

Testing from Formal Specifications, *a unifying framework*

Marie-Claude Gaudel Emeritus Professor LRI, Univ Paris-Sud & CNRS

Software Testing can be formal too

A pioneering paper:

- *« We know less about the theory of testing, which we do often, than about the theory of program proving, which we do seldom »*
- Goodenough J. B., Gerhart S., IEEE Transactions on Software Engineering, 1975

There have been some

progresses…

Outline of the course

- *Introduction Part*
	- Formal specifications
	- Testing
- Putting them together
- *Case splitting methods* – DNF, unfolding,…
- *Illustrations*

– Axioms, FSM, CSP

INTRODUCTION PART

Formal specifications

Testing

1 - Formal Specifications?

- As for any specification framework, there is a notation, for instance:
	- Formulas
		- Pre/Post-conditions, 1st order logic, JML, SPEC# ...
		- Algebraic Spec (CASL), Z, VDM, B,
	- Processes definitions
		- CSP, CCS, Lotos, Circus …
	- Annotated diagrams
		- Automata, Finite State Machines (FSM), Petri Nets…
- But there is more than a syntax...

What makes a specification method formal?

- *There is a formal semantics*
	- Algebras, Predicate transformers, Sets, Labelled Transition Systems (LTS), Traces and Failures…
- There is a *formal system* (proofs) or a *verification method* (model-checking), or both.
- *Thus*
	- *Formal specifications can be analysed to guide the identification of appropriate test cases.*

– *They may contribute to the definition of oracles.* June 2017 **HSST, Halmstad** 6

Example 1:Pre/Post-conditions (à la VDM)

 $MAX (a:\mathbb{Z}, b:\mathbb{Z})$ **result** max: pre true **post** (max=a \vee max=b) \wedge max \geq a \wedge max \geq b

Example 1bis: axioms of a data type (à la CASL)

spec CONTAINER = NAT, BOOL

then

generated type *Container* ::= [] │ _::_*(Nat ; Container)* **op** *isin* : Nat \times Container \rightarrow Bool

op *remove: Nat × Container* → *Container*

- ∀ *x, y:Nat; c:Container*
- \bullet *isin(x, []) = false*
- \bullet *eq(x, y)* = *true* \Rightarrow *isin(x, y::c)* = *true*
- \bullet *eq(x, y)* = *false* \Rightarrow *isin(x, y::c)* = *isin(x,c)*
- *remove(x, [])* = []
- \bullet *eq(x, y) = true* \Rightarrow *remove(x, y::c) = c*
- \bullet *eq(x, y)* = *false* \Rightarrow *remove(x, y::c)* = *y::remove(x,c)*

end

This FSM removes from the input text all that is not a comment A comment is a string between /* and */ Examples:

This is not a comment **/*** all that / *is ** a comment ***/** this is no more a comment.

NB: ϕ is any character but $*$ and /

Example 3: CSP processes

$$
Counter_2 = add \rightarrow C_1
$$

\n
$$
C_1 = add \rightarrow C_2 \left[\quad]sub \rightarrow Counter_2
$$

\n
$$
C_2 = sub \rightarrow C_1
$$

 $Replicator = c? x : Int \rightarrow d!x \rightarrow Replicator$ $FreshInt(n : Int) = c!n \rightarrow FreshInt(n + 1)$ $(FreshInt(0)$ [*c*] $[Reglicator) \ c$ parallel composition with hidden synchronisation on *c*

Example 3bis: a *Circus*

process

 $RANGE == 0.59$ channel *tick, time* channel $out : RANGE \times RANGE$ process $Chrono \hat{=}$ begin state $AState = [sec, min : RANGE]$ $AInit \equiv [AState' | sec' = min' \wedge min' = 0]$ $IncSec = [\Delta A State \mid sec' = (sec + 1) \mod 60 \land min' = min]$ $IncMin = [\Delta A State \mid min' = (min + 1) \mod 60 \land sec' = sec]$ $Run \hat{=}$ *tick* $\longrightarrow IncSec;$ ((*sec* = 0) $\& IncMin$) ∟
∕ $(sec \neq 0) \&$ Skip)) ∟
. ، $time \longrightarrow out!(min,sec) \longrightarrow$ **Skip** \bullet (*AInit*; ($\mu X \bullet (Run; X))$) end process $Clock \cong \text{begin} \rightarrow \mu X \bullet tick \rightarrow X \text{end}$ **process** $TChrono \cong (Chrono \mid \{ \mid tick \} \mid \right) Clock) \setminus \{ \mid tick \}$ The *Chrono* process

June 2017 HSST, Halmstad 12 2 - Testing input output

- One tests SYSTEMS
- A system is a dynamic entity, *embedded in the physical world*
- It is *observable* via some limited interface/procedure
- It is not always *controllable*
- It is quite different from a piece of text (formula, program) or a diagram

A program text, or a specification text, or a model, is not the system

Black-Box Testing

- *Black-Box Testing:*
	- the internal organisation of the SUT (System Under Test) is not known
- *However,*
	- Implicitely or explicitely, one considers a class of "testable implementations" => notion of *Testability Hypotheses* on the SUT

- If the SUT can be *any demonic system*, there is no sensible way of testing it \odot
- Fortunately, *some basic assumptions are feasible* (example: correct implementation of booleans and bounded integers, determinism, …)
- Some others can be *verified in another way*: static checks on the program, preliminary tests, a priori knowledge of the environment…

FORMAL SPECIFICATIONS AND TESTING

- Given some "testable" *SUT*, what does it mean that it satisfies *SP*?
- What is the correctness reference? Is there an "exhaustive" (or "complete") set of tests?
- *SP* is some sort of *model or formula*; *SUT* is some sort of *system*; how to define *"SUT sat SP"* or *"SUT conf SP"* in such an heterogeneous context?

A generic testability hypothesis

- *"The SUT corresponds to some unknown formal specification in the same formalism as specification SP"*
	- If *SP* is a *FSM*, *SUT* behaves like some *FSM*
	- If *SP* is a formula, the symbols of the formula can be interpreted by *SUT*
	- If *SP* is a process, *SUT* can be observed as a process, with traces and deadlocks
- Notation: *[SUT]*

Back to well-established relations

For instance, the *satisfaction/conformance* relation is

- equivalence for FSM,
- logical satisfaction for formulas,
- refinement for processes,
- *ioco* for LTS…

Illustration: testing against *traces refinement* in CSP

 $Counter_2 = add \rightarrow C_1$ $C_1 = add \rightarrow C_2$ $\left[\right]$ *sub* \rightarrow *Counter*₂ $C_2 = \overline{sub} \rightarrow C_1$

Traces of *Counter*₂ *<>* $\langle \textit{add} \rangle$ $\langle \text{add}, \text{add}\rangle$ $\langle \text{add}, \text{sub} \rangle$ *<add,add,sub>* …

Illustration: testing against traces refinement in CSP

 $Counter_2 = add \rightarrow C_1$ $C_1 = add \rightarrow C_2 \parallel \text{sub} \rightarrow Counter_2$ $C_2 = \overline{sub} \rightarrow C_1$

Traces of *Counter*, *<>* $\langle \text{add}\rangle$ $\langle \text{add}, \text{add}\rangle$ $\langle \text{add}.sub \rangle$ *<add,add,sub>* …

Forbidden traces $\langle sub \rangle$ α dd,add,add α $\langle \langle \text{add}, \text{sub}, \text{sub} \rangle \rangle$ …

 $test1 = pass \rightarrow sub \rightarrow fail \rightarrow STOP$ $test2 = inc \rightarrow add \rightarrow inc \rightarrow add \rightarrow pass \rightarrow add \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow add \rightarrow inc \rightarrow sub \rightarrow pass \rightarrow sub \rightarrow fail \rightarrow STOP$

Illustration: testing against traces refinement in CSP

 $Counter_2 = add \rightarrow C_1$ $C_1 = add \rightarrow C_2$ $\left[\begin{array}{c} \end{array}\right]$ *sub* \rightarrow *Counter*₂ $C_2 = \overline{sub} \rightarrow C_1$

Traces of *Counter*, *<>* $\langle \text{add}\rangle$ $\langle \text{add}, \text{add}\rangle$ $\langle \text{add}.sub \rangle$ *<add,add,sub>* …

Forbidden traces $\langle sub \rangle$ α dd,add,add α $\langle \langle \text{add}, \text{sub}, \text{sub} \rangle \rangle$ …

 $test1 = pass \rightarrow sub \rightarrow fail \rightarrow STOP$ $test2 = inc \rightarrow add \rightarrow inc \rightarrow add \rightarrow pass \rightarrow add \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow add \rightarrow inc \rightarrow sub \rightarrow pass \rightarrow sub \rightarrow fail \rightarrow STOP$

Test submissions *SUT |[add,sub]| test1 \ [add,sub] SUT |[add,sub]| test2 \ [add,sub] SUT |[add,sub]| test3 \ [add,sub*]

Oracle: the last observed event is not *fail*

Exhaustive test set for traces refinement of CSP

Let us consider the Test Set:

 $\mathsf{Exhaust}_{\tau}(SP) = \{T_{\tau}(s, a) \mid s \in \text{traces}(SP) \land \neg a \in \text{initial}(SP/s) \}$ where T_T (s, a) = $inc \rightarrow a_1 \rightarrow inc \rightarrow a_2 \rightarrow inc \cdot \cdot \cdot a_n \rightarrow pass \rightarrow a \rightarrow fail \rightarrow STOP$ for $s = .$

For any test *T*, its execution against *SUT* is specified as: $$

Theorem (Cavalcanti Gaudel 2007) : *SUT* is a traces refinement of *SP* iff $∀T_T(s, a) ∈ Exhaust_T(SP), ∨ t ∈ traces (Execution_{SPSUT}(T_T(s, a))),$ *¬ last* **(***t* **) =** *fail*

The corresponding testability hypotheses

- *SUT* behaves like a CSP process
	- With the same alphabet of actions as *SP*
	- The *actions and events are atomic*
- If *SUT* is non-determinist, it satisfies the classical *complete testing assumption*

Selection

- How to select finite subsets of *Exhaust*_{SP}?
- *Test Set Selection* is based on the specification (of course, it's Black Box Testing!)
- Among the solutions:
	- Uniformity hypotheses
	- Regularity hypotheses
	- Others …

An example from CSP

 $Replicator = c? x : Int \rightarrow d!x \rightarrow Replicator$ $FreshInt(n : Int) = c!n \rightarrow FreshInt(n + 1)$ $(FreshInt(0)$ [*c*] $[Replicator) \ c$ parallel composition with hidden synchronisation on *c* Traces of Replicator \Leftrightarrow $\langle c_0$ () $\langle c_n| \rangle$ … $< c.0,d.0>$ $\langle c.1,d.1 \rangle ...$ $\langle c.0,d.0,c.7 \rangle ...$

> Forbidden symbolic traces *<d.v>* ∀ *v*∈*Int <c.v, d.w>* ∀ *v,w*∈*Int, v≠w <c.v, c.w>* ∀ *v,w*∈*Int* $\langle c,v,d,v,d,w \rangle$ $\forall v,w \in Int$ *<c.v, d.v, c.w, d.u>*∀ *v,w,u*∈*Int, w≠u* …

…

An example from CSP

 $Replicator = c? x : Int \rightarrow d!x \rightarrow Replicator$ $FreshInt(n:Int) = c!n \rightarrow FreshInt(n+1)$ $(FreshInt(0)$ [*c*] $[Replicator) \ c$ parallel composition with hidden synchronisation on *c* Traces of Replicator \Leftrightarrow $\langle c \rangle$

 $\langle c|2\rangle$ $< c.0,d.0>$ $\langle c.1,d.1 \rangle$... $< c.0,d.0,c.7>...$

Forbidden symbolic traces *<d.v>* ∀ *v*∈*Int <c.v, d.w>* ∀ *v,w*∈*Int, v≠w <c.v, c.w>* ∀ *v,w*∈*Int <c.v, d.v, d.w>* ∀ *v,w*∈*Int <c.v, d.v, c.w, d.u>*∀ *v,w,u*∈*Int, w≠u* No condition on *v*: an arbitrary value will do \Rightarrow Uniformity Hypothesis

There is one condition on *w*: $v \neq w$. Any value satisfying it will do \Rightarrow Uniformity Hypothesis, etc

…

 $Replicator = c? x : Int \rightarrow d!x \rightarrow Replicator$

 $FreshInt(n:Int) = c!n \rightarrow FreshInt(n+1)$

 $(FreshInt(0)$ [*c*] $[Replicator) \ c$ parallel composition

with hidden synchronisation on *c*

Traces of Replicator \ll $\langle c.0 \rangle$ $\langle c.1 \rangle$ … $<**c.0, d.0> <...**$ $...$ <c.0,d.0,c.7>…

No condition on *v*: an arbitrary value will do \Rightarrow Uniformity Hypothesis \Rightarrow test1 There is one condition on *w*: *v≠w .*Any value satisfying it will do \Rightarrow Uniformity Hypothesis \Rightarrow test2, etc

 $test1 = pass \rightarrow d.127 \rightarrow fail \rightarrow STOP$ $test2 = inc \rightarrow c.0 \rightarrow pass \rightarrow d.17 \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow c.4 \rightarrow pass \rightarrow c.1024 \rightarrow fail \rightarrow STOP$ $|test4 = inc \rightarrow c.78 \rightarrow inc \rightarrow d.78 \rightarrow p \, \textit{ass} \rightarrow d.46 \rightarrow fail \rightarrow STOP$ $test5 = ...$

…

An example of regularity hypothesis

 $Replicator = c? x : Int \rightarrow d!x \rightarrow Replicator$

 $FreshInt(n : Int) = c!n \rightarrow FreshInt(n + 1)$

 $(FreshInt(0)$ [*c*]| *Replicator*) \ *c* parallel composition

with hidden synchronisation on *c*

Traces of Replicator \Leftrightarrow $\langle c|0\rangle$ $\langle c \rangle$ 1> $< c.0,d.0>$ $\langle c.1,d.1 \rangle ...$ $\langle c.0,d.0,c.7 \rangle$ …

Forbidden symbolic traces *<d.v>* ∀ *v*∈*Int <c.v, d.w>* ∀ *v,w*∈*Int, v≠w <c.v, c.w>* ∀ *v,w*∈*Int <c.v, d.v, d.w>* ∀ *v,w*∈*Int <c.v, d.v, c.w, d.u>*∀ *v,w,u*∈*Int, w≠u*

There is no dependency between the recursive calls of *Replicator.* There is no shared state. \Rightarrow If the SUT is determinist, one execution is sufficient \Rightarrow Regularity Hypothesis \Rightarrow **Finite Test Set**

 $\text{test1} = \text{pass} \rightarrow d.127 \rightarrow \text{fail} \rightarrow \text{STOP}$ $test2 = inc \rightarrow c.0 \rightarrow pass \rightarrow d.17 \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow c.4 \rightarrow pass \rightarrow c.1024 \rightarrow fail \rightarrow STOP$ $|test4 = inc \rightarrow c.78 \rightarrow inc \rightarrow d.78 \rightarrow p \, \textit{ass} \rightarrow d.46 \rightarrow fail \rightarrow STOP$

Selection Hypotheses

- Addition to Testability Hypotheses: *Selection Hypotheses* on the SUT
- *Uniformity Hypothesis*
	- ^Φ*(X)* is a property, *SUT* is a system, *D* is a sub-domain of the domain of *X*
	- $-$ (∀*t*₀ ∈ D) ([SUT] sat $\Phi(t_0) \Rightarrow$ (∀*t* ∈ D) ([SUT] |= $\Phi(t)$))
	- Determination of sub-domains ? *guided by the specification, see later…*
- *Regularity Hypothesis*
	- $(\forall t \in Dom(X), \forall t \leq k \Rightarrow \llbracket \text{SUT} \rrbracket$ sat $\Phi(t)$) \Rightarrow $(V t \in Dom(X)$ ([SUT] sat $\Phi(t)$)
	- Determination of |t|? *cf. specification*

Selection of finite test sets

• "Selection Hypotheses" *H* on *SUT*, and construction of practicable test sets *T* such that:

```
H holds for SUT => 
(SUT passes T \leq \geq [SUT]sat SP)
```
- *<H, T>* is a valid and unbiased Test Context
- June 2017 **HSST, Halmstad** 34 • or: *T* is complete w.r.t. *H*

 \leq SUT testable, $\mathbf{exhaust}(SP)$

<Weak Hyp, Big Test Set>

<Strong Hyp, Small TS>

SUT correct, ø

SOME BASIC TECHNIQUES FOR CASE SPLITTING

"Invention" of selection hypotheses

Several possibilities:

- Guided by the conditions that appear in the specification : case analysis, case splitting
- Or guided by some knowledge of the operational environment
- Or guided by some fault model
- Or guided by the syntax (coverage criteria)

Two main techniques:

- Reduction of formulas into Disjunctive Normal Form (DNF) *[Dick & Faivre 1993]*
- Unfolding of recursive definitions *[Burstall & Darlington 1977]*

Implementations:

- Conditional rewriting, Narrowing
- Symbolic evaluation

DNF?

- It is a disjunction (sequence of ORs) consisting of one or more disjuncts, each of which is a conjunction (AND) of one or more literals (i.e., statement letters and negations of statement letters; Mendelson 1997, p. 30)
- \land , \lor , and \neg are the only logical operators, \neg is the most internal, then ∧, then ∨
- Intuitively, this gives a list of disjoint test cases.

More on DNF

- A first example of DNF decomposition:
- $(p \vee q) \rightarrow \neg r \Leftrightarrow (p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r)$ $V(\neg p \land \neg q \land r) V(\neg p \land \neg q \land \neg r)$
- Basic rules:
	- (p ∨ q) is decomposed into 3 disjoint cases: p∧q, p∧¬q, ¬p∧q
	- $-(A\rightarrow B)$ is decomposed into $\neg A$ and $A \wedge B$
	- $-$ are eliminated
- Not very difficult, but... exponential explosion June 2017 **HSST, Halmstad** 39

Example of the reduction of pre/post-conditions

result max:**Z**

pre true

post (max=a \vee max=b) \wedge max \geq a \wedge max \geq b

(conjunction of pre-condition, post-condition and state Invariant, if any) \Rightarrow

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

Example of the reduction of pre/post-conditions

result max:**Z**

pre true

post (max=a \vee max=b) \wedge max \geq a \wedge max \geq b

(conjunction of pre-condition, post-condition and state Invariant, if any) \Rightarrow

true ∧(max=a ∨ max=b)∧ max≥a ∧ max≥b

(simplification of "true Λ ...") =>

(max=a ∨ max=b)∧ max≥a ∧ max≥b

 $\frac{x}{4} +$

 $\frac{x}{4} + Y -$

 \mathcal{G}_{\perp}

 $rac{x}{4}$

3 test cases: $\{(a=b, max=a=b), (a>b, max=a), (b>a, max=b)\}$ Thus, *3 uniformity sub-domains + oracles*.

Unfolding

- Unfolding is a classical technique for transforming (and understanding) recursive definitions
- It is just replacement of *f(op(x)*) by the definition(s) of *f*, with adequate renaming of variables
	- $-$ *fact(n)* = $_{def}$ *if* n=0 *then* 1 *else* n*fact(n-1) becomes:
	- $-$ *fact*(*n*) =_{def} *if n*=0 *then* 1 *else**if* (*n*-1)=0 *then* $n * 1$ *else n*(n-1)*fact(n-2)*
		- i.e. $fact(n) =_{def} if n=0$ then 1 else if $n=1$ then 1 *else n*(n-1)*fact(n-2)*
	- etc
	- Going on, the definition of the *fact* function is replaced by its graph, i.e. its *exhaustive test set* \mathcal{Q} ...