
June 2017 HSST, Halmstad 1

Testing from Formal
Specifications,

a unifying framework
Marie-Claude Gaudel

Emeritus Professor
LRI, Univ Paris-Sud & CNRS

June 2017 HSST, Halmstad 2

Software Testing can be
formal too

A pioneering paper:
•  « We know less about the

theory of testing, which we
do often, than about the
theory of program proving,
which we do seldom »

Goodenough J. B., Gerhart S.,
 IEEE Transactions on
Software Engineering,
1975

There have been some
progresses…

Outline of the course
•  Introduction Part

–  Formal specifications
–  Testing

•  Putting them together
•  Case splitting methods

–  DNF, unfolding,…

•  Illustrations
–  Axioms, FSM, CSP

June 2017 HSST, Halmstad 3

INTRODUCTION PART
Formal specifications
Testing

June 2017 HSST, Halmstad 4

1 - Formal Specifications?

•  As for any specification framework, there is a
notation, for instance:
– Formulas

•  Pre/Post-conditions, 1st order logic, JML, SPEC# …
•  Algebraic Spec (CASL), Z, VDM, B,

– Processes definitions
•  CSP, CCS, Lotos, Circus …

– Annotated diagrams
•  Automata, Finite State Machines (FSM), Petri Nets…

•  But there is more than a syntax…
June 2017 HSST, Halmstad 5

What makes a specification
method formal?

•  There is a formal semantics
– Algebras, Predicate transformers, Sets, Labelled

Transition Systems (LTS), Traces and Failures…
•  There is a formal system (proofs) or a

verification method (model-checking), or both.
•  Thus

– Formal specifications can be analysed to guide the
identification of appropriate test cases.

– They may contribute to the definition of oracles.
June 2017 HSST, Halmstad 6

June 2017 HSST, Halmstad 7

Example 1:Pre/Post-conditions
(à la VDM)

MAX (a: , b:)
result max:

true
(max=a ∨ max=b)∧ max≥a ∧ max≥b

Example 1bis: axioms of a
data type (à la CASL)

spec CONTAINER = NAT, BOOL
then

 generated type Container ::= [] │ _::_(Nat ; Container)
 op isin : Nat × Container → Bool
 op remove: Nat × Container → Container
 ∀ x, y:Nat; c:Container
 ● isin(x, []) = false
 ● eq(x, y) = true ⇒ isin(x, y::c) = true
 ● eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c)
 ● remove(x, []) = []
 ● eq(x, y) = true ⇒ remove(x, y::c) = c
 ● eq(x, y) = false ⇒ remove(x, y::c) = y::remove(x,c)

end

June 2017 HSST, Halmstad 9

Example 2: FSM

1 2 3 4

*,φ: _
/: _

/: _

*: _

φ: φ
*: _

/: _

*: *

φ: _ /: / φ: * φ

This FSM removes from the input text all that is not a comment
A comment is a string between /* and */
Examples:
This is not a comment /* all that / *is ** a comment */ this is no more
a comment.
NB: φ is any character but * and /

Example 3: CSP processes

June 2017 HSST, Halmstad 10

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Example 3bis: a Circus
process

RANGE == 0 . . 59
channel tick , time

channel out : RANGE ⇥ RANGE

process Chrono b= begin

state AState == [sec,min : RANGE]

AInit == [AState

0 | sec0 = min

0 ^ min

0
= 0]

IncSec == [�AState | sec0 = (sec + 1) mod 60 ^ min

0
= min]

IncMin == [�AState | min

0
= (min + 1) mod 60 ^ sec

0
= sec]

Run b= tick �! IncSec; ((sec = 0) N IncMin)

@
(sec 6= 0) N Skip))

@
time �! out !(min, sec)�! Skip

• (AInit ; (µ X • (Run; X)))

end

process Clock b= begin • µ X • tick �!X end

process TChrono b= (Chrono J {| tick |} K Clock) \ {| tick |}

1

The Chrono process

June 2017 HSST, Halmstad 12

2 - Testing

•  One tests SYSTEMS
•  A system is a dynamic

entity, embedded in the
physical world

•  It is observable via some
limited interface/procedure

•  It is not always controllable
•  It is quite different from a

piece of text (formula,
program) or a diagram

input

output

June 2017 HSST, Halmstad 13

A philosophical interlude

 “A map is not the territory”* Korzybski

A program text, or a specification text,
or a model, is not the system

*A variant: “don’t eat the menu…” J

June 2017 HSST, Halmstad 14

Black-Box Testing

•  Black-Box Testing:
–  the internal organisation of the SUT (System

Under Test) is not known
•  However,

–  Implicitely or explicitely, one considers a class of
“testable implementations” => notion of
Testability Hypotheses on the SUT

June 2017 HSST, Halmstad 15

Testability?

•  If the SUT can be any demonic system, there is no
sensible way of testing it L

•  Fortunately, some basic assumptions are feasible
(example: correct implementation of booleans and
bounded integers, determinism, …)

•  Some others can be verified in another way: static
checks on the program, preliminary tests, a priori
knowledge of the environment…

SUT?

FORMAL SPECIFICATIONS
AND TESTING

June 2017 HSST, Halmstad 16

Wanted: a satisfaction/
conformance relation

SUT?

•  Given some “testable” SUT, what does it mean that it
satisfies SP?
•  What is the correctness reference? Is there an
“exhaustive” (or “complete”) set of tests?
•  SP is some sort of model or formula; SUT is some
sort of system; how to define “SUT sat SP” or “SUT
conf SP” in such an heterogeneous context?

SP

A generic testability
hypothesis

•  “The SUT corresponds to some unknown
formal specification in the same formalism as
specification SP”
–  If SP is a FSM, SUT behaves like some FSM
–  If SP is a formula, the symbols of the formula can

be interpreted by SUT
–  If SP is a process, SUT can be observed as a

process, with traces and deadlocks
•  Notation: SUT
June 2017 HSST, Halmstad 18

Back to well-established
relations

June 2017 HSST, Halmstad 19

?
SP

SUT
sat/conf/refines

For instance, the satisfaction/conformance relation is
•  equivalence for FSM,
•  logical satisfaction for formulas,
•  refinement for processes,
•  ioco for LTS…

?

June 2017 HSST, Halmstad 20

SP
SUT

sat/conf/refines

consequences,
counter-examples

Tests and
Test drivers

Illustration: testing against
traces refinement in CSP

June 2017 HSST, Halmstad 21

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Traces of Counter2
<>
<add>
<add,add>
<add,sub>
<add,add,sub>
…

Illustration: testing against
traces refinement in CSP

June 2017 HSST, Halmstad 22

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Traces of Counter2
<>
<add>
<add,add>
<add,sub>
<add,add,sub>
…

Forbidden traces
<sub>
<add,add,add>
<add,sub,sub>
…

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP

Illustration: testing against
traces refinement in CSP

June 2017 HSST, Halmstad 23

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Traces of Counter2
<>
<add>
<add,add>
<add,sub>
<add,add,sub>
…

Forbidden traces
<sub>
<add,add,add>
<add,sub,sub>
…

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP

Test submissions
SUT |[add,sub]| test1 \ [add,sub]
SUT |[add,sub]| test2 \ [add,sub]
SUT |[add,sub]| test3 \ [add,sub]

Oracle: the last observed
event is not fail

Exhaustive test set for
traces refinement of CSP

Let us consider the Test Set:
ExhaustT (SP) = { TT (s , a) | s ∈ traces (SP) ∧ ¬ a ∈ initials (SP /s) }
where
TT (s , a) = inc → a1 → inc → a2 → inc . . . an → pass → a → fail → STOP
for s = <a1,a2 , ...,an>.

For any test T, its execution against SUT is specified as:
ExecutionSP,SUT(T) = (SUT |[αSP]| T)\αSP

Theorem (Cavalcanti Gaudel 2007) :
SUT is a traces refinement of SP iff
∀ TT (s , a)∈ ExhaustT (SP), ∀ t∈ traces (ExecutionSP,SUT (TT (s , a))),
¬ last (t) = fail

The corresponding
testability hypotheses

•  SUT behaves like a CSP process
– With the same alphabet of actions as SP
– The actions and events are atomic

•  If SUT is non-determinist, it satisfies the
classical complete testing assumption

June 2017 HSST, Halmstad 25

June 2017 HSST, Halmstad

Exhaustivity is not
practicable

exhaust(SP) ?

You are not serious!

Let us select some
adequate finite subset

It has been my
problem for years…

SUT

SUT

26

June 2017 HSST, Halmstad 27

Selection

•  How to select finite subsets of ExhaustSP ?
•  Test Set Selection is based on the specification

(of course, it’s Black Box Testing!)
•  Among the solutions:

– Uniformity hypotheses
– Regularity hypotheses
– Others …

An example from CSP

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0>
<c.1>…
<c.0,d.0>
<c.1,d.1>…
<c.0,d.0,c.7>…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

An example from CSP

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0>
 <c.1>…
<c.0,d.0>
<c.1,d.1>…
<c.0,d.0,c.7>…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

No condition on v: an arbitrary value
will do => Uniformity Hypothesis

There is one condition on w: v≠w .
Any value satisfying it will do =>
Uniformity Hypothesis, etc

An example from CSP

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0> <c.1>…
<c.0,d.0> <c.1,d.1>…
…<c.0,d.0,c.7>…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

No condition on v: an arbitrary value will do
=> Uniformity Hypothesis => test1
There is one condition on w: v≠w .Any value
satisfying it will do => Uniformity
Hypothesis => test2, etc

test1= pass→ d.127→ fail→ STOP
test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP
test5=…

June 2017 HSST, Halmstad 31

But this test set is still infinite!!
And by the way, are you sure that

test5 would be useful?

Just make use of
regularity…but it is
sometimes risky.

What a crazy
academic!

An example of regularity
hypothesis

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0>
<c.1>…
<c.0,d.0>
<c.1,d.1>…
<c.0,d.0,c.7>…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

There is no dependency between the
recursive calls of Replicator.
There is no shared state.
⇒ If the SUT is determinist, one execution
is sufficient => Regularity Hypothesis =>
Finite Test Set
 test1= pass→ d.127→ fail→ STOP

test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP

June 2017 HSST, Halmstad 33

Selection Hypotheses

•  Addition to Testability Hypotheses: Selection Hypotheses on the
SUT

•  Uniformity Hypothesis
–  Φ(X) is a property, SUT is a system, D is a sub-domain of the domain of X

–  (∀ t0 ∈ D) (SUT sat Φ(t0) ⇒ (∀ t ∈ D) (SUT |= Φ(t)))
–  Determination of sub-domains ? guided by the specification, see later…

•  Regularity Hypothesis
–  ((∀ t ∈ Dom(X), ⎮t⎮≤ k ⇒ SUT sat Φ(t))) ⇒

 (∀ t ∈ Dom(X) (SUT sat Φ(t))
–  Determination of |t|? cf. specification

June 2017 HSST, Halmstad 34

Selection of finite test sets

•  “Selection Hypotheses” H
on SUT, and construction of
practicable test sets T such
that:

H holds for SUT =>
 (SUT passes T <=> SUT
sat SP) !

•  <H, T> is a valid and

unbiased Test Context
•  or: T is complete w.r.t. H

<SUT testable, exhaust(SP)>

<Weak Hyp, Big Test Set>

<Strong Hyp, Small TS>

<SUT correct, Ø>

SOME BASIC TECHNIQUES
FOR CASE SPLITTING

June 2017 HSST, Halmstad 35

“Invention” of selection
hypotheses

Several possibilities:
•  Guided by the conditions that appear in the

specification : case analysis, case splitting
•  Or guided by some knowledge of the

operational environment
•  Or guided by some fault model
•  Or guided by the syntax (coverage criteria)

June 2017 HSST, Halmstad 36

Case splitting

Two main techniques:
•  Reduction of formulas into Disjunctive

Normal Form (DNF) [Dick & Faivre 1993]
•  Unfolding of recursive definitions [Burstall &

Darlington 1977]
Implementations:
•  Conditional rewriting, Narrowing
•  Symbolic evaluation
June 2017 HSST, Halmstad 37

DNF?

•  It is a disjunction (sequence of ORs) consisting
of one or more disjuncts, each of which is a
conjunction (AND) of one or more literals
(i.e., statement letters and negations of
statement letters; Mendelson 1997, p. 30)

•  ∧, ∨, and ¬ are the only logical operators, ¬is
the most internal, then ∧, then ∨

•  Intuitively, this gives a list of disjoint test
cases.

June 2017 HSST, Halmstad 38

More on DNF

•  A first example of DNF decomposition:
(p ∨ q)→¬r ⇔ (p∧q∧¬r) ∨ (p∧¬q∧¬r) ∨ (¬p∧q∧¬r)
∨ (¬p∧¬q∧r) ∨ (¬p∧¬q∧¬r)
•  Basic rules:

–  (p ∨ q) is decomposed into 3 disjoint cases: p∧q,
p∧¬q, ¬p∧q

–  (A→B) is decomposed into ¬A and A∧B
– ¬¬ are eliminated

•  Not very difficult, but…exponential explosion
June 2017 HSST, Halmstad 39

Example of the reduction
of pre/post-conditions

MAX (a: , b:)
result max:

true
(max=a ∨ max=b)∧ max≥a ∧ max≥b

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

June 2017 HSST, Halmstad 40

Thanks to Jeremy Dick
and Alain Faivre

Example of the reduction
of pre/post-conditions

MAX (a: , b:)
result max:

true
(max=a ∨ max=b)∧ max≥a ∧ max≥b

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

(max=a ∨ max=b)∧ max≥a ∧ max≥b

(simplification of “true ∧…”) =>

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

June 2017 HSST, Halmstad 41

Example of the reduction
of pre/post-conditions

MAX (a: , b:)
result max:

true
(max=a ∨ max=b)∧ max≥a ∧ max≥b

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

(max=a ∨ max=b)∧ max≥a ∧ max≥b

(simplification of “true ∧…”) =>

(distribution of ∨) =>

(max=a ∧ max≥a ∧ max≥b) ∨ (max=b ∧ max≥a ∧ max≥b)

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

June 2017 HSST, Halmstad 42

Example of the reduction
of pre/post-conditions

MAX (a: , b:)
result max:

true
(max=a ∨ max=b)∧ max≥a ∧ max≥b

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

(max=a ∨ max=b)∧ max≥a ∧ max≥b

(simplification of “true ∧…”) =>

(distribution of ∨) =>

(max=a ∧ max≥a ∧ max≥b) ∨ (max=b ∧ max≥a ∧ max≥b) (decomposition of ∨) =>

(max=a ∧max=b ∧ max≥a ∧ max≥b)∨
(max=a ∧max≠b ∧ max≥a ∧ max≥b) ∨
(max≠a ∧max=b ∧ max≥a ∧ max≥b)

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

June 2017 HSST, Halmstad 43

Example of the reduction
of pre/post-conditions

MAX (a: , b:)
result max:

true
(max=a ∨ max=b)∧ max≥a ∧ max≥b

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

(max=a ∨ max=b)∧ max≥a ∧ max≥b

(simplification of “true ∧…”) =>

(distribution of ∨) =>

(max=a ∧ max≥a ∧ max≥b) ∨ (max=b ∧ max≥a ∧ max≥b) (decomposition of ∨) =>

(max=a ∧max=b ∧ max≥a ∧ max≥b)∨
(max=a ∧max≠b ∧ max≥a ∧ max≥b) ∨
(max≠a ∧max=b ∧ max≥a ∧ max≥b)

(simplifications) =>
(max=a ∧max=b)∨
(max=a ∧max>b) ∨
(max=b ∧ max>a)

3 test cases: {(a=b, max=a=b), (a>b, max = a), (b>a, max =b)}
Thus, 3 uniformity sub-domains + oracles.

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

Unfolding

•  Unfolding is a classical technique for transforming
(and understanding) recursive definitions

•  It is just replacement of f(op(x)) by the definition(s)
of f, with adequate renaming of variables
–  fact(n) =def if n=0 then 1 else n*fact(n-1) becomes:
–  fact(n) =def if n=0 then 1 else if (n-1)=0 then n*1 else

n*(n-1)*fact(n-2)
•  i.e. fact(n) =def if n=0 then 1 else if n=1 then 1

 else n*(n-1)*fact(n-2)
–  etc
–  Going on, the definition of the fact function is replaced by its graph, i.e.

its exhaustive test set J…

