System Validation: Trace Equivalence

Mohammad Mousavi and Jeroen Keiren

General Overview

General Overview

Behavioral Equivalences Motivation

- Verification: check whether implementation conforms to specification
- Implementation: transition system with more actions added
- ► Method: abstracting and comparing with specification

Behavioral Equivalences Motivation

- Verification: check whether implementation conforms to specification
- Implementation: transition system with more actions added
- Method: abstracting and comparing with specification

Behavioral equivalence needed to compare behavioral models

Behavioral Equivalences

Example

Behavioral Equivalences Requirements

Behavioral equivalence should:

- neglect immaterial differences (not too fine)
- note important differences (not too coarse)
- should be preserved under context (congruence)

depends on the particular application domain

Behavioral Equivalences

Running Example

Linear-Time Branching-Time Spectrum Strong fragment

Traces of a State For $t \in S$, Traces(t) is minimal set satisfying: 1. $\epsilon \in Traces(t)$

Traces of a State

For $t \in S$, Traces(t) is minimal set satisfying:

- 1. $\epsilon \in Traces(t)$
- 2. $\sqrt{\ } \in \mathit{Traces}(t) \ \mathsf{when} \ t \in \mathit{T}$

Traces of a State

For $t \in S$, Traces(t) is minimal set satisfying:

- 1. $\epsilon \in Traces(t)$
- 2. $\sqrt{\ } \in \mathit{Traces}(t)$ when $t \in T$
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in Traces(t')$

Traces of a State

For $t \in S$, Traces(t) is minimal set satisfying:

- 1. $\epsilon \in Traces(t)$
- 2. $\sqrt{\ } \in \mathit{Traces}(t)$ when $t \in T$
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in Traces(t')$

Trace Equivalence

For states t, t', t is trace equivalent to t' iff Traces(t) = Traces(t').

Example

- 1. $\epsilon \in Traces(t)$,
- 2. $\sqrt{\in Traces(t)}$ when $t \in T$,
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in Traces(t')$.

What are the sets of traces?

- 1. $\epsilon \in Traces(t)$,
- 2. $\sqrt{\in Traces(t)}$ when $t \in T$,
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in Traces(t')$.

$$Traces(s_2) = Traces(s_3) = \{\epsilon, \sqrt{\}}$$

- 1. $\epsilon \in Traces(t)$,
- 2. $\sqrt{\in Traces(t)}$ when $t \in T$,
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in Traces(t')$.

$$Traces(s_2) = Traces(s_3) = \{\epsilon, \sqrt\}$$

 $Traces(s_1) = \{\epsilon, coffee, tea, coffee\sqrt, tea\sqrt\}$


```
1. \epsilon \in Traces(t),
  2. \sqrt{\ } \in \mathit{Traces}(t) \text{ when } t \in T,
  3. a\sigma \in Traces(t) when t \stackrel{a}{\rightarrow} t' and
      \sigma \in Traces(t').
                                                                                 coffee
Traces(s_1) =
\{\epsilon, coffee, tea, coffee \sqrt{, tea \sqrt{}}\}
Traces(s_0) =
\{\epsilon, coin, coin coffee, coin tea, coin coffee \sqrt{, coin tea} \}
```

An Exercise

- 1. $\epsilon \in Traces(t)$,
- 2. $\sqrt{\ } \in \mathit{Traces}(t) \text{ when } t \in T$,
- 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in Traces(t')$.

 $Traces(s_0) = \{\epsilon, coin, coin coffee, coin tea, coin coffee \sqrt{, coin tea} \sqrt{\}}$

An Observation

 $Traces(s_0) = Traces(t_0) = \{\epsilon, coin, coin coffee, coin tea, coin coffee \$, coin tea $\sqrt{}$

Moral of the Story: Trace equivalence is too coarse (neglects important differences).

CTraces(t):

- ▶ $\epsilon \in \mathit{CTraces}(t)$ if $t \notin T$ and $\neg \exists_{t' \in S, a \in Act}$ s.t. $t \stackrel{a}{\rightarrow} t'$
- ▶ \checkmark ∈ CTraces(t) if $t \in T$
- ▶ $a\sigma \in CTraces(t)$ if $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in CTraces(t')$

States $t, u \in S$ completed trace equivalent iff

- ightharpoonup Traces(t) = Traces(u) and
- ightharpoonup CTraces(t) = CTraces(u)

- \bullet $\epsilon \in CTraces(t)$ if $t \notin T \& \neg \exists_{t' \in S, a \in Act} t \overset{a}{\rightarrow} t'$
- \blacktriangleright \checkmark \in CTraces(t) if $t \in T$
- ▶ $a\sigma \in CTraces(t)$ if $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in CTraces(t')$

$$CTraces(t_3) = CTraces(t_4) = \{\sqrt{\}}, \ CTraces(t_5) = \{\epsilon\}$$

- ullet $\epsilon \in \mathit{CTraces}(t)$ if $t \notin T \& \neg \exists_{t' \in S, a \in \mathit{Act}} t \overset{a}{\to} t'$
- ▶ \checkmark ∈ CTraces(t) if $t \in T$
- ▶ $a\sigma \in CTraces(t)$ if $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in CTraces(t')$

$$CTraces(t_3) = CTraces(t_4) = \{\sqrt{\}}, \ CTraces(t_5) = \{\epsilon\}$$

 $CTraces(t_1) = \{coffee \sqrt{\}}, \ CTraces(t_2) = \{tea \sqrt{\}}$

- ▶ $\epsilon \in \mathit{CTraces}(t)$ if $t \notin T \& \neg \exists_{t' \in S, a \in \mathit{Act}} t \overset{\mathit{a}}{\rightarrow} t'$
- ▶ \checkmark ∈ CTraces(t) if $t \in T$
- ▶ $a\sigma \in CTraces(t)$ if $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in CTraces(t')$

$$CTraces(t_1) = \{coffee \downarrow\}, \ CTraces(t_2) = \{tea \downarrow\}\ Traces(t_0) = \{coin, coin \ coffee \downarrow, coin \ tea \downarrow\}$$

An Exercise

- ▶ $\epsilon \in CTraces(t)$ if $t \notin T \& \neg \exists_{t' \in S, a \in Act} t \stackrel{a}{\rightarrow} t'$
- ▶ \checkmark ∈ CTraces(t) if $t \in T$
- ▶ $a\sigma \in \mathit{CTraces}(t)$ if $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \mathit{CTraces}(t')$

 $Traces(t_0) = \{coin, coin \ coffee \sqrt{, coin \ tea} \sqrt{\}}$

An Observation

An Observation

$$\begin{split} \textit{Traces}(s_0) &= \textit{Traces}(t_0) = \\ \{\epsilon, \textit{coin}, \textit{coin coffee}, \textit{coin tea}, \textit{coin coffee}\sqrt{, \textit{coin tea}\sqrt{}} \} \\ &\quad \textit{CTraces}(s_0) = \{\textit{coin coffee}\sqrt{, \textit{coin tea}\sqrt{}} \} \\ &\quad \textit{CTraces}(t_0) = \{\textit{coin coffee}\sqrt{, \textit{coin tea}\sqrt{}} \} \end{split}$$

An Observation

Conclusion: Completed trace equivalence is too coarse.

General Overview

Thank you very much.