
Checking and Deriving Module Paths in Verilog
Cell Library Descriptions

Matthias Raffelsieper
CS Dept., TU/Eindhoven

Eindhoven, The Netherlands
Email: M.Raffelsieper@tue.nl

MohammadReza Mousavi
CS Dept., TU/Eindhoven

Eindhoven, The Netherlands
Email: M.R.Mousavi@tue.nl

Chris Strolenberg
Fenix,

Eindhoven, The Netherlands
Email: chris@fenix-da.com

Abstract—Module paths are often used to specify the delays
of cells in a Verilog cell library description, which define the
propagation delay for an event from an input to an output.
Specifying such paths manually is an error prone task; a
forgotten path is interpreted as a zero delay, which can cause
further flaws in the subsequent design steps. Moreover, one can
specify superfluous module paths, i.e., module paths that can
never occur in any practical run of the model and hence, make
excessive restrictions on the subsequent design decision. This
paper presents a method to check whether the given module paths
are reflected in the functional implementation. Complementing
this check, we also present a method to derive module paths from
a functional description of a cell.

I. I NTRODUCTION

A cell library is a collection of logic cores used to construct
larger chip designs, consisting of combinational cells (e.g.,
and and xor) and sequential cells (e.g., latches and flip-
flops). Cell libraries are usually described at multiple levels
of abstraction, such as a transistor implementation that will
finally be manufactured and a Verilog description that is used
for simulation. In [8] a formal semantics for the VERICELL

subset of Verilog was provided, which was used as a basis
for formal conformance checking between the two levels of
abstraction. The VERICELL subset of Verilog is the subset
commonly used for the functional description of cell libraries.
However, Verilog descriptions of cells also contain timing
specifications, in terms ofmodule path delays(also called
timing arcs, delay arcs) and timing checks.

Using symbol execution for detecting paths has been studied
in various domains, see e.g., [3], [2]. The main goal of
these studies has been to make the calculation of delays or
worst case execution times more precise. For example, in
[3] an accurate timing analysis for combinational circuits is
introduced and in [2] symbolic simulation is used to verify the
timing of FSM models of sequential circuits. Since the goal of
the work reported in [2] is different, some extra assumptions
on the structure of circuits had to be made in [2] to make
the timing verification feasible. Elsewhere, in [7], an analysis
technique was presented to detect missing timing checks. In
this paper, we focus on analyzing module path delays. We
present techniques to check whether a given module path
is consistent with the functional description, and to derive
module paths from the functional description. The actual
delays put on module paths are irrelevant for our analysis

since at this level, we are only concerned with their necessity
and realizability, i.e., the need and use of their presence
or absence. This forms the basis for any subsequent timing
analysis, i.e., one has to first determine whether a module path
can actually occur or not before one can determine the delays
specified by module paths. Furthermore, when considering all
of the specified paths of a cell, one might getfalse paths
during the timing closure of a larger design composed of
multiple cells, which might reject correct designs. Therefore,
we check whether the given module paths are consistent with
the functional description.

Complementing the check, we also present a technique to
derive module paths from a functional description. This allows
to guarantee that all possible delay behaviors of a cell have
been considered. If some module path would be forgotten, then
simulators will treat this as a zero delay, i.e., the output will
change instantly. This can cause further flaws in the subsequent
design steps and the timing simulation of such a circuit does
not reflect the actual behavior.

The rest of this paper is structured as follows. In Section II
we introduce the VERICELL subset of Verilog that we are
interested in. Furthermore, this section also shortly explains
our representation of transition systems, which is used to rep-
resent the semantics of VERICELL defined in [8]. Section III
then defines the formal requirements imposed by a module
path onto the functional description. These requirements are
used to check whether the module paths specified for a cell
are consistent with its functional description, thereby finding
module paths that are superfluous and can be removed. For the
other direction, namely searching for missing module paths,
a method is presented in Section IV. There, the functional
description of a cell is analyzed and changes of an output
as a result of a changing input are extracted. Together with
some additional analysis of the output value, we thereby derive
all possible module paths from the functional description of
a cell. Our research is driven by a cooperation with Fenix
as industrial partner. Hence, we applied both methods to
industrial cell libraries and present some of our experimental
results in Section V. We conclude the paper in Section VI.

II. PRELIMINARIES

In this paper, we are concerned with a subset of Verilog,
called VERICELL in [8], which is the subset used in the

functional description of cell libraries. Hence, in this section,
we introduce this subset. In Verilog, variables can take the
values0, 1, X, and Z, corresponding to the Boolean values
false and true, an unknown value, and a high impedance,
respectively. However, in VERICELL, the valuesX and Z
behave equivalently. Hence, our domain of interest are the
ternary valuesT = {0, 1,X}.

A cell is a module that contains only instantiations of built-
in and user defined primitives. Furthermore, it may contain a
timing specification, specifying propagation delays for events.
We illustrate the syntax of VERICELL by means of the
following example.

Consider the cell depicted in Figure 1, which is the func-
tional description of a D flip-flop with active low reset and
the module paths of its timing specification. This cell is
constructed from two instances of the built-in primitivesbuf

and not . Furthermore, it contains two instances of the User
Defined Primitive (UDP)latch , whose definition is given
at the top. This UDP implements a storage latch that is
transparent when itsck input is 1 and that stores its current
value if the ck input is 0. Furthermore, it can be reset by
setting inputrb to 0. This behavior is implemented in the table
given in the UDP. The UDP is evaluated by looking up a row
that matches the (previous and the current) input values and
the previous value of the output and then copying the defined
value to the output (from left to right, the values before the first
colon are those of inputs, the one between the two colons is
the previous value of the output and the one after the second
colon is the prescribed next value of the output). Entries0,
1, andx match exactly their corresponding values, whereas?

matches any value. Entries0, 1, x and? are calledlevels. Next
to levels, one can also giveedgespecifications, which not only
match the current value of the input, but transitions of an input.
Entry * in the table specifies an edge specification, which
matches a transition of an input from any value to any other
value. Finally, the last column may, besides the specifications
0, 1, and x , also contain the entry- . This represents a non-
changing output, i.e., if such a row matches, the old output
value is also the new output value. In case no row matches in
a UDP, then the new value of the output is defined to beX. A
formal definition of evaluating UDPs and built-in primitives is
given in [8].

In the timing specification of our example cell, there are two
module paths which are bothedge-sensitivepaths, i.e., they are
active whenever a certain change in an input is exhibited. The
first module path describes that when the reset has a falling
edge (i.e., an edge towards0), then the outputq changes its
value aftert_rst time units. Thedata source expression+: 0

describes that the output will change its value to0. Similarly,
the second module path defines that on a positive edge of the
clock, the outputq will change its value to the value ofd.
However, this module path is astate-dependentmodule path,
since it only applies when the conditionrb == 1 is true, as
specified inif preceding the module path.

We interpret such a cell withk inputsi1, . . . , ik, m outputs
q1, . . . , qm, andn sequential variabless1, . . . , sn as Boolean

primitive latch(q, d, ck, rb);
output q; reg q; input ck, d, rb;
table

// d ck rb : q : q’
* 0 ? : ? : - ;
? 0 1 : ? : - ;
0 1 ? : ? : 0 ;
1 1 1 : ? : 1 ;
? ? 0 : ? : 0 ;

endtable
endprimitive

module dff(q, ck, d, rb);
output q; input ck, d, rb;
buf (q, qint);
latch(qint, iq, ck, rb);
latch(iq, d, ckb, rb);
not (ckb, ck);

specify
(negedge rb => (q +: 0)) = t_rst;
if (rb==1) (posedge ck => (q +: d)) = t_ck;

endspecify
endmodule

Fig. 1. Verilog Source of a Resettable D Flip-Flop

equations, using the semantics presented in [8]. Here, we let
I denote the space of all possible inputsI = Tk, O denote
all possible outputsO = Tm, andS denote all possible states
S = Tn+k, in which we also remember the previous values of
the inputs, denotedip1, . . . , i

p
n, to detect transitions. Forl ∈ N

and a vector~v = (v1, . . . , vl) ∈ Tl, we let~v|j = vj denote the
j-th component of that vector, for all1 ≤ j ≤ l. This definition
is lifted to sets of vectors by definingV |l =

⋃
~v∈V {~v|l}

for V ⊆ Tl. Furthermore, we define theconcatenationof
vectors~u = (u1, . . . , ua) ∈ Ta and ~v = (v1, . . . , vb) ∈ Tb

as ~u++~v = (u1, . . . , ua, v1, . . . , vb) ∈ Ta+b. Given a vector
~u = (u1, . . . , ul) ∈ Tl, a valuev ∈ T, and some1 ≤ j ≤ l
we define thesubstitutionof thej-th component of~u with the
valuev as~u[j := v] = (u1, . . . , uj−1, v, uj+1, . . . , ul).

Because VERICELL programs might be non-deterministic as
observed in [7], we represent the computation of next states by
the functionδ : I×S → P(S), whereP(S) denotes the power
set of states, computing for a given input vector~i ∈ I and state
~s++~ip ∈ S the set of all possible next statesδ(~i, ~s++~ip). Given
a state~s++~ip ∈ S, the functionλ : S → O computes the
valuesλ(~s++~ip) of the outputs in that state. We extendδ and
λ to sets of states in the natural way:δ(~i, S′) =

⋃
s′∈S′ δ(~i, s′)

and λ(S′) =
⋃

s′∈S′ λ(s′) for eachS′ ⊆ S. As stated in the
Verilog standard [5], the initial states0 of a cell is the state
in which all variables have the valueX. A state s ∈ S is
calledreachableif there exist statess1, . . . , sn ∈ S and inputs
~i0, . . . ,~in−1 ∈ I such thatsn = s and for all0 ≤ j < n we
haveδ(~ij , sj) 3 sj+1. Furthermore, we define a constrained
evaluation ofδ for an input vector~i ∈ I, states ∈ S, and
constraint values~c ∈ Tk as δ(~i ∧ ~c, s) = δ(~i, s) if for all
1 ≤ j ≤ k eitherij = cj or cj = X. Otherwise,δ(~i∧~c, s) = ∅.

In the following, we interpret anedge specification
edge ∈ {posedge , negedge , "" } as the set of transitions
that it matches, whereposedge = {(0, 1), (0,X), (X, 1)},
negedge = {(1, 0), (X, 0), (1,X)}, and furthermore"" = * =
{(u, v) | u 6= v} = posedge ∪ negedge .

III. C HECKING MODULE PATHS

A module pathdescribes a delay between an input and
an output of the cell. There are two basic types of module
paths: simple pathsand edge-sensitive paths. An example
of a simple path is(ck => q) = 10 , expressing that a
change of inputck influences outputq after a delay of
10 time units. An example of an edge-sensitive path is
(posedge ck => (q +: d)) = 12 , expressing that a pos-
itive edge of inputck affects the outputq, which takes the
value d (+ indicates that the value ofd is passed in non-
inverted form), after a delay of 12 time units.

Basic paths can be used to construct thestate-dependent
module paths, which are module paths equipped with a
condition. An example of a state-dependent module path
is if (rb == 1) (posedge ck => (q +: d)) = 12 ,
which specifies the same delay as the previous edge-sensitive
path example, but this delay only occurs if the condition
rb == 1 holds. A condition is defined to hold if it does not
evaluate to0, i.e., if it evaluates to either1 or X.

We will only consider state-dependent module paths in the
following, since the others can be expressed as such paths by
simply adding “if (i==X) ” for some inputi, as a comparison
with the valueX will always make the equality evaluate toX.

A. Requirements for Simple Module Paths

A simple module path, as its name indicates, is the simplest
form of specifying that an input influences the value of an
output. However, it is desirable that such an effect does
actually take place. For example, one could add the simple
module path(d => q) = 1; to the example in Figure 1,
stating that a change of inputd affects the value of output
q one time unit after the change of inputd. However, the
output of a flip-flop will never change as a result of only
changing the data input, for the output to change a positive
edge of the clock is required. Hence this is a module path
that never occurs in practice, which might result in too severe
restrictions in the timing analysis such that a circuit using this
flip-flop with the above module path would fail to meet its
timing requirements, although an implementation would never
suffer from this problem.

We aim to give a formal definition of the requirements for
a module path to beconsistentwith the functional description.
Let if ((i1==c1) && . . . && (ik==ck)) (ij p=> ql) be a
state-dependent simple module path, wherep is called the
polarity of the module path, andp ∈ Pol = {+, - , "" } (with
"" representing the empty string). The polarity expresses the
direction of the output change: For positive polarity (p = +) if
the output changes, then the change is into the same direction
as the input. For negative polarity (p = -) the output changes
into the opposite direction of the input, if it does change. For

no polarity (p = "") the output is free to change into any
direction. Note that any (state-dependent) simple module path
can be written in the above format, by insertingX for cj when
input ij is not constrained in the original module path.

We define the semantics of module paths as imposing two
constraints on the transition system of cells. First, we require
that a state can be reached from which the specified output
will change as a result of only changing the specified input. If
this was not the case, then the output would never change as
a result of the changing input, hence this module path would
never be active and could be removed. The second constraint
deals with the polarity: If it is either+ or - , then we also
require that in case the output changes, it changes into the
direction specified by the polarity. Formally, we express these
two constraints as follows:

1) There exists a reachable state~s++~ip, a valuev ∈ T, and
an output valueλ′ ∈ λ(δ(~ip[j := v] ∧ ~c,~s++~ip))|l such
that λ′ 6= λ(~s++~ip)|l.

2) If p ∈ {+, - }, then for all reachable states~s++~ip,
all values v ∈ T, λ = λ(~s++~ip)|l, and everyλ′ ∈
λ(δ(~ip[j := v] ∧ ~c,~s++~ip))|l the following holds:

• If p = + then

– If (ipj , v) ∈ posedge , thenλ = λ′ or (λ, λ′) ∈
posedge

– If (ipj , v) ∈ negedge , thenλ = λ′ or (λ, λ′) ∈
negedge

• If p = - then

– If (ipj , v) ∈ posedge , thenλ = λ′ or (λ, λ′) ∈
negedge

– If (ipj , v) ∈ negedge , thenλ = λ′ or (λ, λ′) ∈
posedge

B. Requirements for Edge-Sensitive Module Paths

An edge-sensitive module path specifies that a certain
change of the input influences the output. Hence, we again
require that this effect on the output does exist when the
input exhibits one of the specified transitions, like for simple
module paths. Furthermore, an edge-sensitive module path also
specifies the value of the output after the change by means of
the data source expression. It should also be verified that this
expression reflects the actual computation of the output value
in the functional description.

When given a state-dependent edge-sensitive module path
if ((i1==c1) && . . . && (ik==ck)) (edge ij => (ql p: d))

with polarity p ∈ Pol and edge ∈ {posedge , negedge , "" },
we again have two constraints to be satisfied. The first one is
the same as constraint (1) for simple module paths, except that
we now restrict the input change to be one of the transitions
contained in the specified edge. The second constraint deals
with the polarity and the data source expression specified
in an edge-sensitive module path. We require that when
the polarity is either positive or negative, respectively, then
the output has the value of the data source expression or
its negation (depending on the polarity) whenever the input
makes one of the specified transitions. Hence, we require that

the module path is realizable in some reachable state and that
its data source expression corresponds to the output value in
all reachable states triggering the module path.

Formally, we require constraint (1) to hold for one of the
given input transitions and furthermore, ifp ∈ {+, - }, we
require for all reachable states~s++~ip and valuesv ∈ T with
edge 3 (ipj v) that λ(δ(~ip[j := v]∧~c,~s++~ip))|l = {q′l}, where
q′l = d if p = + andq′l = ¬d if p = - .

C. Reachability Checking of Module Paths

Using the formal requirements of module paths as given
above, one can check them in the functional implementation
of the circuit. For this purpose, we use the semantics developed
in [8] to get a symbolic representation of the functional de-
scription of a cell. By definition, all variables in Verilog have
initially the valueX. Starting from this state, we then search
for a reachable state that satisfies condition (1) using our
implementation of a symbolic simulator. If no such state exists,
then the input of the module path never affects the output,
hence this module path is infeasible and can be removed.
Otherwise, we perform another reachability check. This time,
we check whether from the initial state another state can be
reached in which a counterexample to the specified behavior
occurs. For simple module paths, this occurs when a polarity
is specified, but the output changes in the opposite direction.
For an edge-sensitive module path with specified polarity, we
check that the data source expression always determines the
value of the output after the specified input transition of the
input. For this purpose, we search for a reachable state in
which one of the given input transitions has been applied, but
the output does not have the value given by the data source
expression. If such a state is reachable, then we have found a
counterexample to the module path and output it as incorrect.
Otherwise, for all reachable states the data source expression
represents the value of the output.

However, with the above notion of inconsistent module
paths, usually only a very small number of module paths
are feasible. This is usually due to the valueX. Since digital
circuits only operate on two logical values (the Boolean values
false andtrue), this value is commonly interpreted as unknown
in the two-valued logic. For example, a transition from0 to
X could either be a transition from0 to 1 or no transition
at all. In order to cope with practical examples we allow to
strengthen the module paths by deviating from the behavior
defined in the Verilog standard [5], which definesX to be
a third value unrelated to both0 and 1 (see [9] for an in-
depth discussion of the problems associated with the valueX).
If for example we have an edge specificationposedge , then
we only consider the binary transition(0, 1) that is contained
in the set of transitions it matches. This amounts to viewing
X as representing either0 or 1, since (0, 0) is not an edge
we do not have to consider it. Furthermore, we also allow
to strengthen the conditions: Previously, and as required by
the Verilog standard [5], a condition was active if it either
evaluates to1 or to X. Now we require both sides of an
equation to be equal. For comparisons with Boolean values,

this again amounts to viewingX as either0 or 1. These
two strengthenings can be enabled by options passed to our
implementation. It will then check the conditions as described
above for the strengthened module paths. If they are consistent
with the functional description, then they faithfully specify the
behavior of the functional description, under the condition that
the strengthenings hold.

For our example cell in Figure 1, the non-strengthened
module paths are not consistent with the functional description.
The first module path(negedge rb => (q +: 0)) speci-
fies that the outputq changes to the value0 if the input rb

exhibits one of the transitions that are considered anegedge .
When looking at the table of the UDPlatch in Figure 1,
then one can observe that the output is set to0 when input
rb is 0. However, as defined in Section II, we also have the
transition(1,X) ∈ negedge , i.e., the value of inputrb after
this transition isX. For this transition, the value of output
q will be set to X, since none of the rows of UDPlatch

match in this case. Similarly for the second module path: The
data value is only latched if the clock has value1, however
the posedge allows it to change from0 to X. Furthermore,
for this module path the conditionrb == 1 is true if input
rb is either1 or X, sinceX == v is true for all valuesv. If
however the inputrb has the valueX, then the data input will
not be latched since it is unclear whether the reset is active or
not. Hence, in this case the data source expression does not
always correspond to the value of the outputq, even when
restricting to binary values for inputck . If we also strengthen
the condition, and require that both sides of it have equal
values, then this module path is only active when the reset
signal rb has value1. In this case, the data source expression
does express the value of the outputq, as intended.

IV. D ERIVING MODULE PATHS

When given a cell library, all possible module paths have to
be specified, otherwise the simulation will use no delay and
therefore might not faithfully model the real implementation.
Hence, a method is desirable to automatically extract all
possible module paths from a functional description.

To determine module paths for a given cell, we construct a
set of Boolean equations using the semantics for VERICELL

given in [8]. This gives us, for each signal in the cell, an equa-
tion computing its next output value given the current values
of the inputs to the primitive driving the wire. Such a primitive
might either be a built-in primitive or a combinational UDP,
which then results in a combinational equation, or a sequential
UDP, for which we also consider the current output value as
an input, i.e., we model this as a feedback loop.

Using these equations, we then consider each triple of
posedge or negedge , input, and output of the given cell. For
such a triple, we construct a formula describing those states
for which the specified input makes a transition matched by
the edge specification and for which the output changes its
value. Furthermore, the formula requires the remaining inputs
to remain unchanged, since we want to determine the influence
of a single input on the output.

Formally, for a triple(edge, j, l) we check reachability of
a state~s++~ip such that there existv ∈ T, (ipj , v) ∈ edge,
andλ′ ∈ λ(δ(~ip[j := v], ~s++~ip))|l with λ′ 6= λ(~s++~ip)|l. This
reachability check is performed using a symbolic simulator. If
no such state is reachable, then the considered input transitions
never have an effect on the currently considered output, and
hence there should not be a module path. Otherwise, if we
find such a reachable state, then the considered transition of
the input can change the output value and therefore a module
path should exist for this configuration. We then perform a
symbolic simulation of the specified transitions of the edge for
the currently considered output, using the Boolean equations.
This approximates the data source expression for the module
path. It is only an approximation, since we only simulate two
input vectors: One where the currently considered input has
the previous value of its transition and one where the currently
considered input has the new value after the transition. Such
a transition might occur at any time, therefore we allow the
state in which the symbolic simulation starts to be arbitrary.
This however includes unreachable states, i.e., states which
are never reached during the operation of the cell. We simplify
the data source expression by removing unreachable states. For
this purpose, we convert the found data source expression into
its sum-of-products representation and check every product
(representing a state) for reachability. If one of these states
is unreachable, then it can never contribute to the value of
the output, and hence it can be removed. From the reachable
products we finally construct our data source expression and
print out the module path.

V. EXPERIMENTAL RESULTS

We have applied the presented methods for checking module
paths against and for deriving module paths from functional
descriptions to cells from the Nangate Open Cell Library [6]
and from proprietary cell libraries provided by our industrial
partner Fenix. In the following, we mainly present our results
for the Nangate Open Cell Library, since it is publicly avail-
able, and we only briefly comment on the observations made
for proprietary cells. We had to leave out the cellsTBUF,
TNOT, and TLAT, since these distinguish the fourth valueZ
that is currently not supported in our semantics of VERICELL.

A. Checking Module Paths

The results of checking the module paths contained in
the Nangate Open Cell Library are shown in Table I, where
we only present the results for the sequential cells. For the
combinational cells, all module paths were directly realizable.
In columns “Cell” and “# MPs” we give the name and number
of module paths in that cell, respectively; “Direct” specifies
how many module paths hold directly without any strength-
ening, “Edge” is the number of consistent module paths when
strengthening the edge, “Equiv” is the number of consistent
module paths when strengthening the condition, and “Equiv &
Edge” is the number of consistent module paths when strength-
ening both the condition and the edge. Note that in general
after strengthening either the edge or the condition, module

TABLE I
CHECKING MODULE PATHS IN THENANGATE OPEN CELL L IBRARY

Cell # MPs Direct Edge Cond Cond &
Edge

Time [s]
no-pp

Time [s]
pp

DFF 2 0 2 0 2 0.49 0.20
DFFR 6 0 4 0 6 6.06 0.24
DFFS 6 0 4 0 6 2.36 0.24
DFFRS 14 4 6 4 14 75.48 0.41
DLH 2 1 2 1 2 0.69 0.20
DLL 2 1 2 1 2 0.48 0.20
SDFF 2 0 0 0 2 28.96 0.21
SDFFR 6 0 4 0 6 43.18 0.35
SDFFS 6 0 4 0 6 115.50 0.32
SDFFRS 14 4 6 4 14 438.23 0.87

paths that were consistent directly are still consistent. Also,
module paths that were consistent after strengthening either
the edge or the condition are still consistent after strengthening
both. Finally, in the last two columns we give the time it
took to check all module paths. The column “Time no-pp”
gives the time taken without preprocessing the model, whereas
column “Time pp” gives the time required for preprocessing
and checking the module paths. The preprocessing results in a
symbolic next-state functionδ such as considered in this paper,
whereas without preprocessing we have to consider multiple
smaller steps to reach a next stable state.

We tried the strengthenings in the order of the columns,
i.e., if we found a module path to be inconsistent with the
functional description, we first replaced the edge by an edge
that does not contain anyX values, and if this module path was
still inconsistent we strengthened the condition, first with the
general edge specification, then with the strengthened edge.

As it can be seen in the results, none of the module paths in
the library were found to be inconsistent with the functional
description of the cell when both strengthenings are used, since
the numbers in the column “Cond & Edge” are the same
as the total number of module paths in column “# MPs”.
Furthermore, it was never sufficient to only strengthen the
condition, module paths that still were inconsistent after
strengthening the edge required strengthening of the condition
and of the edge. This can be seen in the results, as the numbers
in the column “Direct” are always equal to the numbers
in the column “Cond”. We want to stress again that these
strengthenings reflect a misconception between the semantics
implied by the Verilog standard and the common perception
of Verilog designers. Finally, we observe that the time it took
to check all module paths in a cell is negligible when using
the preprocessing, even when including the time preprocessing
takes, as shown in the last column of Table I. Hence, this
check can easily be done before doing timing analysis of larger
circuits using such a cell library. When not preprocessing the
cells, then the time required to check the module paths is
sometimes much larger, as shown in the penultimate column
of Table I.

For cells from proprietary cell libraries, we also observed
that the time taken to check all module paths was usually
small. Only for 2 cells, each having 224 module paths,

checking the module paths with enabled preprocessing took
up to 19 seconds. However, for the proprietary cells quite a
number of module paths were inconsistent with the functional
description, even after strengthening. For example, in a cell
containing a scanable flip-flop, the scan logic was forgotten
in the data source expression of a module path, i.e., the scan-
enable input was assumed to be always0. Another reason for
module path inconsistency was the assumption that all inputs
to a cell are binary, i.e., either0 or 1. An example of this is the
module path(posedge CK => (Q +: !SE&D | SE&SI)) ,
which was specified for another scanable flip-flop with clock
input CK, data inputD, scan-enableSE and scan-inputSI . The
idea is that whenSE is 0 then the value ofD will become
visible at the outputQ, whereas the output value will be the
value ofSI if the input SE is 1. However, in this case a non-
pessimistic multiplexer was used to select betweenD andSI .
This multiplexer also outputs1 when bothD and SI are 1,
even whenSE is X. Then however, the data source expression
does not describe the behavior of the circuit, since it evaluates
to X whereas the flip-flop outputs a1. Hence, such a module
path is only consistent with the functional description if one
strengthens even more to allow only binary input values, which
can also be done in our implementation. Another possibility
to make the module path consistent is the description of this
non-pessimistic behavior of the multiplexer, by using the data
source expression!SE&D | SE&SI | D&SI .

B. Deriving Module Paths

We applied our method for the derivation of module paths to
the Nangate Open Cell Library and to proprietary cell libraries
provided by our industrial partner Fenix. We restricted the
inputs to be binary, i.e., either0 or 1. For the combinational
cells, it found the expected dependency of all inputs on the
outputs. More interesting are the results for the sequential
cells, for which we give as a representative the output for the
cell SDFFRSfrom the Nangate Open Cell Library, describing
a scanable flip-flop with active-low resetRNand active-low set
SN (where we modified the data source expressions slightly to
be more readable):

(posedge CK => (Q +: RN & (!SN | !SE&D
| SE&SI)));

(posedge CK => (QN +: SN & (!RN | !SE&!D
| SE&!SI)));

(negedge RN => (Q +: 0));
(posedge RN => (Q +: !SN));
(negedge RN => (QN +: SN));
(negedge SN => (Q +: RN));
(negedge SN => (QN +: 0));
(posedge SN => (QN +: !RN));

The output of our method gives a number of module paths
that were found for the cell. In that output, we see the expected
module paths on a positive edge of the clockCK for the
outputQ and the inverted outputQN. Furthermore, we see the
expected module paths for negative edges of inputsRNandSN

on the two outputs, which are a negated reset and a negated
set, respectively. However, what at first seems surprising are
the two module paths(posedge RN => (Q +: !SN)) and

(posedge SN => (QN +: !RN)) , which correspond to the
deactivation of the reset and set signals, respectively. When
looking at the functional description of this cell, one sees that
it sets both outputsQandQNto 0 if both reset and set are active
(i.e., when bothRNandSN are0). When either set or reset is
deactivated, then the respective other signal is still active, and
for just one active signal the outputsQ andQNare the inverses
of each other. Hence, these module paths do exist in the cell,
something that could easily be overlooked.

VI. CONCLUSION

We have presented a method for checking module paths
against the functional description of cells contained in a cell
library. This method is useful to achieve timing closure by
identifying infeasible module paths. Furthermore, we devel-
oped a technique to extract module paths from a functional
description of a cell. This method complements the first one,
which allows to remove module paths, by identifying module
paths that have not been considered before and therefore would
lead to no delay being used. We have implemented both
methods and shown that they are applicable to industrial cell
libraries.

In the future, we plan to extend the presented methods,
especially the derivation of module paths, to other forms of
hardware descriptions, such as transistor netlists and behav-
ioral Verilog. Our idea is to extract Boolean equations from
a transistor netlist using techniques such as [1] and then
performing a similar analysis as that of Section IV. However,
since in transistor netlists there are no initial states from which
reachability analysis could start, the technique requires some
adaptions. For behavioral Verilog we intend to use existing
semantics such as [4] to obtain a formal description. However,
since these descriptions are often quite large, we plan to
use slicing techniques, e.g., [10], to restrict the analysis to
only those parts that might contribute to the value of some
considered output.

REFERENCES

[1] R. Bryant. Boolean Analysis of MOS Circuits.IEEE Transactions on
Computer-Aided Design, 6(4):634–649, 1987.

[2] A.J. Daga and W.P. Birmingham. A symbolic-simulation approach to
the timing verification of interacting FSMs. InProc. of ICCD’95, pp.
584–589, 1995.

[3] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified timing
verification and the transition delay of a logic circuit.IEEE Trans.
VLSI Syst, 2(3):333–342, 1994.

[4] J. Dimitrov. Operational semantics for Verilog. InProc. of APSEC’01,
pp. 161–168. 2001.

[5] IEEE Std 1364-2005: IEEE Standard for Verilog Hardware Description
Language. IEEE CS, 2006.

[6] Nangate Inc. Open Cell Library v200805, 2008. Downloadable from
http://www.nangate.com/openlibrary/.

[7] M. Raffelsieper, M.R. Mousavi, J.-W. Roorda, C. Strolenberg, and H.
Zantema. Formal Analysis of Non-Determinism in Verilog Cell Library
Simulation Models. InProc. of FMICS’09, pp. 133–148, 2009.

[8] M. Raffelsieper, J.-W. Roorda, and M.R. Mousavi. Model Checking
Verilog Descriptions of Cell Libraries. InProc. of ACSD’09, pp. 128–
137. 2009.

[9] M. Turpin. The Dangers of Living with an X. SNUG Boston, 2003.
[10] S. Vasudevan, E.A. Emerson, and J.A. Abraham. Improved verification

of hardware designs through antecedent conditioned slicing.Softw. Tools
for Tech. Transfer, 9(1):89–101, 2007.

