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Software Testing can be 
formal too 

A pioneering paper: 
•  « We know less about the 

theory of testing, which we 
do often, than about the 
theory of program proving, 
which we do seldom » 

Goodenough J. B., Gerhart S.,  
 IEEE Transactions on 
Software Engineering, 
1975 

 



There have been some 
progresses… 

Outline of the course 
•  Introduction Part 

–  Formal specifications 
–  Testing 

•  Putting them together 
•  Case splitting methods 

–  DNF, unfolding,… 

•  Illustrations 
–  Axioms, FSM, CSP 
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INTRODUCTION PART 
Formal specifications 
Testing 
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1 - Formal Specifications? 

•  As for any specification framework, there is a 
notation, for instance: 
– Formulas 

•  Pre/Post-conditions, 1st order logic, JML, SPEC# … 
•  Algebraic Spec (CASL), Z, VDM, B,  

– Processes definitions 
•  CSP, CCS, Lotos, Circus … 

– Annotated diagrams 
•  Automata, Finite State Machines (FSM), Petri Nets… 

•  But there is more than a syntax… 
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What makes a specification 
method formal? 

•  There is a formal semantics 
– Algebras, Predicate transformers, Sets, Labelled 

Transition Systems (LTS), Traces and Failures… 
•  There is a formal system (proofs) or a 

verification method (model-checking), or both. 
•  Thus 

– Formal specifications can be analysed to guide the 
identification of appropriate test cases. 

– They may contribute to the definition of oracles.  
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Example 1:Pre/Post-conditions 
(à la VDM) 

MAX (a: , b: )  
result max:

true 
(max=a ∨ max=b)∧ max≥a ∧ max≥b  



Example 1bis: axioms of a 
data type (à la CASL) 

spec CONTAINER = NAT, BOOL 
then 

 generated type Container ::= [] │ _::_(Nat ; Container) 
 op isin : Nat × Container → Bool 
 op remove: Nat × Container → Container 
 ∀ x, y:Nat; c:Container 
 ● isin(x, []) = false 
 ● eq(x, y) = true ⇒ isin(x, y::c) = true 
 ● eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c) 
 ● remove(x, []) = [] 
 ● eq(x, y) = true ⇒ remove(x, y::c) = c 
 ● eq(x, y) = false ⇒ remove(x, y::c) = y::remove(x,c) 

end 
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Example 2: FSM 

1 2 3 4

*,φ: _
/: _

/: _

*: _

φ: φ
*: _

/: _

*: *

φ: _ /: / φ: * φ

This FSM removes from the input text all that is not a comment
A comment is a string between /* and */
Examples: 
This is not a comment /* all that / *is ** a comment */ this is no more
a comment.
NB:  φ is any character but * and /



Example 3: CSP processes 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c



Example 3bis: a Circus 
process 

RANGE == 0 . . 59
channel tick , time

channel out : RANGE ⇥ RANGE

process Chrono b= begin

state AState == [ sec,min : RANGE ]

AInit == [AState

0 | sec0 = min

0 ^ min

0
= 0 ]

IncSec == [�AState | sec0 = (sec + 1) mod 60 ^ min

0
= min ]

IncMin == [�AState | min

0
= (min + 1) mod 60 ^ sec

0
= sec ]

Run b= tick �! IncSec; ((sec = 0) N IncMin)

@
(sec 6= 0) N Skip))

@
time �! out !(min, sec)�! Skip

• (AInit ; (µ X • (Run; X )))

end

process Clock b= begin • µ X • tick �!X end

process TChrono b= (Chrono J {| tick |} K Clock) \ {| tick |}

1

The Chrono process  
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2 - Testing 

•  One tests SYSTEMS 
•  A system is a dynamic 

entity, embedded in the 
physical world 

•  It is observable via some 
limited interface/procedure 

•  It is not always controllable 
•  It is quite different from a 

piece of text (formula, 
program) or a diagram 

input

output
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A philosophical interlude 

       “A map is not the territory”* Korzybski 

A program text, or a specification text, 
or a model, is not the system

*A variant: “don’t eat the menu…” J   
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Black-Box Testing 

•  Black-Box Testing:  
–  the internal organisation of the SUT (System 

Under Test) is not known 
•  However, 

–  Implicitely or explicitely, one considers a class of 
“testable implementations” => notion of 
Testability Hypotheses on the SUT 
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Testability? 

•  If the SUT can be any demonic system, there is no 
sensible way of testing it L 

•   Fortunately, some basic assumptions are feasible 
(example: correct implementation of booleans and 
bounded integers, determinism, …) 

•   Some others can be verified in another way: static 
checks on the program, preliminary tests, a priori 
knowledge of the environment… 

SUT?



FORMAL SPECIFICATIONS 
AND TESTING 
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Wanted: a satisfaction/
conformance relation 

SUT?

•  Given some “testable” SUT, what does it mean that it 
satisfies SP?
•  What is the correctness reference? Is there an 
“exhaustive” (or “complete”)  set of tests? 
•  SP is some sort of model or formula; SUT is some 
sort of system; how to define “SUT sat SP” or “SUT 
conf SP” in such an heterogeneous context?

SP



A generic testability 
hypothesis 

•  “The SUT corresponds to some unknown 
formal specification in the same formalism as 
specification SP” 
–  If SP is a FSM, SUT behaves like some FSM 
–  If SP is a formula, the symbols of the formula can 

be interpreted by SUT 
–  If SP is a process, SUT can be observed as a 

process, with traces and deadlocks 
•  Notation: SUT
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Back to well-established 
relations 
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?
SP

SUT
sat/conf/refines 

For instance, the satisfaction/conformance relation is 
•  equivalence for FSM,  
•  logical satisfaction for formulas,  
•  refinement for processes, 
•  ioco for LTS… 
 



?
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SP
SUT

sat/conf/refines 

consequences, 
counter-examples 

Tests and 
Test drivers 



Illustration: testing against 
traces refinement in CSP 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Traces of Counter2 
<> 
<add> 
<add,add> 
<add,sub> 
<add,add,sub> 
… 



Illustration: testing against 
traces refinement in CSP 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Traces of Counter2 
<> 
<add> 
<add,add> 
<add,sub> 
<add,add,sub> 
… 

Forbidden traces 
<sub> 
<add,add,add> 
<add,sub,sub> 
… 

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP



Illustration: testing against 
traces refinement in CSP 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Traces of Counter2 
<> 
<add> 
<add,add> 
<add,sub> 
<add,add,sub> 
… 

Forbidden traces 
<sub> 
<add,add,add> 
<add,sub,sub> 
… 

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP

Test submissions 
SUT |[add,sub]| test1 \ [add,sub] 
SUT |[add,sub]| test2 \ [add,sub] 
SUT |[add,sub]| test3 \ [add,sub] 

Oracle: the last observed 
event is not fail 



Exhaustive test set for 
traces refinement of CSP 

Let us consider the Test Set: 
ExhaustT (SP ) = { TT (s , a ) | s ∈ traces (SP ) ∧ ¬ a ∈ initials (SP /s ) } 
where 
TT (s , a ) = inc → a1  → inc → a2  → inc . . . an → pass → a → fail → STOP 
for s = <a1,a2 , ...,an>. 
 
For any test T, its execution against SUT is specified as: 
ExecutionSP,SUT(T ) = (SUT  |[ αSP  ]| T )\αSP 
 
Theorem (Cavalcanti Gaudel 2007) :  
SUT is a traces refinement of SP iff 
∀ TT (s , a )∈ ExhaustT (SP ), ∀ t∈ traces (ExecutionSP,SUT (TT (s , a ))),  
¬ last (t ) = fail 
 
 



The corresponding 
testability hypotheses 

•  SUT behaves like a CSP process 
– With the same alphabet of actions as SP 
– The actions and events are atomic 

•  If SUT is non-determinist, it satisfies the 
classical complete testing assumption 
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Exhaustivity is not 
practicable 

exhaust(SP) ? 

You are not serious! 

Let us select some 
adequate finite subset 

It has been my 
problem for years… 

SUT 

SUT 

26 
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Selection 

•  How to select finite subsets of ExhaustSP ? 
•  Test Set Selection  is based on the specification 

(of course, it’s Black Box Testing!) 
•  Among the solutions:  

– Uniformity hypotheses  
– Regularity hypotheses 
– Others … 



An example from CSP 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>     
<c.1>… 
<c.0,d.0>  
<c.1,d.1>… 
<c.0,d.0,c.7>… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 



An example from CSP 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>    
 <c.1>… 
<c.0,d.0>  
<c.1,d.1>… 
<c.0,d.0,c.7>… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 

No condition on v: an arbitrary value  
will do => Uniformity Hypothesis  

There is one condition on w: v≠w . 
Any value satisfying it will do =>  
Uniformity Hypothesis,  etc 



An example from CSP 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>    <c.1>… 
<c.0,d.0> <c.1,d.1>… 
…<c.0,d.0,c.7>… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 

No condition on v: an arbitrary value will do 
=> Uniformity Hypothesis => test1 
There is one condition on w: v≠w .Any value 
satisfying it will do => Uniformity  
Hypothesis => test2,  etc 

test1= pass→ d.127→ fail→ STOP
test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP
test5=…
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But this test set is still infinite!! 
And by the way, are you sure that  

test5 would be useful? 
 
  
 

Just make use of  
regularity…but it is 
sometimes risky. 

What a crazy 
academic! 



An example of regularity 
hypothesis 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>     
<c.1>… 
<c.0,d.0>  
<c.1,d.1>… 
<c.0,d.0,c.7>… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 

There is no dependency between the 
recursive calls of Replicator. 
There is no shared state. 
⇒ If the SUT is determinist, one execution  
is sufficient => Regularity Hypothesis =>  
Finite Test Set 
 test1= pass→ d.127→ fail→ STOP

test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP
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Selection Hypotheses 

•  Addition to Testability Hypotheses: Selection Hypotheses on the 
SUT 

•  Uniformity Hypothesis 
–   Φ(X) is a property, SUT is a system, D is a sub-domain of the domain of X  

–   (∀ t0 ∈ D) ( SUT  sat Φ(t0) ⇒ (∀ t ∈ D) ( SUT  |= Φ(t)) ) 
–  Determination of sub-domains ? guided by the specification, see later… 

•   Regularity Hypothesis 
–  ( (∀ t ∈ Dom(X), ⎮t⎮≤ k ⇒ SUT  sat Φ(t) )) ⇒  

    (∀ t ∈ Dom(X ) ( SUT  sat Φ(t)) 
–  Determination of |t|? cf. specification 
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Selection of finite test sets 

•  “Selection Hypotheses” H 
on SUT, and construction of 
practicable test sets T such 
that: 

H holds for SUT => 
 (SUT passes T <=> SUT  
sat SP) !

  
•  <H, T> is a valid and 

unbiased Test Context 
•  or: T is complete w.r.t. H 
 

<SUT testable, exhaust(SP)> 
 

<Weak Hyp, Big Test Set> 
 

<Strong Hyp, Small TS> 

 

<SUT correct, Ø> 



SOME BASIC TECHNIQUES 
FOR CASE SPLITTING 
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“Invention” of selection 
hypotheses 

Several possibilities: 
•  Guided by the conditions that appear in the 

specification : case analysis, case splitting 
•  Or guided by some knowledge of the 

operational environment 
•  Or guided by some fault model 
•  Or guided by the syntax (coverage criteria)  
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Case splitting 

Two main techniques: 
•  Reduction of formulas into Disjunctive 

Normal Form (DNF) [Dick & Faivre 1993] 
•  Unfolding of recursive definitions [Burstall & 

Darlington 1977] 
Implementations: 
•  Conditional rewriting, Narrowing  
•  Symbolic evaluation 
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DNF? 

•  It is a disjunction (sequence of ORs) consisting 
of one or more disjuncts, each of which is a 
conjunction (AND) of one or more literals 
(i.e., statement letters and negations of 
statement letters; Mendelson 1997, p. 30) 

•  ∧, ∨, and ¬ are the only logical operators, ¬is 
the most internal, then ∧, then ∨ 

•  Intuitively, this gives a list of disjoint test 
cases.  

June 2017 HSST, Halmstad 38 



More on DNF 

•  A first example of DNF decomposition: 
(p ∨ q)→¬r  ⇔  (p∧q∧¬r) ∨ (p∧¬q∧¬r) ∨ (¬p∧q∧¬r) 
∨ (¬p∧¬q∧r) ∨ (¬p∧¬q∧¬r)  
•  Basic rules: 

–  (p ∨ q) is decomposed into 3 disjoint cases: p∧q, 
p∧¬q, ¬p∧q 

–  (A→B) is decomposed into ¬A and A∧B 
– ¬¬ are eliminated 

•  Not very difficult, but…exponential explosion 
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Example of the reduction 
of pre/post-conditions 

MAX (a: , b: )  
result max:

true 
(max=a ∨ max=b)∧ max≥a ∧ max≥b  

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b   

(conjunction of pre-condition,  
post-condition and state  
Invariant, if any) => 
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Thanks to Jeremy Dick 
and Alain Faivre 



Example of the reduction 
of pre/post-conditions 

MAX (a: , b: )  
result max:

true 
(max=a ∨ max=b)∧ max≥a ∧ max≥b  

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b   

(max=a ∨ max=b)∧ max≥a ∧ max≥b  

(simplification of “true ∧…”) =>  

(conjunction of pre-condition,  
post-condition and state  
Invariant, if any) => 
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Example of the reduction 
of pre/post-conditions 

MAX (a: , b: )  
result max:

true 
(max=a ∨ max=b)∧ max≥a ∧ max≥b  

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b   

(max=a ∨ max=b)∧ max≥a ∧ max≥b  

(simplification of “true ∧…”) =>  

(distribution of ∨ ) =>  

(max=a ∧ max≥a ∧ max≥b) ∨ (max=b ∧ max≥a ∧ max≥b)  

(conjunction of pre-condition,  
post-condition and state  
Invariant, if any) => 
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Example of the reduction 
of pre/post-conditions 

MAX (a: , b: )  
result max:

true 
(max=a ∨ max=b)∧ max≥a ∧ max≥b  

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b   

(max=a ∨ max=b)∧ max≥a ∧ max≥b  

(simplification of “true ∧…”) =>  

(distribution of ∨ ) =>  

(max=a ∧ max≥a ∧ max≥b) ∨ (max=b ∧ max≥a ∧ max≥b)  (decomposition of ∨) =>  

(max=a ∧max=b ∧ max≥a ∧ max≥b)∨ 
(max=a ∧max≠b ∧ max≥a ∧ max≥b) ∨ 
(max≠a ∧max=b ∧ max≥a ∧ max≥b) 

(conjunction of pre-condition,  
post-condition and state  
Invariant, if any) => 
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Example of the reduction 
of pre/post-conditions 

MAX (a: , b: )  
result max:

true 
(max=a ∨ max=b)∧ max≥a ∧ max≥b  

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b   

(max=a ∨ max=b)∧ max≥a ∧ max≥b  

(simplification of “true ∧…”) =>  

(distribution of ∨ ) =>  

(max=a ∧ max≥a ∧ max≥b) ∨ (max=b ∧ max≥a ∧ max≥b)  (decomposition of ∨) =>  

(max=a ∧max=b ∧ max≥a ∧ max≥b)∨ 
(max=a ∧max≠b ∧ max≥a ∧ max≥b) ∨ 
(max≠a ∧max=b ∧ max≥a ∧ max≥b) 

(simplifications) => 
(max=a ∧max=b)∨ 
(max=a ∧max>b) ∨ 
(max=b ∧ max>a) 

3 test cases: {(a=b, max=a=b), (a>b, max = a), (b>a, max =b)} 
Thus, 3 uniformity sub-domains + oracles.  

(conjunction of pre-condition,  
post-condition and state  
Invariant, if any) => 



Unfolding 

•  Unfolding is a classical technique for transforming 
(and understanding) recursive definitions 

•  It is just replacement of f(op(x)) by the definition(s) 
of  f, with adequate renaming of variables 
–  fact(n) =def if n=0 then 1 else n*fact(n-1) becomes:  
–  fact(n) =def if n=0 then 1 else if (n-1)=0 then n*1 else 

n*(n-1)*fact(n-2) 
•  i.e. fact(n) =def if n=0 then 1 else if n=1 then 1  

 else n*(n-1)*fact(n-2) 
–  etc 
–  Going on, the definition of the fact function is replaced by its graph, i.e. 

its exhaustive test set J… 


