
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 1

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering

Programming Embedded Systems

Course Goals
On completion of the course students will be able to

1. program embedded applications using test-driven development

2. understand and use a kernel to support concurrency and
reactivity

3. design, structure and analyze programs for embedded systems,
and

4. explain different mechanisms for communication and
synchronization between processes

Programming Embedded Systems

Course Goals
On completion of the course students will be able to

1. program embedded applications using test-driven development

2. understand and use a kernel to support concurrency and
reactivity

3. design, structure and analyze programs for embedded systems,
and

4. explain different mechanisms for communication and
synchronization between processes

Programming Embedded Systems

Course Goals
On completion of the course students will be able to

1. program embedded applications using test-driven development

2. understand and use a kernel to support concurrency and
reactivity

3. design, structure and analyze programs for embedded systems,
and

4. explain different mechanisms for communication and
synchronization between processes

Programming Embedded Systems

Course Goals
On completion of the course students will be able to

1. program embedded applications using test-driven development

2. understand and use a kernel to support concurrency and
reactivity

3. design, structure and analyze programs for embedded systems,
and

4. explain different mechanisms for communication and
synchronization between processes

Programming Embedded Systems

Course Goals
On completion of the course students will be able to

1. program embedded applications using test-driven development

2. understand and use a kernel to support concurrency and
reactivity

3. design, structure and analyze programs for embedded systems,
and

4. explain different mechanisms for communication and
synchronization between processes

Yet another programming course?

Embedded Systems =
Software + Hardware + Physical World (incl. humans)

Cars that run on code

IEEE Spectrum, Feb. 2009

. . . “if you bought a premium-class automobile
recently, it probably contains close to 100 million lines of
software code. All that software executes on 70 to 100
microprocessor-based electronic control units (ECUs)
networked throughout the body of your car.”

– Manfred Broy

Even low-end cars now have 30 to 50
ECUs embedded in the body, doors,
dash, roof, trunk, seats and just
about anywhere else the car’s
designers can think to put them.

Cars that run on code

A.T. Kearney, The intelligent car, 2010

. . . By 2025, the share of software in the car industry
will increase to 25% of the total value; the share of
software and hardware will increase to 65% of the total
value.

– M. Roemer and A. Kramer

Yet another programming course?

Concurrency

Real-world elements exist and evolve in parallel , and so do
embedded systems!

Time constrained reactions
Embedded systems bread and butter: timely reaction to the
physical environment

Yet another programming course?

Concurrency

Real-world elements exist and evolve in parallel , and so do
embedded systems!

Time constrained reactions
Embedded systems bread and butter: timely reaction to the
physical environment

Yet another programming course?

Concurrency

Real-world elements exist and evolve in parallel , and so do
embedded systems!

Time constrained reactions
Embedded systems bread and butter: timely reaction to the
physical environment

Cars that run on code

IEEE Spectrum, Feb. 2009

“Most of the time the air bag system is just
monitoring the car’s condition, but if the air bags are
triggered by, say, a multiple vehicle collision, the software
in the ECU controlling their deployment has 15 to 40
milliseconds to determine which air bags are activated
and in which order.”

But also . . .

In embedded systems it is often the case that the programs we
write have to directly access the hardware that is connected to the
processor.

In order to be able to practice
with embedded systems, we start
the course from this end! The
next two lectures are about using
C and programming close to
hardware!

But also . . .

In embedded systems it is often the case that the programs we
write have to directly access the hardware that is connected to the
processor.

In order to be able to practice
with embedded systems, we start
the course from this end! The
next two lectures are about using
C and programming close to
hardware!

The lab environment

Raspberry Pi

A complete computer on a
credit-card-sized board including

I System on Chip (SoC)
BCM2835:

I ARM 1176JZF-S, 700
MHz processor

I 512 MB RAM,
I VideoCore IV GPU

I GPIO, LEDs, 4 USBs,
HDMI, Audio, and Ethernet

Several OSs available. We start with none and move to Linux.

Yet another lab environment

Smart phones with Android

After 4 weeks we will move to
programming in Java for Android.

I Java/Android support for
GUIs and

I the package for concurrency

We will mostly use network
programming (but perhaps also
other peripherals).

Plan for the course

I Bare metal programming in C. Practicals 0 and 1.

I Concurrent threads and embedded programming on a Linux
kernel. Practicals 2.

I Mutual exclusion and synchronization. Practicals 3.

I Programming language support for embedded systems
programming. Java on android. Practical 4.

I Reading and presenting papers on testing and verification of
concurrent programs. Java on android. Practical 5.

Plan for the course

I Bare metal programming in C. Practicals 0 and 1.

I Concurrent threads and embedded programming on a Linux
kernel. Practicals 2.

I Mutual exclusion and synchronization. Practicals 3.

I Programming language support for embedded systems
programming. Java on android. Practical 4.

I Reading and presenting papers on testing and verification of
concurrent programs. Java on android. Practical 5.

Plan for the course

I Bare metal programming in C. Practicals 0 and 1.

I Concurrent threads and embedded programming on a Linux
kernel. Practicals 2.

I Mutual exclusion and synchronization. Practicals 3.

I Programming language support for embedded systems
programming. Java on android. Practical 4.

I Reading and presenting papers on testing and verification of
concurrent programs. Java on android. Practical 5.

Plan for the course

I Bare metal programming in C. Practicals 0 and 1.

I Concurrent threads and embedded programming on a Linux
kernel. Practicals 2.

I Mutual exclusion and synchronization. Practicals 3.

I Programming language support for embedded systems
programming. Java on android. Practical 4.

I Reading and presenting papers on testing and verification of
concurrent programs. Java on android. Practical 5.

Plan for the course

I Bare metal programming in C. Practicals 0 and 1.

I Concurrent threads and embedded programming on a Linux
kernel. Practicals 2.

I Mutual exclusion and synchronization. Practicals 3.

I Programming language support for embedded systems
programming. Java on android. Practical 4.

I Reading and presenting papers on testing and verification of
concurrent programs. Java on android. Practical 5.

Plan for the course

I Bare metal programming in C. Practicals 0 and 1.

I Concurrent threads and embedded programming on a Linux
kernel. Practicals 2.

I Mutual exclusion and synchronization. Practicals 3.

I Programming language support for embedded systems
programming. Java on android. Practical 4.

I Reading and presenting papers on testing and verification of
concurrent programs. Java on android. Practical 5.

Administrivia

I Web page under
http://goo.gl/cu8OOH or
ceres.hh.se/mediawiki/PA 8001 Ed 2014

I Teachers
m.r.mousavi@hh.se

essayas.gebrewahid@hh.se

mahsa.varshosaz@hh.se

I 2hrs lecture and 4hrs supervised lab per week

I 4-5 relatively big labs – with deadlines, part of the
examination, mandatory. Work in groups of 2.

I 1 written exam

I 3-5 bonus questions (posed during the lectures)

I Count on 20 hours work per week plus preparation
for the exam.

Literature

To some extent the book

Test-Driven Development for
Embedded C

by James W. Grenning

We will also use some papers and documents that will be made
available on-line.

Acknowledgment

The software and the ideas in the course have been developed by
Johan Nordlander at Lule̊a Technical University.

Most of the slides were prepared by Veronica Gaspes at Halmstad
University.

Course Evaluation Follow-up

Past students evaluation

1. Mostly very positive!

2. Some students did not notice the practicals and
their deadlines! (submitting practicals on time is a
requirement for a pass).

We are interested in constructive comments about the course! You
are very welcome to talk to me or email me with your opinions
during the course.

Course Evaluation Follow-up

Past students evaluation

1. Mostly very positive!

2. Some students did not notice the practicals and
their deadlines! (submitting practicals on time is a
requirement for a pass).

We are interested in constructive comments about the course! You
are very welcome to talk to me or email me with your opinions
during the course.

Course Evaluation Follow-up

Past students evaluation

1. Mostly very positive!

2. Some students did not notice the practicals and
their deadlines! (submitting practicals on time is a
requirement for a pass).

We are interested in constructive comments about the course! You
are very welcome to talk to me or email me with your opinions
during the course.

Programming Embedded Systems

Cross Compiling

Development environment: an ordinary computer.
Run-time environment: the embedded processor.
The compilers we use are called cross compilers.

Access to embedded peripherals via named registers.

Make files
Specification of

I how to use the cross compiler,

I on what source files,

I what libraries to link, and more...

Programming Embedded Systems

Cross Compiling

Development environment: an ordinary computer.
Run-time environment: the embedded processor.
The compilers we use are called cross compilers.

Access to embedded peripherals via named registers.

Make files
Specification of

I how to use the cross compiler,

I on what source files,

I what libraries to link, and more...

Programming Embedded Systems

Cross Compiling

Development environment: an ordinary computer.
Run-time environment: the embedded processor.
The compilers we use are called cross compilers.

Access to embedded peripherals via named registers.

Make files
Specification of

I how to use the cross compiler,

I on what source files,

I what libraries to link, and more...

Programming in C

What?
machine independent (has to be
compiled!), with efficient support
for low-level capabilities (low level
access to memory, minimal
run-time support).

Why?

I C compilers available for
most micro controllers,

I Exposing the run-time
support needed for reactive
objects to understand:

I concurrency,
I object orientation and
I real time

Today

bit-level ops and some similarities/differences with Java.

Programming in C

What?
machine independent (has to be
compiled!), with efficient support
for low-level capabilities (low level
access to memory, minimal
run-time support).

Why?

I C compilers available for
most micro controllers,

I Exposing the run-time
support needed for reactive
objects to understand:

I concurrency,
I object orientation and
I real time

Today

bit-level ops and some similarities/differences with Java.

Programming in C

What?
machine independent (has to be
compiled!), with efficient support
for low-level capabilities (low level
access to memory, minimal
run-time support).

Why?

I C compilers available for
most micro controllers,

I Exposing the run-time
support needed for reactive
objects to understand:

I concurrency,
I object orientation and
I real time

Today

bit-level ops and some similarities/differences with Java.

C Program anatomy

I function declarations,

I a main function (executed when the program is run,

I global variable declarations,

I type declarations.

No classes in C! Larger programs organized in files; more on this
later today.

C Program anatomy

I function declarations,

I a main function (executed when the program is run,

I global variable declarations,

I type declarations.

No classes in C! Larger programs organized in files; more on this
later today.

C Program anatomy

I function declarations,

I a main function (executed when the program is run,

I global variable declarations,

I type declarations.

No classes in C! Larger programs organized in files; more on this
later today.

C Program anatomy

I function declarations,

I a main function (executed when the program is run,

I global variable declarations,

I type declarations.

No classes in C! Larger programs organized in files; more on this
later today.

C Program anatomy

I function declarations,

I a main function (executed when the program is run,

I global variable declarations,

I type declarations.

No classes in C! Larger programs organized in files; more on this
later today.

C Program anatomy

I function declarations,

I a main function (executed when the program is run,

I global variable declarations,

I type declarations.

No classes in C! Larger programs organized in files; more on this
later today.

A first example

#include <stdio.h>

int value;

void inc(){

value++;

}

int main(){

int x;

value = 0;

x = value;

inc();

printf("%d%s%d",

value," ",x);

printf("\n");

}

preprocessor instruction so that
we can use functions defined
elsewhere (in stdio.h)

A global variable declaration

A function declaration

The function where everything
starts! It includes a local vari-
able declaration.

Syntax for statements and
declarations, very much like Java!

A first example

#include <stdio.h>

int value;

void inc(){

value++;

}

int main(){

int x;

value = 0;

x = value;

inc();

printf("%d%s%d",

value," ",x);

printf("\n");

}

preprocessor instruction so that
we can use functions defined
elsewhere (in stdio.h)

A global variable declaration

A function declaration

The function where everything
starts! It includes a local vari-
able declaration.

Syntax for statements and
declarations, very much like Java!

A first example

#include <stdio.h>

int value;

void inc(){

value++;

}

int main(){

int x;

value = 0;

x = value;

inc();

printf("%d%s%d",

value," ",x);

printf("\n");

}

preprocessor instruction so that
we can use functions defined
elsewhere (in stdio.h)

A global variable declaration

A function declaration

The function where everything
starts! It includes a local vari-
able declaration.

Syntax for statements and
declarations, very much like Java!

A first example

#include <stdio.h>

int value;

void inc(){

value++;

}

int main(){

int x;

value = 0;

x = value;

inc();

printf("%d%s%d",

value," ",x);

printf("\n");

}

preprocessor instruction so that
we can use functions defined
elsewhere (in stdio.h)

A global variable declaration

A function declaration

The function where everything
starts! It includes a local vari-
able declaration.

Syntax for statements and
declarations, very much like Java!

A first example

#include <stdio.h>

int value;

void inc(){

value++;

}

int main(){

int x;

value = 0;

x = value;

inc();

printf("%d%s%d",

value," ",x);

printf("\n");

}

preprocessor instruction so that
we can use functions defined
elsewhere (in stdio.h)

A global variable declaration

A function declaration

The function where everything
starts! It includes a local vari-
able declaration.

Syntax for statements and
declarations, very much like Java!

A first example

#include <stdio.h>

int value;

void inc(){

value++;

}

int main(){

int x;

value = 0;

x = value;

inc();

printf("%d%s%d",

value," ",x);

printf("\n");

}

preprocessor instruction so that
we can use functions defined
elsewhere (in stdio.h)

A global variable declaration

A function declaration

The function where everything
starts! It includes a local vari-
able declaration.

Syntax for statements and
declarations, very much like Java!

Standard IO – some details

This is very different from Java!

Formatted output

The function printf takes a
variable number of arguments:

I Just one, it has to be a
string! or

I A first formatting string
followed by the values that
have to be formatted

Examples
printf("Hello World!");

Just a string

printf("%d%s",value,"\n");

Format an integer followed by a
string

printf("%s%#X",": ",i);

Format a string followed by an
integer using hexa-digits

Check the documentation for the library for more details.

Standard IO – some details

This is very different from Java!

Formatted output

The function printf takes a
variable number of arguments:

I Just one, it has to be a
string! or

I A first formatting string
followed by the values that
have to be formatted

Examples
printf("Hello World!");

Just a string

printf("%d%s",value,"\n");

Format an integer followed by a
string

printf("%s%#X",": ",i);

Format a string followed by an
integer using hexa-digits

Check the documentation for the library for more details.

Standard IO – some details

This is very different from Java!

Formatted output

The function printf takes a
variable number of arguments:

I Just one, it has to be a
string! or

I A first formatting string
followed by the values that
have to be formatted

Examples
printf("Hello World!");

Just a string

printf("%d%s",value,"\n");

Format an integer followed by a
string

printf("%s%#X",": ",i);

Format a string followed by an
integer using hexa-digits

Check the documentation for the library for more details.

Standard IO – some details

This is very different from Java!

Formatted output

The function printf takes a
variable number of arguments:

I Just one, it has to be a
string! or

I A first formatting string
followed by the values that
have to be formatted

Examples
printf("Hello World!");

Just a string

printf("%d%s",value,"\n");

Format an integer followed by a
string

printf("%s%#X",": ",i);

Format a string followed by an
integer using hexa-digits

Check the documentation for the library for more details.

Standard IO – other functions

Standard streams

#include <stdio.h>

int main(){
char x;

char buf[10];

printf("waiting ... \n");

x = getchar();

gets(buf);

printf("got it! \n");

putchar(x);

printf("\n");

printf(buf);

printf("\n");

}

Files

#include <stdio.h>

int main(){

FILE *f;

char x;

f = fopen("vero","r");

x = getc(f);

fclose(f);

f = fopen("vero","w");

fprintf(f,"%c",x);

fclose(f);

}

Standard IO – other functions

Standard streams

#include <stdio.h>

int main(){
char x;

char buf[10];

printf("waiting ... \n");

x = getchar();

gets(buf);

printf("got it! \n");

putchar(x);

printf("\n");

printf(buf);

printf("\n");

}

Files

#include <stdio.h>

int main(){

FILE *f;

char x;

f = fopen("vero","r");

x = getc(f);

fclose(f);

f = fopen("vero","w");

fprintf(f,"%c",x);

fclose(f);

}

Bonus Question

Question
What happens if we enter 11
characters in the program on the
left-hand-side? How can we fix
this? Write and send a fixed
program.

Deadline
Friday afternoon (September 5,
2014) at 13:30. Email your
answers to m.r.mousavi@hh.se.
Beware of plagiarism!

Bonus Question

Question
What happens if we enter 11
characters in the program on the
left-hand-side? How can we fix
this? Write and send a fixed
program.

Deadline
Friday afternoon (September 5,
2014) at 13:30. Email your
answers to m.r.mousavi@hh.se.
Beware of plagiarism!

Switching

For discrete types it is possible to choose different actions
depending on the value of an expression of that type

#include <stdio.h>

int main(){

char x;

printf("waiting ... \n");

x = getchar();

switch(x) {

case ’a’: printf("This is the first letter \n");

case ’b’: printf("This is the second letter \n");

default : printf("This is some other letter \n");

}

}

Arrays

#include<stdio.h>

int main(){

int a[10];

int i;

for(i = 0;i<10;i++){

a[i]=i*i;

}

for(i = 9; i>=0; i--){

printf("%d%s%d%s",

i," ",a[i],"\n");

}

}

Different from Java:

int [] a = new int[10];

for-control variables have to
be declared as variables. In
Java they can be declared lo-
cally in the loop control

Arrays

#include<stdio.h>

int main(){

int a[10];

int i;

for(i = 0;i<10;i++){

a[i]=i*i;

}

for(i = 9; i>=0; i--){

printf("%d%s%d%s",

i," ",a[i],"\n");

}

}

Different from Java:

int [] a = new int[10];

for-control variables have to
be declared as variables. In
Java they can be declared lo-
cally in the loop control

Arrays

#include<stdio.h>

int main(){

int a[10];

int i;

for(i = 0;i<10;i++){

a[i]=i*i;

}

for(i = 9; i>=0; i--){

printf("%d%s%d%s",

i," ",a[i],"\n");

}

}

Different from Java:

int [] a = new int[10];

for-control variables have to
be declared as variables. In
Java they can be declared lo-
cally in the loop control

Structures

In C there are no classes! However there is one way of putting
together what would correspond to the fields in a class.

struct point{

int x;

int y;

};

double distanceO (struct point p){

return sqrt(p.x *p.x + p.y*p.y);

}

int main(){

struct point p = {3,4} ;

printf("point %d %d \n",p.x,p.y);

printf("distance %f \n",distanceO(p));

}

Structures

In C there are no classes! However there is one way of putting
together what would correspond to the fields in a class.

struct point{

int x;

int y;

};

double distanceO (struct point p){

return sqrt(p.x *p.x + p.y*p.y);

}

int main(){

struct point p = {3,4} ;

printf("point %d %d \n",p.x,p.y);

printf("distance %f \n",distanceO(p));

}

Structures

In C there are no classes! However there is one way of putting
together what would correspond to the fields in a class.

struct point{

int x;

int y;

};

double distanceO (struct point p){

return sqrt(p.x *p.x + p.y*p.y);

}

int main(){

struct point p = {3,4} ;

printf("point %d %d \n",p.x,p.y);

printf("distance %f \n",distanceO(p));

}

Structures

In C there are no classes! However there is one way of putting
together what would correspond to the fields in a class.

struct point{

int x;

int y;

};

double distanceO (struct point p){

return sqrt(p.x *p.x + p.y*p.y);

}

int main(){

struct point p = {3,4} ;

printf("point %d %d \n",p.x,p.y);

printf("distance %f \n",distanceO(p));

}

New Types

In order to avoid repeated use of struct point as a type, it is
allowed to define new types:

struct point{

int x;

int y;

};

typedef struct point Pt;

double distanceO (Pt p){

return sqrt(p.x*p.x + p.y*p.y);

}

New Types

In order to avoid repeated use of struct point as a type, it is
allowed to define new types:

struct point{

int x;

int y;

};

typedef struct point Pt;

double distanceO (Pt p){

return sqrt(p.x*p.x + p.y*p.y);

}

New Types

In order to avoid repeated use of struct point as a type, it is
allowed to define new types:

struct point{

int x;

int y;

};

typedef struct point Pt;

double distanceO (Pt p){

return sqrt(p.x*p.x + p.y*p.y);

}

New Types

In order to avoid repeated use of struct point as a type, it is
allowed to define new types:

struct point{

int x;

int y;

};

typedef struct point Pt;

double distanceO (Pt p){

return sqrt(p.x*p.x + p.y*p.y);

}

Pointers

In Java
a declaration like

Point p;

associates p with an address. In
order to create a point we need to
use the constructor via new:

new Point(3,4)

This returns the address of a
place in memory assigned to this
particular point, so it makes sense
to do

p = new Point(3,4);

In C
We need to use pointers

Pt *p;

p = (Pt *)malloc(sizeof(Pt));

p->x = 3; // or (*p).x = 3

p->y = 4;

malloc is a call to the OS (or
platform specific library) requesting a
chunk of memory.

Pointers provide direct access to
memory addresses!

Pointers

In Java
a declaration like

Point p;

associates p with an address. In
order to create a point we need to
use the constructor via new:

new Point(3,4)

This returns the address of a
place in memory assigned to this
particular point, so it makes sense
to do

p = new Point(3,4);

In C
We need to use pointers

Pt *p;

p = (Pt *)malloc(sizeof(Pt));

p->x = 3; // or (*p).x = 3

p->y = 4;

malloc is a call to the OS (or
platform specific library) requesting a
chunk of memory.

Pointers provide direct access to
memory addresses!

Pointers

In Java
a declaration like

Point p;

associates p with an address. In
order to create a point we need to
use the constructor via new:

new Point(3,4)

This returns the address of a
place in memory assigned to this
particular point, so it makes sense
to do

p = new Point(3,4);

In C
We need to use pointers

Pt *p;

p = (Pt *)malloc(sizeof(Pt));

p->x = 3; // or (*p).x = 3

p->y = 4;

malloc is a call to the OS (or
platform specific library) requesting a
chunk of memory.

Pointers provide direct access to
memory addresses!

Pointers

In Java
a declaration like

Point p;

associates p with an address. In
order to create a point we need to
use the constructor via new:

new Point(3,4)

This returns the address of a
place in memory assigned to this
particular point, so it makes sense
to do

p = new Point(3,4);

In C
We need to use pointers

Pt *p;

p = (Pt *)malloc(sizeof(Pt));

p->x = 3; // or (*p).x = 3

p->y = 4;

malloc is a call to the OS (or
platform specific library) requesting a
chunk of memory.

Pointers provide direct access to
memory addresses!

Brief on pointers

In Java, memory is reclaimed automatically by the garbage
collector. In C, it has to be done by the programmer using another
system call:

free(p);

In Java all objects are used via addresses. Even when calling
functions. In C the programmer is in charge:

double distanceO (Pt *p){

return sqrt(p->x*p->x + p->y*p->y);

}

Pt q = {3,4};

printf("distance %f \n",distanceO(&q));

Brief on pointers

In Java, memory is reclaimed automatically by the garbage
collector. In C, it has to be done by the programmer using another
system call:

free(p);

In Java all objects are used via addresses. Even when calling
functions. In C the programmer is in charge:

double distanceO (Pt *p){

return sqrt(p->x*p->x + p->y*p->y);

}

Pt q = {3,4};

printf("distance %f \n",distanceO(&q));

Arrays and Pointers

In C, array identifiers are pointers! And pointer arithmetic is
available:

#include<stdio.h>

int main(){

int a[10]; int *b = a;

int i;

for(i=0;i<10;i++){

a[i]=i*i;

}

printf("%d\n", a[0]);

printf("%d\n", *b);

printf("%d\n", a[3]);

printf("%d\n", *(b+3));

}

IO hardware

Access to devices is via a set of registers, both to control the
device operation and for data transfer. There are 2 general classes
of architecture.

Memory mapped

Some addresses are reserved for
device registers! Typically they
have names provided in some
platform specific header file.

Separate bus

Different assembler instructions
for memory access and for device
registers.

IO hardware

Access to devices is via a set of registers, both to control the
device operation and for data transfer. There are 2 general classes
of architecture.

Memory mapped

Some addresses are reserved for
device registers! Typically they
have names provided in some
platform specific header file.

Separate bus

Different assembler instructions
for memory access and for device
registers.

IO hardware

Access to devices is via a set of registers, both to control the
device operation and for data transfer. There are 2 general classes
of architecture.

Memory mapped

Some addresses are reserved for
device registers! Typically they
have names provided in some
platform specific header file.

Separate bus

Different assembler instructions
for memory access and for device
registers.

Bits and Bytes

The contents of device registers are specified bit by bit: each bit
has a specific meaning.

Nibbles
A sequence of 4 bits. Enough to
express numbers from 0 to 15
0000 0
0001 1
.
1111 15

We use hexa-digits for these
numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c, d, e, f and we think of
their bit-patterns.

Bytes

A sequence of 8 bits. Enough to
express numbers from 0 to 255.
00000000 0
00000001 1
.
11111111 255

We use 2 hexa-digits , one for
each nibble. For example, 0x11 is
00010001 (17 in using decimal
digits)

Bits and Bytes

The contents of device registers are specified bit by bit: each bit
has a specific meaning.

Nibbles
A sequence of 4 bits. Enough to
express numbers from 0 to 15
0000 0
0001 1
.
1111 15

We use hexa-digits for these
numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c, d, e, f and we think of
their bit-patterns.

Bytes

A sequence of 8 bits. Enough to
express numbers from 0 to 255.
00000000 0
00000001 1
.
11111111 255

We use 2 hexa-digits , one for
each nibble. For example, 0x11 is
00010001 (17 in using decimal
digits)

Bits and Bytes

The contents of device registers are specified bit by bit: each bit
has a specific meaning.

Nibbles
A sequence of 4 bits. Enough to
express numbers from 0 to 15
0000 0
0001 1
.
1111 15

We use hexa-digits for these
numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c, d, e, f and we think of
their bit-patterns.

Bytes

A sequence of 8 bits. Enough to
express numbers from 0 to 255.
00000000 0
00000001 1
.
11111111 255

We use 2 hexa-digits , one for
each nibble. For example, 0x11 is
00010001 (17 in using decimal
digits)

Bits and Bytes

The contents of device registers are specified bit by bit: each bit
has a specific meaning.

Nibbles
A sequence of 4 bits. Enough to
express numbers from 0 to 15
0000 0
0001 1
.
1111 15

We use hexa-digits for these
numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c, d, e, f and we think of
their bit-patterns.

Bytes

A sequence of 8 bits. Enough to
express numbers from 0 to 255.
00000000 0
00000001 1
.
11111111 255

We use 2 hexa-digits , one for
each nibble. For example, 0x11 is
00010001 (17 in using decimal
digits)

Bits and Bytes

The contents of device registers are specified bit by bit: each bit
has a specific meaning.

Nibbles
A sequence of 4 bits. Enough to
express numbers from 0 to 15
0000 0
0001 1
.
1111 15

We use hexa-digits for these
numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c, d, e, f and we think of
their bit-patterns.

Bytes

A sequence of 8 bits. Enough to
express numbers from 0 to 255.
00000000 0
00000001 1
.
11111111 255

We use 2 hexa-digits , one for
each nibble. For example, 0x11 is
00010001 (17 in using decimal
digits)

Bit level operations

You will need to test the value of a certain bit and you will need to
change specific bits (while assigning a complete value). For this
you will need bit-wise operations on integer (char, short, int, long)
values.

AND a & b

OR a | b

XOR a ^ b

NOT ~a

ShiftL a << b

ShiftR a >> b

Example

123 & 234 = 106

123 = 0x7b 0 1 1 1 1 0 1 1

234 = 0xea 1 1 1 0 1 0 1 0

123&234 = 0x6a 0 1 1 0 1 0 1 0

Bit level operations

You will need to test the value of a certain bit and you will need to
change specific bits (while assigning a complete value). For this
you will need bit-wise operations on integer (char, short, int, long)
values.

AND a & b

OR a | b

XOR a ^ b

NOT ~a

ShiftL a << b

ShiftR a >> b

Example

123 & 234 = 106

123 = 0x7b 0 1 1 1 1 0 1 1

234 = 0xea 1 1 1 0 1 0 1 0

123&234 = 0x6a 0 1 1 0 1 0 1 0

Bit level operations

You will need to test the value of a certain bit and you will need to
change specific bits (while assigning a complete value). For this
you will need bit-wise operations on integer (char, short, int, long)
values.

AND a & b

OR a | b

XOR a ^ b

NOT ~a

ShiftL a << b

ShiftR a >> b

Example

123 & 234 = 106

123 = 0x7b 0 1 1 1 1 0 1 1

234 = 0xea 1 1 1 0 1 0 1 0

123&234 = 0x6a 0 1 1 0 1 0 1 0

Practical 0

Purpose

Become familiar with the lab
environment and programming
using bit patterns on bare metal.

The lab-room will be available
most of the day, but we offer
supervision in two passes a week.

Practical 0

Purpose

Become familiar with the lab
environment and programming
using bit patterns on bare metal.

The lab-room will be available
most of the day, but we offer
supervision in two passes a week.

Practical 0

Purpose

Become familiar with the lab
environment and programming
using bit patterns on bare metal.

The lab-room will be available
most of the day, but we offer
supervision in two passes a week.

	
	Motivation
	Administrivia
	Programming in C

