Analysis of Non-Determinism in Verilog Cell Library
P P Simulation Models. IrProc. of FMICS’09 pp. 133-148, 2009.

module paths on a positive edge of the clocK for the [8] M. Raffelsieper, J.-W. Roorda, and M.R. Mousavi. Model Checking
outputQ and the inverted outpu®N Furthermore, we see the Verilog Descriptions of Cell Libraries. Iroc. of ACSD’09 pp. 128—

i i 137. 2009.
expected module paths for negative edges of initandsN 9], M. Turpin. The Dangers of Living with an X. SNUG Boston, 2003.

on the two (_)UtpUtS' which are a neg_ated reset and a NegRY s. vasudevan, E.A. Emerson, and J.A. Abraham. Improved verification
set, respectively. However, what at first seems surprising are of hardware designs through antecedent conditioned sli€nfw. Tools

the two module pathgposedge RN => (Q +: !SN)) and for Tech. Transfer9(1):89-101, 2007.

