Testing from Formal

Specifications,
a unifying framework

Marie-Claude Gaudel
Emeritus Professor

LRI, Univ Paris-Sud & CNRS

June 2017 HSST, Halmstad 1



T
Software Testing can be %

formal too

A piloneering paper:

o « We know less about the
theory of testing, which we
do often, than about the
theory of program proving,
which we do seldom »

Goodenough J. B., Gerhart S.,

IEEE Transactions on

Software Engineering,
1975

June 2017 HSST, Halmstad 2




There have been some
progresses. ..

Outline of the course

» [Introduction Part
— Formal specifications
— Testing

e Putting them together

* Case splitting methods
— DNF, unfolding,...

e [llustrations
— Axioms, FSM, CSP

June 2017 HSST, Halmstad 3




INTRODUCTION PART

Formal specifications
Testing

June 2017 HSST, Halmstad 4



1 - Formal Specifications?

* As for any specification framework, there is a
notation, for instance:

— Formulas
* Pre/Post-conditions, 15t order logic, JIML, SPEC# ...
« Algebraic Spec (CASL), Z, VDM, B,

— Processes definitions
 CSP, CCS, Lotos, Circus ...

— Annotated diagrams
« Automata, Finite State Machines (FSM), Petri Nets...

* But there 1s more than a syntax...

June 2017 HSST, Halmstad 5



What makes a specification
method formal?

o There is a formal semantics

— Algebras, Predicate transformers, Sets, Labelled
Transition Systems (LTS), Traces and Failures...

» There 1s a formal system (proofs) or a
verification method (model-checking), or both.

e Thus

— Formal specifications can be analysed to guide the
identification of appropriate test cases.

— They may contribute to the definition of oracles.
June 2017 HSST, Halmstad 6



Example 1:Pre/Post-conditions
(a la VDM)

MAX (a:Z, b:Z)

result max:Z

pre true

post (max=a V max=b)A max>a A max>b

June 2017 HSST, Halmstad 7



Example 1bis: axioms of a i'{- -_:
data type (a la CASL)

spec CONTAINER = NAT, BOOL

then
generated type Container ::= || | i1 (Nat ; Container)
op isin : Nat x Container — Bool
op remove: Nat x Container — Container
V' x, v:Nat, c:Container
e isin(x, []) = false
® eq(x, y) = true = 1isin(x, y::c) = true
® eq(x, y) = false = isin(x, y::c) = isin(x,c)
® remove(x, [[) =[]
® eq(x, v) = true = remove(x, y.:c) = ¢

® eq(x, v) = false = remove(x, y::c) = y::remove(x,c)
end




This FSM removes from the input text all that is not a comment
A comment is a string between /* and */

Examples:
This is not a comment /* all that / *1s ** a comment */ this 1S no more

a comment.
NB: ¢ 1s any character but * and /

June 2017 HSST, Halmstad



Example 3: CSP processes ¥

Counter, = add — C,
C,=add — C,| |sub— Counter,
C, =sub—C,

Replicator = c¢?x : Int = d!x — Replicator
Freshint(n: Int)=c!n — Freshint(n+1)
(Freshint(0)1[c]| Replicator)\ ¢ parallel composition

with hidden synchronisation on ¢

June 2017 HSST, Halmstad 10



Example 3bis: a Circus
process

RANGE == 10..59
channel tick, time
channel out : RANGE x RANGE

ﬂ)rocess Chrono = begin \
state AState == [sec, min : RANGE ]

Alnit == [AState’ | sec’ = min’ A min’ = 0]
IncSec == [AAState | sec’ = (sec +1) mod 60 A min’ = min |
IncMin == [AAState | min’ = (min + 1) mod 60 A sec’ = sec]

Run = tick — IncSec; ((sec = 0) & IncMin)
0 The Chronp process
(sec # 0) & Skip))
U
time — out !(min, sec) — Skip
o (AInit; (u X o (Run; X)))

N\ _/

process Clock = begin e |1 X e tick — X end
process T'Chrono = (Chrono [ { tick [} | Clock) \ { tick |}




2 - Testing

* One tests SYSTEMS
* A system is a dynamic .
entity, embedded in the *
. v o
physical world < {’H
 Itis observable via some Y
limited interface/procedure Teo
It 1s not always controllable —T

[t 1s quite different from a
piece of text (formula, input
program) or a diagram

June 2017 HSST, Halmstad



A philosophical interlude

“ . . y &
A map 1s not the territory ™y bk

=,

*A variant: “don’t eat the menu...” ©

A program text, or a specification text,
or a model, is not the system

June 2017 HSST, Halmstad 13



Black-Box Testing

* Black-Box Testing:

— the internal organisation of the SUT (System
Under Test) 1s not known

e However,

— Implicitely or explicitely, one considers a class of
“testable implementations” => notion of
Testability Hypotheses on the SUT

June 2017 HSST, Halmstad 14



Testability?

» If the SUT can be any demonic system, there 1s no
sensible way of testing it ©®

* Fortunately, some basic assumptions are feasible
(example: correct implementation of booleans and
bounded integers, determinism, ...)

* Some others can be verified in another way: static
checks on the program, preliminary tests, a priori
knowledge of the environment...

June 2017 HSST, Halmstad 15



FORMAL SPECIFICATIONS
AND TESTING

June 2017 HSST, Halmstad 16



Wanted: a satisfaction/
conformance relation

ISP ?

e Given some “testable” SUT, what does i1t mean that it
satisfies SP?

e What 1s the correctness reference? Is there an
“exhaustive” (or “complete™) set of tests?

e SP 1s some sort of model or formula; SUT 1s some
sort of system; how to define “SUT sat SP” or “SUT
conf SP” 1n such an heterogeneous context?



N ¢
A generic testability %
hypothesis

o “The SUT corresponds to some unknown
formal specification in the same formalism as
specification SP”

— If SP 1s a FSM, SUT behaves like some FSM

— If SP 1s a formula, the symbols of the formula can
be interpreted by SUT

— If SP 1s a process, SUT can be observed as a
process, with traces and deadlocks

* Notation: [SUTJ

June 2017 HSST, Halmstad 18



Back to well-established
relations

)

SP ﬂ sat/conf/refines

For instance, the satisfaction/conformance relation 1s
* equivalence for FSM,
* logical satisfaction for formulas,

* refinement for processes,
* ioco for LTS...

June 2017 HSST, Halmstad 19



SP

consequences,
counter-examples

Tests and
Test drivers

June 2017

sat/conf/refines :’5“' \
T
i
a1

HSST, Halmstad

20



[llustration: testing against ha
traces refinement in CSP =

Traces of Counter,
<>
Counter, = add — C, < add>
C, =add — sz[ |sub — Counter, <add,add>
C.=sub—C <add,sub>
2 ! <add,add,sub>

June 2017 HSST, Halmstad 21



[llustration: testing against
traces refinement in CSP

Traces of Counter,
Counter, = add — C, z:dd>
C, =add — sz[ |sub — Counter, <add,add>
€, =sub—C edd s>
Forbidden traces

<sub>
<add add add>
<add, sub,sub>

testl = pass — sub — fail — STOP
test2 = inc = add — inc — add — pass — add — fail — STOP
test3 = inc — add — inc — sub — pass — sub — fail — STOP

June 2017

HSST, Halmstad

22



[llustration: testing against
traces refinement in CSP

Traces of Counter,
<>
Counter, = add — C, <add>
C, =add — sz[ |sub — Counter, <add,add>
C.=sub—C <add,sub>
2 ! <add,add,sub>
Forbidden traces
<sub> testl = pass — sub — fail — STOP
< > test2 = inc = add — inc — add — pass — add — fail — STOP
<zgzz?jg’§$d> test3 =inc — add — inc — sub — pass — sub — fail — STOP
Test submissions

SUT |[add,sub]| testl \ [add,sub]
SUT |[add,sub]| test2 \ [add,sub]
SUT |[add,sub]| test3 | [add,sub]

Oracle: the last observed
event 1s not fail

June 2017 HSST, Halmstad 23



Exhaustive test set for
traces refinement of CSP

Let us consider the Test Set:

Exhaust, (SP)={T;(s,a)|s € traces (SP) A T a € initials (SP/s ) }
where

I+(s,a)=inc—a, —inc—a, —inc...a,— pass — a— fail - STOP
fors=<a,a,, ...,a,>.

For any test 7, its execution against SUT 1s specified as:
Executiongp s, (T ) = (SUT |[ aSP ]| T )\aSP

Theorem (Cavalcanti Gaudel 2007) :

SUT 1s a traces refinement of SP iff
V T; (s, a) € Exhaust; (SP), V t& traces (Executiongp s, (T (s, a))),
= Jast (t) = fail



The corresponding
testability hypotheses

« SUT behaves like a CSP process
— With the same alphabet of actions as SP

— The actions and events are atomic

o If SUT 1s non-determinist, 1t satisfies the
classical complete testing assumption

June 2017 HSST, Halmstad 25



Exhaustivity 1s not
practicable

exhaust(SP) ?

|
[You are not se%_]
E <
SUT/ =

It has been my
Let us select some } problem for years...
adequate finite subset

AT RS

June 2017 HSST, Halmstad 26




Selection

* How to select finite subsets of Exhaust gy ?

o Test Set Selection 1s based on the specification
(of course, 1t’s Black Box Testing!)

* Among the solutions:
— Uniformity hypotheses

— Regularity hypotheses
— Others ...

June 2017 HSST, Halmstad 27



An example from CSP

Replicator = ¢?x : Int — d!x — Replicator Traces of Replicator
<>
Freshint(n:Int)=c!n — Freshint(n+1) <c.0>
: . <c.I>...
(Freshint(0)1[c]| Replicator)\ ¢ parallel composition <.0.d.0>
with hidden synchronisation on ¢ <c.Ld.I>...
<c.0,d.0,c.7>...

Forbidden symbolic traces
<dv>VvEInt

<c.v, dw> ¥ vw EInt, vFw

<c.v, cw> Y yw Elnt

<cv, dv, dw> Y vwEInt

<c.v, d.v, ew, du>¥ vwu Elnt, w#u




An example from CSP

Replicator = ¢? x : Int — d!x — Replicator [races of Replicator
Freshint(n: Int)=c!n— Freshlnt(n+1) <c.0>
(Freshint(0)1[c]| Replicator)\ ¢ parallel composition <<(;C0130>
with hidden synchronisation on ¢ zz(l)g(1)>07>
Forbidden symbolic traces No condition on v: an arbitrary value
<dv>V v EInt will do => Uniformity Hypothesis

< > (=

¢V d.w> V¥ vw Elnt, v&w There is one condition on w: v£w .
<c.v, ew> VY vywEInt Any value satisfying it will do =>
<cv, dv, dw> ¥V vw EInt Uniformity Hypothesis, etc
<c.v, d.v, ew, du>¥ vwu Elnt, w#u




An example from CSP

Replicator = c¢?x : Int — d!x — Replicator

Traces of Replicator

Freshint(n:Int)=c!n— Freshint(n+1) =~

<c.0> <c.1>...

(Freshint(0)l[c]| Replicator)\ ¢ parallel composition || <c.0,d.0><c.1,d.1>...

with hidden synchronisation on ¢

...<c.0,d.0,c.7>...

Forbidden symbolic traces
<dv>VvEint

<c.v, dw> ¥ vw EInt, vFw
<c.v, cew> Y vyw EInt

<cv, dv, dw> V¥ vyw EInt

No condition on v: an arbitrary value will do
=> Uniformity Hypothesis => testl

There 1s one condition on w: v#w .Any value
satisfying it will do => Uniformity

s
<c.v, d.v, c.w, du>V vywu EInt, w#u Hypothesis => test2, etc

testl = pass — d.127 — fail — STOP
test2 =inc — c.0 — pass — d.1'71 — fail = STOP
test3 =inc —> c4 — pass — ¢.1024 — fail — STOP

test4 =inc — ¢.18 — inc —=> d. 718 — pass — d.46 — fail = STOP
testd=...




But this test set 1s still infinite!!
And by the way, are you sure that
testS would be useful?

hat a crazy
academic!

Just make use of
regularity...but it is
sometimes risky.

June 2017 HSST, Halmstad 31



An example of regularity

hypothesis

Replicator = ¢?x : Int — d!x — Replicator -
Freshint(n: Int)=c'n — Freshint(n+1) zz(l)i

(Freshint(0)1[c]| Replicator)\ ¢ parallel composition || <c.0,d.0>

with hidden synchronisation on ¢ <c.0,d.0,c.7>...

Traces of Replicator

<c.l.d.1>...

Forbidden symbolic traces
<dv>VvEint

<c.v, dw> ¥ vw EInt, vFw
<c.v, cew> Y vyw EInt

<cv, dv, dw> V¥ vyw EInt

<c.v, dv, ew, du>Y vywu EInt, wtu

There 1s no dependency between the
recursive calls of Replicator.

There 1s no shared state.

=>[f the SUT 1s determinist, one execution
1s sufficient => Regularity Hypothesis =>
Finite Test Set

testl = pass — d.127 — fail — STOP
test2 =inc — c¢.0 = pass = d.17 — fail = STOP

test3 =inc —> c4 — pass — ¢.1024 — fail — STOP
test4 =inc — ¢.18 — inc —= d. 18 — pass — d.46 — fail — STOP




Selection Hypotheses

« Addition to Testability Hypotheses: Selection Hypotheses on the
SUT

o Uniformity Hypothesis
—  @(X) 1s a property, SUT 1s a system, D 1s a sub-domain of the domain of X
— (Vt,eD) ([SUT] sat ¥(t,) = (Yt €ED) (J[SUTJ |= P(1)) )
— Determination of sub-domains ? guided by the specification, see later...
* Regularity Hypothesis
— (Vi EDom(X), [t|<k = [SUT]sat ®(t))) =
(Vt EDom(X ) ([SUTJ sat d(t))

— Determination of [t|? ¢f. specification

June 2017 HSST, Halmstad 33



Selection of finite test sets

e “Selection Hypotheses” H

on SUT, and construction of \  _qi/1 esable. exhaust(SP)>
practicable test sets 7 such

that:

H holds for SUT => <Weak Hyp, Big Test Set>
(SUT passes T <=> [SUT]
sat SP)

<Strong Hyp, Small s>
« <H, T>1savalid and

unbiased Test Context SUT correct. 0

e or: T1s complete w.r.t. H
June 2017 HSST, Halmstad 34




SOME BASIC TECHNIQUES
FOR CASE SPLITTING

June 2017 HSST, Halmstad 35



SEA
“Invention” of selection %
hypotheses

Several possibilities:

* Guided by the conditions that appear in the
specification : case analysis, case splitting

* Or guided by some knowledge of the
operational environment

* Or guided by some fault model

* Or guided by the syntax (coverage criteria)

June 2017 HSST, Halmstad 36



Case splitting

Two main techniques:

* Reduction of formulas into Disjunctive
Normal Form (DNF) /Dick & Faivre 1993]

* Unfolding of recursive definitions [Burstall &
Darlington 1977]

Implementations:
* Conditional rewriting, Narrowing

* Symbolic evaluation

June 2017 HSST, Halmstad 37



DNE?

* It 1s a disjunction (sequence of ORs) consisting
of one or more disjuncts, each of which is a
conjunction (AND) of one or more literals
(1.e., statement letters and negations of
statement letters; Mendelson 1997, p. 30)

* A, V,and - are the only logical operators, —1s
the most internal, then A, then v

* Intuitively, this gives a list of disjoint test
cases.

June 2017 HSST, Halmstad 38



More on DNF

» A first example of DNF decomposition:

(pVv qQ—=-1r < (pPAQA—=T) V (PA=QA=T) V (=PAQA—T)
v (ZpA=QgAr) V (mpA=gA-T)

e Basic rules:

— (p v q) 1s decomposed into 3 disjoint cases: pAq,
pPA=(q, =PA(Q

— (A—B) 1s decomposed 1nto = A and AAB

— — = are eliminated

* Not very difficult, but...exponential explosion

June 2017 HSST, Halmstad 39



Example of the reduction
of pre/post-conditions

En

MAX (a:Z, b:Z) (conjunction of pre-condition,
result max:Z post-condition and state
pre true Invariant, if any) =>

post (max=a V max=b) A max>a A max>b

true A(max=a V max=b)A max2a A maxzb

Thanks to Jeremy Dick
and Alain Faivre

June 2017 HSST, Halmstad 40



Example of the reduction %&
of pre/post-conditions -

MAX (a:Z, b:Z)
result max:Z

pre true
post (max=a V max=b) A max>a A max>b

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

true A(max=a V max=b)A max2a A max2b | (simplification of “true A...”) =>

(max=a V max=b)A max=a A maxzb

June 2017 HSST, Halmstad

41



Example of the reduction %&
of pre/post-conditions -

MAX (a:Z, b:Z)
result max:Z

pre true
post (max=a V max=b) A max>a A max>b

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

true A(max=a V max=b)A max2a A max2b | (simplification of “true A...”) =>

(max=a V max=b)A max2a A maxzb | (distribution of V )=>

(max=a A maxza A maxzb) V (max=b A maxza A maxzb)

June 2017 HSST, Halmstad

42



Example of the reduction
of pre/post-conditions

MAX (a:Z, b:Z)
result max:Z

pre true
post (max=a V max=b) A max>a A max>b

En

(conjunction of pre-condition,
post-condition and state
Invariant, if any) =>

true A(max=a V max=b)A max2a A max2b | (simplification of “true A...”) =>

(max=a V max=b)A max2a A maxzb | (distribution of V )=>

(max=a A max2a A maxzb) V (max=b A max=a A max=b) (decomposition of V) =>

(max=a Amax=b A max2a A maxzb)V
(max=a Amax#b A max=a A maxzb) V
(max#a Amax=b A maxza A maxzb)

June 2017 HSST, Halmstad

43



Example of the reduction %&
of pre/post-conditions '

MAX (a:Z, b:Z) (conjunction of pre-condition,
result max:Z post-condition and state

pre true Invariant, if any) =>

post (max=a V max=b) A max>a A max>b

true A(max=a V max=b)A max2a A max2b | (simplification of “true A...”) =>

(max=a V max=b)A max2a A maxzb | (distribution of V )=>

(max=a A max2a A maxzb) V (max=b A max=a A max=b) (decomposition of V) =>

(max=a Amax=b A maxza A maxzb)V o (max=a Amax=b)V
(max=a Amax#b A max=a A maxzb) V | (simplifications) =>| (max=a Amax>b) V
(max#a Amax=b A maxza A maxzb) (max=b A max>a)

3 test cases: {(a=b, max=a=Db), (a>b, max = a), (b>a, max =b)}
Thus, 3 uniformity sub-domains + oracles.



Unfolding

* Unfolding 1s a classical technique for transforming
(and understanding) recursive definitions

* It is just replacement of f(op(x)) by the definition(s)

of f, with adequate renaming of variables

— fact(n) =,,.if n=0then I else n*fact(n-1) becomes:
— fact(n) =,,.if n=0then I else if (n-1)=0 then n*1 else

n*(n-1)*fact(n-2)
* 1e fact(n) =, if n=0then I else if n=1 then I
else n*(n-1)*fact(n-2)
— etc

— Going on, the definition of the fact function is replaced by its graph, 1.e.
its exhaustive test set ©...



