
Thesis for the degree of Doctor of Philosophy

Formal Development of Safe and Secure

JAVA CARD Applets

Wojciech Mostowski

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, February 2005

Formal Development of Safe and Secure JAVA CARD Applets
Wojciech Mostowski
ISBN 91-7291-575-7

Copyright c© Wojciech Mostowski, 2005

Doktorsavhandlingar vid Chalmers Tekniska Högskola
Ny serie nr 2257
ISSN 0346-718X

Technical Report 2D
Department of Computer Science and Engineering
Formal Methods Research Group

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone +46 (0)31-772 1000

Cover: A schematic, SIM shaped JAVA CARD device

Chalmers Reproservice
Göteborg, Sweden 2005

Formal Development of Safe and Secure JAVA CARD Applets
Wojciech Mostowski
Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Abstract

This thesis is concerned with formal development of JAVA CARD applets. JAVA

CARD is a technology that provides a means to program smart cards with (a sub-
set of) the JAVA language. In recent years JAVA CARD technology gained great
interest in the formal verification community. There are two reasons for this.
Due to the sensitive nature (e.g., security, maintenance costs) of JAVA CARD

applets, formal verification for JAVA CARD is highly desired. Moreover, because
of the relative simplicity of the programming language, JAVA CARD is also a
feasible target for formal verification. The formal verification platform that we
used in our research is the KeY system developed in the KeY Project. One of
the main objectives of our research is to find out how far formal verification for
industrial size JAVA CARD applets goes, in terms of usability, automation, and
power (expressivity of constraints). Furthermore, we investigated practical and
theoretical shortcomings of the verification techniques and development meth-
ods for JAVA CARD applets. As a result, we adapted a program logic for JAVA

CARD to be able to express interesting, meaningful safety and security prop-
erties (strong invariants) and proposed design guidelines to support and ease
formal verification (design for verification). We performed extensive practical
experiments with the KeY system to justify and evaluate our work.

Formal aspects of our research concentrate on source code level verification
of JAVA CARD programs with interactive and automated theorem proving. Our
work has been driven by certain assumptions, motivated by the KeY Project’s
philosophy: (1) formal verification should be accessible to software engineers
without years of training in formal methods, (2) we should be able to perform
full verification whenever needed, i.e., we want to handle complex JAVA CARD

applets that involve JAVA CARD specific features, like atomic transactions and
object persistency, (3) the verified code should not be subjected to translations,
simplifications, intermediate representations, etc., and finally, (4) the properties
that we prove should relate to important safety and security issues in JAVA CARD

development. We relate to these goals in our work.

Keywords: JAVA CARD, object-oriented design, formal specification, formal
verification, Dynamic Logic

i

ii

List of Included Papers and Reports

This thesis is based on the publications listed below. My involvement in the
work presented in these papers is described in detail in the thesis’ introduction.

[Mos02] Wojciech Mostowski. Rigorous Development of JAVA CARD Appli-
cations. In T. Clarke, A. Evans, and K. Lano, editors, Proceedings,
Fourth Workshop on Rigorous Object-Oriented Methods, London, U.K.,
March 2002.

[BM03] Bernhard Beckert and Wojciech Mostowski. A Program Logic for Han-
dling JAVA CARD’s Transaction Mechanism. In Mauro Pezzè, editor,
Proceedings, Fundamental Approaches to Software Engineering (FASE)
Conference, Warsaw, Poland, volume 2621 of LNCS, pages 246–260.
Springer, April 2003.

[LM04] Daniel Larsson and Wojciech Mostowski. Specifying JAVA CARD API
in OCL. In Peter H. Schmitt, editor, OCL 2.0 Workshop at UML 2003,
volume 102C of ENTCS, pages 3–19. Elsevier, November 2004.

[HM05] Reiner Hähnle and Wojciech Mostowski. Verification of Safety Prop-
erties in the Presence of Transactions. In Gilles Barthe and Marieke
Huisman, editors, Proceedings, Construction and Analysis of Safe, Se-
cure and Interoperable Smart devices (CASSIS’04) Workshop, volume
3362 of LNCS, pages 151–171. Springer, 2005.

[Mos05] Wojciech Mostowski. Formalisation and Verification of JAVA CARD Se-
curity Properties in Dynamic Logic. In Maura Cerioli, editor, Proceed-
ings, Fundamental Approaches to Software Engineering (FASE) Con-
ference 2005, Edinburgh, Scotland, LNCS. Springer, April 2005. To
appear.

iii

iv

Table of Contents

Acknowledgements ix

Introduction 1
1 Overview . 1
2 JAVA CARD . 2
3 The KeY System . 5

3.1 Architecture of the KeY Tool 6
3.2 Dynamic Logic . 8
3.3 Syntax of JAVA CARD DL 9
3.4 Proof Obligations . 10
3.5 Deductive Calculus for Proving Obligations 10
3.6 Taclets . 13
3.7 Implementation . 14

4 Description of the Papers . 14
5 Contributions . 18
6 Related Work . 20
7 Future Work . 23

Paper I: Rigorous Development of JAVA CARD Applications 35
1 Introduction . 35

1.1 JAVA CARD . 35
1.2 Analysis of the Current Situation 36
1.3 Related Work . 37
1.4 Our Approach . 38

2 Case Study: pam iButton . 39
3 Design Issues for JAVA CARD Applications 41
4 Developing JAVA CARD Applications 43

4.1 Applet Life States . 43
4.2 Applet Commands . 44
4.3 Command Invocation Protocol 46
4.4 Command Processing . 48

5 The Framework . 53
5.1 Support from the CASE Tool 54
5.2 Formal Specification and Verification 54
5.3 Employing the KeY System 57

6 Conclusions . 58

v

Paper II: A Program Logic for Handling JAVA CARD’s
Transaction Mechanism 63
1 Introduction . 63
2 Background . 64
3 JAVA CARD Dynamic Logic . 67

3.1 Syntax of JAVA CARD DL 67
3.2 Semantics of JAVA CARD DL 68
3.3 State Updates . 69
3.4 Rules of the Sequent Calculus 69

4 Extension for Handling “Throughout” and Transactions 70
4.1 Additional Sequent Calculus Rules for the [[·]] Modality . 71
4.2 Additional Sequent Calculus Rules for Transactions . . . 72

5 Examples . 76
6 Conclusions and Future Work . 80

Paper III: Specifying JAVA CARD API in OCL 85
1 Introduction . 85
2 Background . 86

2.1 The KeY Project . 86
2.2 JAVA CARD and JAVA CARD API 87
2.3 Use Cases for OCL Specification of the JAVA CARD API . 88
2.4 Related Work . 89

3 The Development of OCL Specification 89
3.1 JML vs. OCL . 90
3.2 Exceptions . 91
3.3 The null value . 92
3.4 Integer Arithmetics . 92
3.5 JML @assignable clause 93

4 The Specification . 93
4.1 Formal Verification . 97

5 Short Evaluation of OCL . 98
6 Conclusions . 98

Paper IV: Verification of Safety Properties in the
Presence of Transactions 103
1 Introduction . 103
2 Background . 104

2.1 The KeY Project . 104
2.2 JAVA CARD Dynamic Logic 105
2.3 Strong Invariants . 106
2.4 JAVA CARD Atomic Transactions 107

3 Case Study: JAVA CARD Electronic Purse 108
3.1 The LogRecord Class . 109
3.2 Specification and Verification of setRecord 110
3.3 The Purse Class . 111
3.4 Specification and Verification of processSale 111

vi

3.5 Post Hoc Verification of Unaltered Code 111
3.6 Performance . 113

4 Results . 115
4.1 Verification Technology 115
4.2 Design for Specification and Verification 116

5 Related Work . 119
6 Conclusions . 121

Paper V: Formalisation and Verification of JAVA CARD

Security Properties in Dynamic Logic 129
1 Introduction . 129
2 Background . 130

2.1 The KeY Project . 130
2.2 JAVA CARD . 131
2.3 JAVA CARD Dynamic Logic 132
2.4 Related Work . 133

3 Case Studies . 134
4 Security Properties . 134

4.1 Only ISOExceptions at Top Level 135
4.2 No X Exceptions at Top Level 139
4.3 Well Formed Transactions 140
4.4 Atomic Updates . 141
4.5 No Unwanted Overflow 144
4.6 Other Properties . 145

5 Discussion . 146
5.1 Lessons Learned . 146
5.2 Static Analysis vs. Interactive Theorem Proving 148

6 Summary and Future Work . 148

vii

viii

Acknowledgements

Believe it or not, but for me this the most difficult part of the thesis to write.
The reason is that I will never know if I missed someone in the list below. But
I will try to do my best to include everyone that deserves my gratitude.

Most of all, I would like to thank my Ph.D. supervisor, prof. Reiner Hähnle,
for putting up with me and providing me with excellent guidance during my
graduate studies at Chalmers. Without him, doing my research and writing this
thesis would not be possible. I would also like to thank my opponent, prof. Arnd
Poetzsch-Heffter, and the members of my grading committee, prof. Peter Dyb-
jer, Mads Dam, and Erik Poll, for agreeing to participate in my Ph.D. defense.
The members of my Ph.D. advising committee, prof. Mary Sheeran and Björn
von Sydow, provided me with great support over the last four years.

Many people contributed to the quality of this thesis by commenting on the
papers I (co-)wrote and giving me feedback on the thesis as such: prof. Reiner
Hähnle, prof. Mary Sheeran, prof. Arnd Poetzsch-Heffter, Erik Poll, Steffen
Schlager, Philipp Rümmer, and Martin Giese. At this point I would also like
to thank my co-authors for excellent cooperation in writing papers: Bernhard
Beckert, Daniel Larsson, and prof. Reiner Hähnle. Special thanks to Vladimir
Klebanov for helping me give the thesis the “final touch”.

Most of my work has been done in close cooperation with the KeY Project
group. I would like to thank the following people, for always interesting dis-
cussions and for their friendship: prof. Peter H. Schmitt, Bernhard Beckert,
Martin Giese, Wolfgang Ahrendt, Thomas Baar, Angela Wallenburg, Tobias
Gedell, Daniel Larsson, Philipp Rümmer, Vladimir Klebanov, Andreas Roth,
Steffen Schalger, and Richard Bubel. Special thanks to Andreas, Steffen, and
Richard for exhibiting extreme patience in fulfilling my constant requests about
missing features in the KeY system and fixing bugs.

Working in our department would not be possible without our great ad-
ministrative staff. I would like to thank Jeanette Träff, Catharina Jerkbrant,
Birgitta Magnusson, and Eva Löthman for all the help they have provided.

Life does not consist only of work. The list of people that made my social
life in Sweden more enjoyable is very long. In particular my gratitude goes to
my very good friend and former office mate, Angela Wallenburg, the current
fifth floor corridor gang, Andrei Sabelfeld, Wolfgang Ahrendt, Rogardt Heldal,
Reiner Hähnle, Philipp Rümmer, Martin Giese, and Jan-Willem Roorda, who
sits just around the corner. Other people that specifically contributed to my life
outside of work are Ádám Darvas, Erik Kilborn, Tuomo Takkula, Birgit Grohe,
Boris Koldehofe, and H̊akan Sundell. Tuomo, Birgit, Boris, and H̊akan were

ix

among the people I skied with (and/or I am about to ski with) on numerous
occasions: Janna Khegai, Henrik Lindgren, Karin Hardell, Niklas Eén, Luige
Eén, Jörgen Gustavsson, Jan-Willem Roorda, Alena Ostrovska, Karol Ostro-
vský, and Rogardt Heldal. Last in this list, but not least, I would like to thank
all of my other office friends for making our department such a great place to
work.

I would not have even thought of starting the Ph.D. studies in the first place,
if I wasn’t injected with the interest in research and formal methods by Tomasz
Janowski during the pre-Chalmers era – many thanks for nursing me through
the early stages of my research life.

Finally, I would be nowhere in my life without the love and support of my
closest family. Most sincere thanks to Mama (also for proof reading large parts
of this thesis!), Tata, and my dear brother Misio. Dziękuję Kochani!

Wojciech Mostowski Göteborg
January 2005

x

Introduction

1 Overview

This thesis is concerned with formal development of JAVA CARD applets. JAVA

CARD is a technology that provides a means to program smart cards with (a
subset of) the JAVA language. In recent years JAVA CARD technology gained
great interest in the formal verification community. There are two main reasons
for this. First of all, certain issues are critical in JAVA CARD. Application areas
like authentication or electronic cash require applets to be safe and secure. Also,
because applets are usually distributed in large amounts, they are difficult and
costly to maintain. Finally, legal matters may be critical in certain situations, for
example, when the digital signature law is considered. Thus, formal verification
of JAVA CARD applets is highly desired. Secondly, due to the relative language
simplicity, JAVA CARD is also a feasible target for formal verification. The formal
verification platform that we used in our research is the KeY system developed
in the KeY Project1 [ABB+04]. One of the main objectives of our research
is to find out how far formal verification, in particular using the KeY system,
for industrial size JAVA CARD applets goes, in terms of usability, automation,
and power (expressivity of constraints). Furthermore, we investigated practical
and theoretical shortcomings of the verification techniques and development
methods for JAVA CARD applets. As a result, we adapted the KeY system’s
Dynamic Logic to be able to express interesting, meaningful safety and security
properties (strong invariants among others) and proposed design guidelines to
support and ease formal verification (design for verification). We performed
extensive practical experiments with the KeY system to justify and evaluate
our work.

Formal aspects of our research concentrate on source code level verification
of sequential JAVA programs, in particular JAVA CARD, with interactive and au-
tomated theorem proving. Our work has been driven by certain assumptions,
motivated by the KeY Project’s philosophy. The basic one is that formal veri-
fication should be accessible to software engineers without years of training in
formal methods. This turns out to be possible to achieve, however, in certain
situations expertise in formal verification is required, in particular when verifica-
tion of an already existing JAVA CARD code is considered (post hoc verification).
Another assumption is that we should be able to perform full verification when-
ever needed, i.e., we want to handle complex JAVA CARD applets that involve

1 http://www.key-project.org

1

http://www.key-project.org#

2 Introduction

JAVA CARD specific features, like atomic transactions and object persistency.
Moreover, the verified code should not be subjected to translations, simplifica-
tions, intermediate representations, etc. Finally, the properties that we prove
should relate to important safety and security issues in JAVA CARD development.
We relate to and comment on these goals throughout this work.

This work is a collection of papers that were published during the course
of our research. The papers explore the subjects that we have just outlined.
We explain the contents of these papers in detail later on in this chapter. First
we start with some introductory material about JAVA CARD technology and the
KeY system (Sections 2 and 3). We describe the papers included in this thesis
in Section 4 and we discuss the contributions of this work in Section 5. Section 6
gives an overview of related work, and finally, Section 7 discusses possible future
work.

2 JAVA CARD

Here we give a short, but for the purpose of this thesis complete, introduction
to JAVA CARD technology and language [Che00, Sun03].

Smart Cards. Smart cards (chip cards) are small computers, providing 8, 16
or 32 bit CPU with clock speeds ranging from 5 up to 40 MHz, ROM memory
between 32 and 64 KB, EEPROM memory (writable, persistent) between 16
and 32KB and RAM memory (writable, non-persistent) between 1 and 4 KB.
The ROM usually holds the card’s operating system, the EEPROM is used to
store persistent data of the applications residing on a smart card (for exam-
ple, electronic cash) and the RAM is used for local computations. Smart cards
communicate with the rest of the world through application protocol data units
(APDUs, ISO 7816–4 standard). The communication is done in master-slave
mode – it is always the master/terminal application that initialises the commu-
nication by sending a command APDU to the card and then the card replies
by sending a response APDU (possibly with empty contents). There is no way
for a smart card to initialise the communication (even though its CPU is active
when the power is up), it can only reply to requests sent by the host system.
APDUs are the only means to communicate with smart cards, which in practice
means that the user of a smart card does not have any direct access to a smart
card’s “internals” (for example, there is no direct memory access).

JAVA Smart Cards. A smart card can be provided with functionality to run
JAVA programs on it directly. Such cards are usually called JAVA powered cards
(or simply JAVA cards) and the whole technology that provides JAVA functional-
ity to smart cards (including a restricted subset of a JAVA language to program
applets residing on a card) is called JAVA CARD. JAVA CARD’s ROM, beside the
operating system, includes a JAVA CARD virtual machine which implements the
JAVA CARD language and allows applets to be run on the card.

2. JAVA CARD 3

JAVA CARD Language Restrictions. Most of the JAVA CARD language re-
strictions are related to the limited computing resources of smart cards. To start
with, large primitive data types, like int, long, double or float are not avail-
able (although int is available on some JAVA CARD platforms). Also characters,
and thus strings, are excluded from the JAVA CARD language. Furthermore mul-
tidimensional arrays, dynamic class loading, threads (concurrency) and garbage
collection are not available in JAVA CARD (again, garbage collection might be
available on some platforms, but it is not required by the JAVA CARD standard).

Otherwise JAVA CARD is a fully functional JAVA with all object oriented fea-
tures like interfaces, inheritance, virtual methods, overloading, dynamic object
creation and scoping.

JAVA CARD API and Applets. One other aspect where JAVA CARD differs
from JAVA is JAVA CARD’s API. The API is specific to the smart card environ-
ment and, thus, it provides support for handling APDUs, smart card Application
IDentifiers (AIDs), PIN codes and JAVA CARD specific system routines. Most
of the “big” classes of the JAVA API, like System, String or Vector, are not
available in JAVA CARD.

The applications running in a JAVA CARD environment are called JAVA CARD

applets. A proper applet should implement the install method responsible
for the initialisation of the applet (one can see it as applet construction) and
a process method for handling incoming command APDUs and sending the
response APDUs back to the host. APDUs are the only means of communication
with JAVA smart cards at the moment, but the upcoming versions of JAVA CARD

will also include support for Remote Method Invocation protocol. This will
further decouple the hardware from the application level.

There can be more than one applet existing on a single JAVA CARD, but
there can be only one active at a time (the active one is the one most recently
selected by the JAVA CARD run-time environment).

Finally, we present a small example of a JAVA CARD applet to show how
applets work in practice. CounterApplet is an applet that simply returns the
value of an internal counter when requested by the host. The counter is in-
creased each time the applet is selected (activated) by the JAVA CARD runtime
environment. Here is the code:

import javacard.framework.*;

public class CounterApplet extends Applet {

// CounterApplet APDU command codes

final static byte CounterApplet_CLA = (byte)0xB2;

final static byte GET_SELECT_COUNT = (byte)0x10;

// (persistent) counter variable

private byte counter;

protected CounterApplet() {

// applet initialisation

counter = (byte)0;

4 Introduction

register();

}

public static void install(byte[] bArray,

short bOffset, byte bLength) {

new CounterApplet();

}

public void process(APDU apdu) {

byte buffer[] = apdu.getBuffer();

if ((buffer[ISO7816.OFFSET_CLA] == ISO7816.CLA_ISO7816) &&

(buffer[ISO7816.OFFSET_INS] == ISO7816.INS_SELECT)) {

// That was the SELECT APDU

counter++;

}else{

if (buffer[ISO7816.OFFSET_CLA] != CounterApplet_CLA)

ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

if (buffer[ISO7816.OFFSET_INS] != GET_SELECT_COUNT)

ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

// That was the command to return the current value of

// the counter.

// Switch to ’send response’ mode

apdu.setOutgoing();

apdu.setOutgoingLength((short)1);

// Prepare the output buffer

buffer[0] = counter;

// Send the response

apdu.sendBytes((short)0, (short)1);

}

}

}

During the initialisation of the applet (install method) a new instance of the
applet is created, the counter is set to 0 and the applet is registered with the
JAVA CARD run-time environment. Then the process method takes care of
processing the incoming APDUs. In case it is the select command APDU (the
first if statement) the counter is increased. Otherwise the APDU is checked
again whether it issues a command to return the current value of the counter.
If that is the case the response is prepared and sent back to the host, otherwise
an exception is thrown, which causes an APDU with a proper status word to
be sent to the host informing that the request could not be handled.

JAVA CARD Object Persistency, Atomicity and Transactions. Note
that the value of the counter variable is not lost after the card’s session is
finished – all the instance variables of the applet are kept in the persistent
(usually EEPROM) memory and, thus, their values are preserved when a power
loss occurs. This is a specific feature of JAVA CARD not present in JAVA.

3. The KeY System 5

When the execution of a JAVA CARD applet is interrupted unexpectedly
then all the updates to persistent objects performed so far are maintained. The
atomicity level of the JAVA CARD platform is quite “high” – all the updates
to single variables and object fields are atomic. The user can perform atomic
updates of a larger size using the transaction mechanism of JAVA CARD. Inside a
transaction the updates to persistent objects (only) are executed conditionally.
When the transaction is committed, all the conditional updates are executed
in one atomic step. In case the transaction is aborted (either by an abrupt
termination of a program or by a system call) all the conditionally updated
objects are rolled back to the state before the transaction started. Take a look
at the following fragment of JAVA CARD code:

counter = 100;

JCSystem.beginTransaction();

counter = i;

counter++;

if(counter > 100)

JCSystem.abortTransaction();

else

JCSystem.commitTransaction();

When the value of the counter inside the transaction rises above 100 the trans-
action will be aborted – the value of counter will be rolled back to its state
before the transaction started, i.e., it will be 100 again. Otherwise the trans-
action will commit successfully and the value of counter will be equal to i+1
after this piece of the program is executed.

3 The KeY System

The contents of this section is based on selected fragments of [ABB+04]. Here we
explain the basic goals of the KeY Project and some technical details about the
architecture of the KeY system, the Dynamic Logic used in interactive theorem
proving, as well as some notes about the implementation and the current state
of the system.

KeY is a tool for the development of high quality object-oriented software.
The “KeY” idea behind this tool is to provide facilities for formal specification
and verification of programs within a software development platform supporting
contemporary design and implementation methodologies. The KeY tool empow-
ers its users to perform formal specification and verification as part of software
development based on the Unified Modelling Language (UML) [Obj03]. To
achieve this, the system is realised as the extension of a commercial UML-based
Computer Aided Software Engineering Tool (CASE tool). As a consequence,
specification and verification can be performed within the extended CASE tool
itself. Such a deep integration of formal specification and verification into mod-
ern software engineering concepts serves two purposes. First, formal methods
and object-oriented development techniques become applicable in a meaningful

6 Introduction

combination. Second, formal specification and verification become more acces-
sible to developers who are already using object-oriented design methodology.
Moreover, KeY allows a lightweight usage of the provided formal techniques, as
both, specification and verification, can be performed at any time, and to any
desired degree.

UML based software development puts an emphasis on the activity of de-
signing the targeted system. It is increasingly accepted that the design stage
is very much where one actually has the power to prevent a system from fail-
ing. This suggests that formal specification and verification should (in different
ways) be closely tied to the design phase, to design documents, and to design
tools. One way of combining object-oriented design and formal specification
is to attach constraints to class diagrams. An appropriate notation for such a
purpose is already offered by the UML: the standard [Obj03] includes the Object
Constraint Language (OCL) [WK03]. We briefly point out the three major roles
of OCL constraints within KeY:

• The KeY tool supports the creation of constraints. While a user is free
in general to formulate any desired constraint, he or she can also take
advantage of the automatic generation of constraints, a feature which is
realised in the KeY tool by extending the CASE tool’s design pattern
instantiation mechanism.

• The KeY tool supports the formal analysis of constraints. The relations
between classes in the design imply relations between corresponding con-
straints, which can be analysed regardless of any implementation.

• The KeY tool supports the verification of implementations with respect to
the constraints. A theorem prover with interactive and automatic opera-
tion modes can check consistency of JAVA implementations with the given
constraints.

The target language of KeY-driven software development is JAVA. In partic-
ular, the verification facilities of KeY are focused on the JAVA CARD language
[Che00, Sun03]. We have already given the description of JAVA CARD technology
in the previous section. We have also pointed out why JAVA CARD is an im-
portant target for verification, and that the technical restrictions of JAVA CARD

make verification of the full language feasible. However, KeY is not restricted
to being used for the development of smart card applications – many features
of JAVA that are not present in JAVA CARD are nevertheless supported by KeY,
for example, int and long data types or characters and strings. In general, the
KeY tool is applicable to most sequential JAVA programs.

3.1 Architecture of the KeY Tool

The KeY system is built on top of a commercial CASE tool. Integrating our
system into an already existing tool has obvious advantages:

3. The KeY System 7

Verification Middleware

automated interactive

Deduction Component

CASE Tool Together CC

extension

for formal

specification

UML OCL Java

Dynamic Logic

Figure 1. The architecture of the KeY system

1. All features of the existing tool can be used and do not need to be reim-
plemented.

2. The software developer does not have to become familiar with a new de-
sign and development tool. Furthermore, the developer is not required to
change tools during development, everything that is needed is integrated
into one tool.

A CASE tool that is well suited for our purposes has to be easily extensible and
the extensions have to fit nicely into the tool providing a uniform user interface.
At the moment we use Together Control Center from Borland.2 Among all the
tools on the market this one seems to be the most suitable for our purposes. It
has state-of-the-art development and UML support (including some very basic
support for textual specifications) and can be extended in almost any possible
way by JAVA modules – TogetherCC offers access to most of its “internals”
by means of a JAVA open API. There is, however, no fundamental obstacle to
adding the KeY extensions to other, similar CASE tools, for example, work on
integrating KeY into Eclipse3 is underway.

The architecture of the KeY system is shown in Figure 1. In the following,
we briefly describe the components and the interactions between them:

1. The modelling component (upper part in Figure 1) consists of the CASE
tool with extensions for formal specification. While the CASE tool already

2 http://www.borland.com/together/
3 http://www.eclipse.org

http://www.borland.com/together/#
http://www.eclipse.org#

8 Introduction

allows the software model to contain OCL specifications, it does not have
any support to create or process them in a formal way – OCL specifica-
tions are just textual annotations and are handled in the same way as
comments. This is where the extension comes into play. It allows the user
to create, process and prepare the OCL specifications (together with the
model and its implementation) which can be later processed and passed
to the deduction component. Manipulating OCL specifications is done by
employing external programs and libraries as well as using TogetherCC’s
pattern mechanism to instantiate specifications from OCL specification
templates [BHSS00, GHL04]. The CASE tool itself provides all the func-
tionality for UML modelling and project development and is responsible
for most of the user interactions with the project.

2. The verification middleware is the link between the modelling and the
deduction component. It translates the model (UML), the implementation
(JAVA) and the specification (OCL) into JAVA CARD Dynamic Logic proof
obligations which are passed to the deduction component. JAVA CARD

Dynamic Logic is a program logic used by the KeY prover (deduction
component). The verification component is also responsible for storing
and managing proofs during the development process.

3. The deduction component is used to construct proofs for JAVA CARD Dy-
namic Logic proof obligations generated by the verification component. It
is an interactive verification system combined with powerful automated
deduction techniques. All those components are fully integrated and work
on the same data structures.

3.2 Dynamic Logic

We use an instance of Dynamic Logic (DL) [KT90, HKT00] – which can be
seen as an extension of Hoare logic – as the logical basis of the KeY system’s
software verification component. Deduction in DL is based on symbolic pro-
gram execution and simple program transformations and is, thus, close to a
programmer’s understanding of JAVA. DL is used in the software verification
systems KIV [BRS+00] and VSE [HLS+96] for (artificial) imperative program-
ming languages. More recently, the KIV system supports also a fragment of the
JAVA language [Ste01]. In both systems, DL was successfully applied to verify
software systems of considerable size [BRS+00, Ste01].

DL can be seen as a modal logic with a modality 〈p〉 for every program p
(we allow p to be any sequence of legal JAVA CARD statements); 〈p〉 refers to the
successor worlds (called states in the DL framework) that are reachable by run-
ning the program p. In standard DL there can be several such states (worlds)
because the programs can be non-deterministic; but here, since JAVA CARD pro-
grams are deterministic, there is exactly one such world (if p terminates) or
there is no such world (if p does not terminate). In JAVA CARD DL termination
forbids exceptions to be thrown, i.e., a program that throws an uncaught ex-
ception is considered to be non terminating (or, terminating abruptly) [BS01].

3. The KeY System 9

The formula 〈p〉φ expresses that the program p terminates in a state in which φ
holds. A formula φ→ 〈p〉ψ is valid if for every state s satisfying pre-condition φ
a run of the program p starting in s terminates, and in the terminating state
the post-condition ψ holds.

Thus, the formula φ→ 〈p〉ψ is similar to the Hoare triple {φ}p{ψ}. But in
contrast to Hoare logic, the set of formulas of DL is closed under the usual logical
operators. In Hoare logic, the formulas φ and ψ are pure first-order formulas,
whereas in DL they can contain programs. DL allows to involve programs in
the descriptions φ resp. ψ of states. For example, using a program, it is easy
to specify that a data structure is not cyclic, which is impossible in pure first-
order logic. Also, all JAVA constructs are available in our DL for the description
of states (including while loops and recursion). It is, therefore, not necessary
to define an abstract data type state and to represent states as terms of that
type; instead DL formulas can be used to give a (partial) description of states,
which is a more flexible technique and allows one to concentrate on the relevant
properties of a state.

3.3 Syntax of JAVA CARD DL

As mentioned above, a dynamic logic is constructed by extending some non-
dynamic logic with a modal operator 〈·〉. In addition, we use the dual oper-
ator [·], for which [p]φ ≡ ¬〈p〉¬φ. The non-dynamic base logic of our DL is
typed first-order predicate logic. We do not describe in detail what the types
of our logic are (basically they are identical to the JAVA types) nor how exactly
terms and formulas are built. The definitions can be found in [Bec01]. Note
that terms (which we often call “logical terms” in the following) are different
from JAVA expressions; the former never have side effects.

In order to reduce the complexity of the programs occurring in formulas, we
introduce the notion of a program context. The context can consist of any JAVA

CARD program, i.e., it is a sequence of class and interface definitions. Syntax
and semantics of JAVA CARD DL formulas are then defined with respect to a
given context; and the programs in JAVA CARD DL formulas are assumed not
to contain class definitions.

The programs in JAVA CARD DL formulas are basically executable statements
of JAVA CARD code. The verification of a given program can be thought of
as symbolic code execution [HK76]. As will be detailed below, each rule of
the calculus for JAVA CARD DL specifies how to execute one particular JAVA

statement, possibly with additional restrictions. When a loop or a recursive
method call is encountered, it is necessary to perform induction over a suitable
data structure.

Given that we follow the symbolic execution paradigm for verification, it is
evident that a certain amount of runtime infrastructure must be represented in
JAVA CARD DL. It would be possible, but clumsy and inefficient, to achieve this
by purely logical means. Therefore, we introduced an additional construct for
handling of method calls that is not available in plain JAVA CARD. Methods are
invoked by syntactically replacing the call by the method’s implementation. To

10 Introduction

handle the return statement in the right way, possible exceptions, and dynamic
binding it is necessary (a) to record the object field or variable x that the result
is to be assigned to, (b) to record the object o and its type C that the method
is applied to, and (c) to mark the boundaries of the implementation body when
it is substituted for the method call. For that purpose, we allow statements of
the form method-frame(x,C(o)){body} to occur in JAVA CARD DL programs.
In practice, before the method-frame construct is introduced in a proof, rules
that establish the run-time type of o and factor out method calls appearing
inside expressions are applied first. Note, that the method-frame construct is
a “harmless” extension because this construct is only used for proof purposes
and never occurs in the verified JAVA CARD programs.

3.4 Proof Obligations

Let us now turn to the translation of OCL constraints into JAVA CARD DL proof
obligations. To prove that a method m(arg1,...,argn) of class C satisfies a
pre-/post-condition pair, the OCL conditions are first translated into first-order
formulas pre(self, arg1, . . . , argn) and post(self, arg1, . . . , argn), respectively.
From these formulas, KeY constructs the JAVA CARD DL proof obligation:

pre(self, arg1, . . . , argn) →
〈 self.m(arg1,...,argn); 〉post(self, arg1, . . . , argn)

where now self and arg1, . . . , argn are program variables, which are implicitly
universally quantified with respect to their initial value.

Similarly, to prove that a method m(arg1,...,argn) preserves an invariant,
the proof obligation

(inv(self) ∧ pre(self, arg1, . . . , argn)) →
〈 self.m(arg1,...,argn); 〉inv(self)

is constructed, where inv(self) is the first-order translation of the invariant.

3.5 Deductive Calculus for Proving Obligations

As usual for deductive program verification, we use a sequent-style calculus. A
sequent is of the form Γ ` ∆, where Γ,∆ are duplicate-free lists of formulas.
Intuitively, its semantics is the same as that of the formula

∧
Γ →

∨
∆.

Rules of a sequent calculus are often represented by rule schemata, such as
the example rules that will follow. In the KeY system, rules are implemented
using the taclet mechanism (see the next section).

A proof for a goal (a sequent) S is an upside-down tree with root S. In
practice, rules are applied from bottom to top. That is, proof construction starts
with the initial proof obligation at the bottom and ends with axioms (rules with
an empty premise tuple). In the following we describe some exemplary rules of
the calculus. The whole JAVA CARD DL calculus contains (at least) one rule for
each JAVA CARD programming construct, in total there are about 250 rules for
handling the JAVA part of the logic.

3. The KeY System 11

The Active Statement in a Program

The rules of our calculus operate on the first active command p of a pro-
gram πpω. The non-active prefix π consists of an arbitrary sequence of opening
braces “{”, labels, beginnings “try{” of try-catch-finally blocks, and begin-
nings “method-frame(. . .){” of method invocation blocks. The prefix is needed
to keep track of the blocks that the (first) active command is part of, such that
the abruptly terminating statements throw, return, break, and continue can
be handled appropriately.4 The postfix ω denotes the “rest” of the program,
i.e., everything except the non-active prefix and the part of the program the
rule operates on. For example, if a rule is applied to the following JAVA block
operating on its first active command “i=0;”, then the non-active prefix π and
the “rest” ω are the indicated parts of the block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

The Assignment Rule and Handling State Updates

In JAVA (like in other object-oriented programming languages), different object
variables can refer to the same object. This phenomenon, called aliasing, causes
serious difficulties for handling of assignments in a calculus for JAVA CARD DL.

For example, whether or not a formula “o1.a = 1” still holds after the (sym-
bolic) execution of the assignment “o2.a = 2;”, depends on whether or not o1
and o2 refer to the same object.

Therefore, JAVA assignments cannot be symbolically executed by syntactic
substitution. Solving this problem naively – by doing a case split if the effect
of an assignment is unclear – is inefficient and leads to heavy branching of the
proof tree.

In our JAVA CARD DL calculus we use a different solution. It is based on the
notion of updates. These (state) updates are of the form {loc := val} and can
be put in front of any formula. The semantics of {loc := val}φ is the same as
that of 〈loc = val;〉φ. The difference between an update and an assignment is
syntactical. The expressions loc and val must be simple in the following sense:
loc is (a) a program variable var, or (b) a field access obj.attr, or (c) an array
access arr[i]; and val is a logical term (that is free of side effects). More
complex expressions are not allowed in updates.

The syntactical simplicity of loc and val has semantical consequences. In
particular, computing the value of val has no side effects. The KeY system uses
special simplification rules to compute the result of applying an update to logical
terms and formulas not containing programs. Computing the effect of an update
to a program p (and a formula 〈p〉φ) is delayed until p has been symbolically

4 In DL versions for simple artificial programming languages, where no prefixes are needed,
any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ. In our calculus, splitting of
〈πpqω〉φ into 〈πp〉〈qω〉φ is not possible (unless the prefix π is empty) because πp is not a
valid program; and the formula 〈πpω〉〈πqω〉φ cannot be used either because its semantics
is in general different from that of 〈πpqω〉φ.

12 Introduction

executed using other rules of the calculus. Thus, case distinctions are not only
delayed but they can often be avoided completely, because (a) updates can
be simplified before their effect is computed and (b) their effect is computed
when a maximal amount of information is available (namely after the symbolic
execution of the program).

The assignment rule now takes the following form (U stands for an arbitrary
sequence of updates):

Γ ` U{loc := val}〈 π ω 〉φ
Γ ` U〈 π loc = val; ω 〉φ

(R1)

That is, it just adds the assignment to the list of updates U . Of course, this does
not solve the problem of computing the effect of the assignment. This problem
is postponed and solved by rules for simplifying updates.

This assignment rule can, of course, only be used if the expression val is
a logical term. Otherwise, other rules have to be applied first to evaluate val
(as that evaluation may have side effects). For example, these rules replace the
formula 〈 x = ++i; 〉φ with 〈 i = i+1; x = i; 〉φ. One can view these rules
as on-the-fly program transformations. Their effect is always local and fairly
obvious, so that the user’s understanding of the proof is not obfuscated.

The Rule for if-else

One more example that shows how the calculus corresponds to symbolic program
execution, is the rule for the if statement:

Γ, U(b .= true) ` U〈 π p ω 〉φ Γ, U(b .= false) ` U〈 π q ω 〉φ
Γ ` U〈 π if(b) p else q ω 〉φ

(R2)

The two premises of this rule correspond to the two cases of the if statement.
The semantics of rules is that, if all the premises are true in a state, then the
conclusion is true in that state. In particular, if the premises are valid, then the
conclusion is valid. As the rule demonstrates, applying it (from bottom to top)
corresponds to a symbolic execution of the program to be verified.

The Rules for try/throw

Finally, the following rules allow to handle try-catch-finally blocks and the
throw statement. These are simplified versions of the actual rules that apply to
the case where there is exactly one catch clause and one finally clause.

Γ ` instanceof (exc, T) Γ ` 〈 π try{e=exc; q}finally{r} ω 〉φ
Γ ` 〈 π try{throw exc; p}catch(T e){q}finally{r} ω 〉φ

(R3)

Γ ` ¬instanceof (exc, T) Γ ` 〈 π r; throw exc; ω 〉φ
Γ ` 〈 π try{throw exc; p}catch(T e){q}finally{r} ω 〉φ

(R4)

The predicate instanceof (exc, T) has the same semantics as the instanceof
operator in JAVA. It evaluates to true if the value of exc is assignable to a
program variable of type T , i.e., if its dynamic type is a sub-type of T .

3. The KeY System 13

Rule (R3) applies if an exception exc is thrown that is an instance of ex-
ception class T , i.e., the exception is caught; otherwise, if the exception is not
caught, rule (R4) applies.

3.6 Taclets

Most existing interactive theorem provers are “tactical theorem provers”. The
tactics for which these systems are named are programs which act on the proof
tree, mostly by many applications of primitive rules, of which there is a small,
fixed set. The user constructs the proof by selecting the tactics to run. Writing
a new tactic for a certain purpose, for example, to support a new data type
theory requires expert knowledge of the theorem prover.

In the KeY prover, both tactics and primitive rules are replaced by the taclet
concept [BGH+04, Hab00]. A taclet combines the logical content of a sequent
calculus rule with pragmatic information that indicates when and for what it
should be used. In contrast to the usual fixed set of primitive rules, taclets
can easily be added to the system. All the JAVA CARD DL calculus rules are
implemented in the form of taclets. Moreover, since rules can be dynamically
added to the prover, it is possible to have alternative sets of rules for certain
purposes. For example, when dealing with integer arithmetics, different integer
semantics can be chosen to handle all possible overflow scenarios: ideal integer
arithmetics (no overflow), finite integer types (overflow prohibited), or JAVA

integer semantics (types are finite, overflow is allowed and modelled accurately
as it happens in JVM) [BS04].

Taclets are formulated as simple pattern matching and replacement schemas.
For instance, a typical taclet might read as follows:

find (b -> c ==>)

if (b ==>) replacewith (c ==>)

heuristics(simplify)

This means that an implication b -> c on the left side of a sequent may be
replaced by c, if the formula b also appears on the left side of that sequent.
The clause heuristics(simplify) indicates that this rule should be part of
the heuristic named simplify, meaning that it should be applied automatically
whenever possible if that heuristic is activated.

While taclets can be more complex than the typically minimalistic primitive
rules of tactical theorem provers, they do not constitute a tactical programming
language. There are no conditional statements, no procedure calls and no loop
constructs. This makes taclets easier to understand and easier to formulate
than tactics. In conjunction with an appropriate mechanism for application of
heuristics, they are nevertheless powerful enough to permit interactive theorem
proving in a convenient and efficient way.

In principle, nothing prevents one from formulating a taclet that represents
an unsound proof step. It is possible, however, to generate a first-order proof
obligation from a taclet, at least for taclets not involving programs. If that
formula can be proven using a restricted set of “primitive” taclets, then the

14 Introduction

new taclet is guaranteed to be a correct derived rule. As for the primitive
taclets for handling JAVA programs in JAVA CARD DL, it is possible to show
their correctness using the Isabelle formalisation of JAVA by Oheimb [vO01].

3.7 Implementation

The KeY tool is an extension of the commercial case tool TogetherCC. The
open API of TogetherCC allows the KeY tool to add items to the CASE tool’s
contextual menus for classes, methods, etc. The API also makes it possible
to modify the currently open UML model. All KeY system extensions can
optionally be switched on and off in TogetherCC and thus it is the developer’s
decision to use them or not.

The KeY tool is implemented in the JAVA programming language. This
choice has several advantages, besides the obvious one of portability. Using the
JAVA language makes it easy to link the KeY tool to TogetherCC, which is also
written in JAVA. More generally, JAVA is well suited for interaction with other
tools, whether they are written in JAVA or not. In particular, the imperative
nature of the language leads to a comparatively natural native code interface,
in contrast to the logic or functional programming languages often preferred for
deduction purposes.

JAVA was also a good choice for the construction of the graphical user in-
terface, which is an important aspect of the KeY tool. Finally, previous exper-
iments with both interactive [Hab00] and automated [Gie01] theorem proving
have shown that the advantages of JAVA outweigh the additional effort for the
implementation of term data structures, unification, etc.

Some components of the KeY tool can be used stand alone. In particular,
it is possible to use the KeY prover to prove properties about JAVA programs
without the presence or availability of the CASE tool. The KeY system is
still being developed; however it can already handle all of JAVA CARD features,
including JAVA CARD transactions and object persistency. The current publicly
available version of KeY can be downloaded from the KeY Project web page.5

Development versions are available on request.

4 Description of the Papers

In the following we give a description of the papers included in this thesis. All
the papers have been revised and are self contained. Thus, some introduc-
tory material in the papers is repeated and overlaps with the material already
presented in this introduction. For each of the papers we shortly present its
contents, describe its relation to this thesis and the author’s involvement in the
presented work.

5 http://www.key-project.org/download/

http://www.key-project.org/download/#

4. Description of the Papers 15

Paper I: Rigorous Development of JAVA CARD Applications

This paper is the starting point to develop a rigorous, well defined development
process for JAVA CARD applications with formal methods support. It is based
on a real-life case study – a system for authenticating users in the Linux sys-
tem with JAVA Powered iButtons6 instead of the password mechanism. The
first step was to identify all the problems and deficiencies of the JAVA CARD

applet caused by an unorganised development process and “too relaxed” use of
the JAVA CARD language. Then a development process is proposed, which aims
at overcoming the problems discovered. Among other things, it ensures a well
defined and self-controlled (by the applet itself) message exchange protocol dis-
allowing tampering with the applet, it enforces integrity checks on the incoming
APDU data (wherever necessary) and constrained usage of memory making the
applet “memory safe”. The development process is based on UML and OCL
giving the basis for formal verification. The new development process applied
to the case study (i.e., the case study was reengineered) produced a robust,
self-controlled, memory safe JAVA CARD applet. Moreover, most of the actual
applet code was derived from UML/OCL specifications.

The paper also describes the problem of a card “rip-out” in some detail.
The problem occurs when the execution of the applet is abruptly terminated
by ripping out the card from the reader (terminal) or simply by power loss. In
such a case the applet’s memory may be left in an undefined state, disabling
the proper functioning of the applet in some cases. To handle this problem one
needs to be able to specify and prove a property that should hold throughout
the whole execution of a JAVA CARD program, so that in case of a “rip-out”
at any point the property is maintained. The theoretical aspects of handling
“rip-out” properties is the subject of the next paper.

The work described in this paper was carried out solely by the author. Origi-
nally, this paper was presented at the Rigorous Object Oriented Methods Work-
shop in London, March 2002 [Mos02]. Later it was submitted to the Software
and Systems Modelling Journal and it is currently undergoing the review pro-
cess.

Paper II: A Program Logic for Handling JAVA CARD’s
Transaction Mechanism

This paper extends the JAVA CARD Dynamic Logic used in the KeY system’s
interactive prover to handle the mentioned “rip-out” properties. The new modal
operator “throughout” is introduced to the logic, which can be used to prove
that a property holds throughout the whole execution of a JAVA CARD pro-
gram (in all the intermediate states). We call the “rip-out” properties strong
invariants. Such an invariant on the objects’ data is maintained at any time
during applet execution and, in particular, in case of abrupt termination. The
main challenge in this work was to handle JAVA CARD’s transaction mechanism

6 “iButtons” are particular JAVA CARD devices embedded in a button shaped case, see
http://www.ibutton.com/.

http://www.ibutton.com/#

16 Introduction

in connection with object persistency (which is specific to JAVA CARD) in the
sequent calculus rules. It should be noted here that transactions and object
persistency affect the semantics of the 〈·〉 and [·] modal operators (specifically
programmatic abortion of a transaction) – the necessary rules to handle transac-
tions for diamond and box operators are also presented in the paper. The paper
also contains examples of simple proofs using the new rules. To the best of our
knowledge, currently there is only one other research effort to deal with JAVA

CARD transactions and “rip-out” properties in JAVA CARD program verification,
see Section 6.

This paper was presented (and published in the proceedings) at the Funda-
mental Approaches to Software Engineering Conference (part of ETAPS) held
in Warsaw, April 2003 [BM03]. The theoretical aspects of introducing the ex-
tensions to the JAVA CARD DL calculus were carried out in close cooperation
with Bernhard Beckert from the University of Karlsruhe, Germany7 during the
author’s six months research visit to Karlsruhe. Later on, the author imple-
mented all the extensions in the KeY prover by himself. The version of the
paper included in this thesis is a slightly extended version of the one published
in the conference proceedings.

Paper III: Specifying JAVA CARD API in OCL

After implementing the “throughout” and transactions extensions the author
engaged in practical experiments. At that point it was already known that
to properly verify real JAVA CARD applications one needs a full JAVA CARD

API specification. Such a specification is used in proofs to handle method
calls to the JAVA CARD library. In particular, when the implementation of
a given method in the JAVA CARD API is not known, the prover should “re-
place” the method call with the specification of that method. Since OCL
is the main design and specification language in KeY, it was a natural deci-
sion to develop the specification of the JAVA CARD API in OCL. The starting
point for this work was the already existing specification of the API written
in JML (JAVA Modelling Language) [LBR99] developed for the LOOP tool
(see Section 6). The paper reports on the problems that were encountered
when writing the specification and their solutions. This work was also treated
as a JAVA CARD verification case study for the KeY system, successful veri-
fication attempts of some small parts of the reference implementation of the
API library are reported. Finally, the paper evaluates OCL and compares
it to JML in the context of JAVA CARD program specification and verifica-
tion.

Later on, when the KeY prover was equipped with the ability to use OCL
method specifications (or method contracts, as they are referred to in KeY) in
proofs, certain practical deficiencies of OCL have been discovered. In short,
proper verification of JAVA CARD programs using method contracts requires at-
tribute modification information to be given in the specification [Mül01, BS03].

7 Currently at the Department of Computer Science, University of Koblenz-Landau, Ger-
many, e-mail: beckert@uni-koblenz.de

mailto:beckert@uni-koblenz.de#

4. Description of the Papers 17

Pure OCL does not support this, KeY introduces its own OCL extensions to
handle such information (“modifies” clauses). Yet another problem is OCL’s
limited capability to deal with primitive arrays, which are the basis of the JAVA

CARD communication and API. Finally, the OCL parser (external) implementa-
tion that KeY uses, does not handle JAVA package information. Given all this, it
turned out that OCL in its pure form is too high level for low level applications
like JAVA CARD. Currently, the experience gathered during this work serves as
a case study to develop a more flexible OCL parser and type checker8 [Joh04].
Such a general purpose parser could be used to interface OCL to a formal ver-
ification tool like KeY. The last paper of this thesis gives some brief insights
on how we have overcome the deficiencies of OCL by defining method contracts
directly in JAVA CARD DL.

The work described in this paper has been carried out mostly by Daniel
Larsson9 as his Master’s Thesis project [Lar03]. He has been supervised by the
author of this thesis. Together, we wrote a paper based on Daniel’s work,
which was presented at the OCL 2.0 Satellite Workshop of the UML Con-
ference, held in San Francisco, October 2003 [LM04]. Although the author’s
involvement in the actual development of the JAVA CARD API specification
was limited, we still consider this work an important element of further re-
search that took place. Therefore, we decided to include this paper in the
thesis.

Paper IV: Verification of Safety Properties in the
Presence of Transactions

This paper presents the first practical case study, based on a real JAVA CARD

application, that involve strong invariants and JAVA CARD transactions. Some
difficulties has been discovered when trying to prove safety properties related to
transactions. It is argued that, to overcome such difficulties, formal verification
has to be taken into account during the design and coding phase of the JAVA

CARD applet development. This gives raise to practical JAVA CARD design for
verification guidelines. As a result of applying such guidelines, safety properties
for JAVA CARD applets can be proven easily – automatically and in a relatively
short time. To support this claim, benchmarks of the KeY system are given in
the paper.

All the practical work described in this paper was done by the author of
this thesis. The author’s supervisor, prof. Reiner Hähnle,10 was invited to the
CASSIS (Construction and Analysis of Safe, Secure and Interoperable Smart
devices) Workshop (Marseille, March 2004), where he presented this work. The
paper that we have written together, was accepted to be published in the post-
workshop LNCS proceedings [HM05].

8 http://www.cs.chalmers.se/~krijo/ocltc/
9 Department of Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden, e-mail: danla@cs.chalmers.se
10 Department of Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden, e-mail: reiner@cs.chalmers.se

http://www.cs.chalmers.se/~krijo/ocltc/#
mailto:danla@cs.chalmers.se#
mailto:reiner@cs.chalmers.se#

18 Introduction

Paper V: Formalisation and Verification of JAVA CARD

Security Properties in Dynamic Logic

This paper presents how common JAVA CARD security properties can be for-
malised in Dynamic Logic and verified with the KeY system. The properties
under consideration originate from [MM01], a document listing JAVA CARD se-
curity properties to be studied in the SecSafe Project.11 It consists of ten
security properties that are of importance to the smart card industry. In the
paper we show how we formalised and verified a large part of those proper-
ties. For the remaining properties we give concrete suggestions on how they can
be treated in interactive theorem proving. The formalisation of the properties
is accompanied by concrete examples based on real-life, industrial size, JAVA

CARD applications. The first one is the authentication applet described in the
first paper of this thesis. The second is an electronic purse applet Demoney,
provided to us by Trusted Logic.12 The Demoney applet is also the motivat-
ing example for the previous paper. The SecSafe Project focuses on applying
static analysis techniques to establish the JAVA CARD security properties. We
managed to formalise the properties in JAVA CARD DL and verify them with the
KeY prover. Therefore, we give an assessment of interactive theorem proving
as an alternative to static analysis. Finally, all the verification described in the
paper, was performed on an unaltered JAVA CARD code, which was not designed
to support verification (i.e., we used JAVA CARD code “as is”). Thus, we discuss
the practical experience that we gathered during the course of this work. The
main conclusion is that, for the scenario of JAVA CARD applet verification, while
automation is still achievable and the time requirements stay within reasonable
limits, certain user expertise is required.

The work described in this paper was carried out solely by the author. The
paper was accepted to be published in the proceedings of the Fundamental
Approaches to Software Engineering Conference, to be held in Edinburgh, Scot-
land, April 2005 [Mos05]. The version of the paper included in this thesis
is an extended version of the conference paper, published as a technical re-
port [Mos04].

5 Contributions

The work presented in this thesis brings a number of benefits to the area of
formal JAVA CARD development and, in particular, to the KeY Project. To start
with, the development process for JAVA CARD has been investigated. Together
with the design for verification guidelines presented in the fourth paper and
other case study work (for example, see [BH04]) it gives a solid basis for defining
a general formal verification oriented development process that would bring
formal methods to contemporary software engineering.

11 http://www.doc.ic.ac.uk/~siveroni/secsafe/
12 http://www.trusted-logic.com. We thank Renaud Marlet for providing the Demoney

source code.

http://www.doc.ic.ac.uk/~siveroni/secsafe/#
http://www.trusted-logic.com#

5. Contributions 19

Secondly, a lot of practical experiments and formal verification have been
performed during the course of this work. In particular, this gives the KeY
system a real usability test in the context of industrial size JAVA CARD applets.
Moreover, we believe that the practical experience that we gathered could be
useful for JAVA CARD verification attempts using other tools as well. Our exper-
iments have been driven by the following aspects: expressiveness, automation,
and performance. To enhance expressiveness the JAVA CARD DL has been ex-
tended with the throughout modality, which enables us to express and verify
JAVA CARD specific properties (strong invariants for rip-out situations). The
ideas behind our extensions to handle the throughout modality and transactions
could be used in other Hoare-like logics for JAVA CARD programs. The last two
papers of this thesis show that a tool equipped with such extensions can be used
to verify many of the interesting JAVA CARD safety and security properties.

The main obstacle to reach full automation in the verification process are
loops and recursion. In principle, handling loops and recursive method calls
requires using the induction rule in the proof. Although work on supporting
inductive proofs is underway [HW03, Wal04], induction still requires user inter-
action with the prover. However, in practice, recursion is non existent in JAVA

CARD programs, so this is not considered to be a problem. As for loops, the
situation is also manageable. In JAVA CARD, most of the loops have constant
bounds and can be symbolically executed step by step without user interaction
(although the proofs tend to grow large). Moreover, the loops that are not
bounded by a constant, are usually in a special form, i.e., each execution of loop
body is independent of the other loop body executions (for example, simple
array traversal or initialisation). In such situations, loops can be handled by
a dedicated loop rule. Our practical experience regarding the loops currently
serves as a basis for research on such JAVA CARD specific loop handling. What
also helps with loops, is the proper design and coding of the routines involv-
ing loops. Such design and coding guidelines should be incorporated into the
general JAVA CARD development process described above.

Our research has identified performance bottlenecks of the KeY prover. One
of the bottlenecks is the handling of loops described above. The other one is
the efficient use of JAVA CARD API method contracts in proofs. The current
contract mechanism implemented in KeY turns out not to be flexible enough in
some situations. Our research has identified the deficiencies in this respect and
issues that need to be addressed in the implementation of the contract mech-
anism to reach full support for JAVA CARD specific method contracts. Such
improvements are currently underway. Despite the discovered performance de-
ficiencies, we found the KeY prover flexible enough to handle complex JAVA

CARD applets, mostly automatically, in reasonable time. Given that, according
to the literature [PvdBJ00, JMR04], other JAVA CARD verification tools sup-
port method contracts quite well, we consider regular use of formal methods
in software engineering, and, in particular, JAVA CARD development, absolutely
feasible in the near future.

Finally, we introduced the throughout modality for the sole purpose of han-
dling the rip-out properties. However, there is no obstacle to introduce other

20 Introduction

temporal modal operators to the JAVA CARD DL. The theoretical research re-
garding the transaction mechanism, and the schematic modal operators frame-
work implemented by us in the KeY prover, make implementing a new modality
in the prover literally a one day process, given that the set of the rules for the
new modality is known. Additional temporal operators could be used to specify
and prove correctness of non-terminating programs, for example, control soft-
ware in JAVA2 Micro Edition devices. Given the close relation of the Dynamic
Logic to Hoare calculus and relative genericity of our solution, we believe that
extensions to handle temporal properties could also be added to other JAVA

CARD verification tools in a similar fashion.

6 Related Work

In recent years formal approaches to JAVA CARD development gained consider-
able interest, both in academia and industry. Work in JAVA CARD verification
can be classified according to several criteria. Working on byte code avoids the
problems of source code availability and compiler trustworthiness, but makes
full verification more difficult due to information loss during compilation. An
overview of work done on the byte code level is provided in [Boy03]. For us
the most interesting projects and approaches are those that aim at source code
verification of JAVA and JAVA CARD programs. To start with, [HM01] contains
an overview of the existing literature (until end of year 2001) on JAVA and JAVA

CARD safety with emphasis on formal approaches (including the ones targeted
at byte code level). Here we list the most relevant (in our opinion) tools and
approaches to formal verification of JAVA and JAVA CARD programs.

The iContract tool [Kra98, Ens01], based on the idea of Design-By-Contract
[Mey92], represents the most lightweight category of tools to enforce reliability of
JAVA programs. In this approach, a JAVA program is decorated with annotations
from a restricted language (based on OCL). Such specifications are checked
during runtime, giving raise to exceptions when the specification is violated.
Some other tools for JAVA based on the idea of run-time assertion checking
are Jass13 (uses a language resembling JML), the JML compiler – jmlc [CL02a]
(assertions are written in a subset of JML), or jmlunit [CL02b], which combines
JML assertion checking with unit testing [BG98].

The ESC/JAVA tool [FLL+02] also relies on annotations from a restricted
specification language, based on JML. The tool employs extended static check-
ing techniques to validate JAVA programs. Annotated programs (via an inter-
mediate representation) undergo a dynamic analysis that produces first-order
verification conditions for a theorem prover (Simplify). The analysis does not
attempt to be sound or complete, but it is fully automatic and produces warn-
ings, when annotations are potentially violated. With ESC/JAVA it is possible
to express and check properties similar to our strong invariants – an arbitrary
code location can be annotated with an object invariant [LS97]. Annotating
every program statement with an object invariant is an equivalent of expressing
13 http://csd.informatik.uni-oldenburg.de/~jass/

http://csd.informatik.uni-oldenburg.de/~jass/#

6. Related Work 21

a strong invariant. The development of ESC/JAVA2, the successor of ESC/JAVA,
started at the University of Nijmegen, Netherlands, as part of the VerifiCard
Project14 [JMP01]. The following tools that we discuss are also related to this
project.

The Jive system [MPH00, MMPH00] uses an extended Hoare-style calcu-
lus [PHM99] to prove properties about programs written in subdialect of JAVA

CARD (Diet JAVA CARD). Jive is an interactive theorem prover with a ded-
icated user interface that uses an associated general purpose theorem prover
(Isabelle [Pau94] or PVS [ORSvH95]).

The LOOP tool [JP03] employs a Hoare-like logic formalised in Type The-
ory [JP01, vdBHJP00, HJ00] to verify sequential JAVA programs. The back-
end theorem prover of the LOOP tool is PVS and the input specification
language is JML. The LOOP tool is capable of verifying advanced JAVA pro-
grams [vdBJP01, JMR04, BCHJ04]. As a part of the work on the LOOP tool,
a JAVA CARD API specification in JML has been developed [MP01, PvdBJ00].

Yet another system associated with the VerifiCard Project is the Kraka-
toa tool [MPMU04]. Here, JAVA programs and their JML specifications are
translated into an intermediate, mostly functional, language, then proof obli-
gations are generated, which in turn are proved with the Coq proof assis-
tant [CDT04].

The VerifiCard Project tools that we mention, have been used to perform
serious verification of a commercial JAVA CARD applet [JMR04]. The considered
property is one of the properties listed in [MM01]. The main result of the
paper is that subtle bugs were found in the verified applet. In the last two
papers of this thesis we give a more thorough comparison to the tools and
results described in [JMR04]. We should also mention here that recently some
preliminary work to reason about rip-out properties and JAVA CARD transactions
has been initiated in the context of the VerifiCard Project [HP04] (there, rip-
outs are called card tears). This is the only work that we are aware of that
considers JAVA CARD’s transaction mechanism. The approach taken in [HP04]
differs from ours in certain respects, we describe that in the fourth paper of this
thesis.

The JACK (JAVA Applet Correctness Kit) tool [BRL03] is also associated
with the VerifiCard project, but initially it has been developed outside of the
project by Gemplus Research Labs. Currently, it is maintained as part of the
Everest project at INRIA, Sophia-Antipolis, France.15 The motivation and goals
of JACK are closely related to those of the KeY system – JACK is designed for
JAVA programmers that do not have background in formal methods. It provides
intuitive, integrated user interface to developers (like KeY, JACK is integrated
into a commercial IDE tool). Specifications for JACK are written in JML. The
tool implements fully automated weakest precondition calculus. It can generate
proof obligations for the B [Abr96] method’s prover, Simplify theorem prover
(the prover used by the ESC/JAVA), or Coq proof assistant.

14 http://www.verificard.org
15 http://www-sop.inria.fr/everest/software.php

http://www.verificard.org#
http://www-sop.inria.fr/everest/software.php#

22 Introduction

Typical security properties related to information flow (confidentiality and
integrity of data) are very important in JAVA CARD applet verification. Here,
on the source code level, mostly static analysis techniques are used. [GD03]
presents a JAVA CARD case study, that involves confidentiality properties for
JAVA CARD applets. Two tools used in this case study are ESC/JAVA, that
we have already discussed, and Jif16 [Mye99] – a compiler for a security-typed
programming language that extends JAVA with support for static information
flow control. In [DHS04] it is shown how interactive theorem proving can also
be used to establish properties related to information flow.

Finally, [BCC+04] and [BCHJ04] contain a comprehensive overview of JML
tools and applications. In the former, further references to tools and techniques
targeted at JAVA verification based on JML can be found, the latter reports
on specification and verification of yet another case study (Gemplus electronic
purse applet) in the context of the VerifiCard project.

It is clear from the description of the different tools above, that JML is the
most commonly used language for specifying behaviour of JAVA and JAVA CARD

programs. The main reason is that JML was designed with JAVA in mind – it
clearly states what the semantics of class invariants and method contracts are
in the context of JAVA program. Also, the exceptions are handled in a clean and
uniform way in JML [LBR99]. On the other hand, OCL [WK03], which is the
main specification language in the KeY system, has a more open architecture
– it has been designed with UML in mind, but not any specific programming
language. Thus, the semantics of OCL can be interpreted differently depending
on the actual programming language it is used with [HHB02]. In the KeY
system the OCL specifications are interpreted in a very similar way to JML
semantics. More discussion on the practical differences between JML and OCL
in the context of the KeY system can be found in the third paper of this thesis.
We should add here, that recently the KeY system also supports JML [Eng05],
and that in KeY it is possible to specify the behaviour of the program directly
in JAVA CARD DL, the approach presented in the last paper of this thesis.

Apart from the VerifiCard Project, we should mention the following. The
Bandera project [CDHR00] uses abstraction of the execution model of JAVA

and the requirements to prove properties about JAVA programs using model
checking. The advantages are full automation of the model checking phase, trace
generation for counter models, and treatment of concurrent JAVA programs.
The drawback is the need for abstraction which poses difficulties for programs
containing JAVA arithmetic and other inductive data structures. In [SSB01] a
full formalisation of JAVA and the JAVA Virtual Machine using Abstract State
Machines is presented.

Finally, we should mention again the KeY system’s formalisation of JAVA/
JAVA CARD – JAVA CARD Dynamic Logic [Bec01, BS01]. Dynamic Logic is also
used to handle a fragment of the JAVA language in the KIV system [Ste01]. We
have also pointed out that a formalisation of JAVA in Isabelle [vO01] could be
used to verify the correctness of the KeY’s JAVA CARD DL calculus rules.

16 http://www.cs.cornell.edu/jif/

http://www.cs.cornell.edu/jif/#

7. Future Work 23

7 Future Work

We are encouraged by the results of our work. We are able to formally ver-
ify interesting safety and security properties for JAVA CARD applets with full
support for the transaction mechanism and strong invariants. Our experiments
have been performed on applications of considerable size and we think that the
current degree of automation and time performance are already satisfactory.
We have also identified some of the JAVA CARD design and development aspects
that make the verification easier. However, some of the issues that we discussed
in this thesis should be investigated further. An important step to proceed
with this work is to try to integrate our ideas into an industrial context. The
ultimate goal would be to develop a commercial JAVA CARD application from
scratch, following our design process ideas, and verify its correctness. Such an
experiment would definitely confirm the usefulness of the design process and
design for verification guidelines. A comparative study to regular JAVA CARD

development techniques could be performed with respect to the number of dis-
covered bugs, cost and time spent on development, etc. Also, by cooperating
with industry and investigating a wider diversity of JAVA CARD applets, the de-
sign process would be made more precise. We have only investigated two types
of JAVA CARD applications in our research. Studying other applications would
definitely add to the design process and guidelines – more JAVA CARD specific
design and specification patterns would be identified to form a comprehensive
JAVA CARD design pattern library and new ways to formally specify domain spe-
cific behaviour of JAVA CARD applets would be investigated, for example, how
to efficiently specify and verify interactions between applets through sharable
interfaces. Those goals require access to commercial applets, which is difficult
to obtain without serious commitment from industry.

Regardless of whether the goal above can be achieved or not, it would be
interesting to investigate the applicability of formal development techniques to
a wider range of JAVA applications targeted at small consumer devices. Here,
the JAVA2 Micro Edition platform is an obvious choice for further research.
Although being still relatively “small”, JAVA2 ME already poses certain diffi-
culties not found in JAVA CARD – JAVA2 ME supports graphical user interfaces
(for example, in mobile phones) and concurrency.

In the last paper of the thesis we point out that, so far, we are not able
to perform global verification of JAVA CARD applets. By global, we mean that
parts (single methods) of an applet can be verified, but not the whole applet
as such. This is strictly a performance issue. Although we performed our
experiments with the KeY system only, the literature reports that the other
formal JAVA CARD tools, like LOOP [JP03] or Krakatoa [MPMU04], also
suffer from such performance problems, in particular, the underlying theorem
provers (PVS [ORSvH95], Coq [CDT04]) seem to be the performance bottle-
necks. Here, the research direction would be to push the tools towards such
global verification and try to eliminate the performance deficiencies. Further
modularisation of proofs is one candidate for investigation. Based on our expe-
rience, we also believe that, in the long run, full automation in verification of

24 Introduction

certain classes of JAVA CARD applets can be achieved, without sacrificing expres-
siveness of properties. To reach this goal, further ways to improve automation
should be researched, for example, automated rules to handle simple loops.

Finally, we have mentioned that the idea of introducing the throughout
operator could be extended to other temporal operators. As an initial step it
would be desirable to investigate what kind of useful properties one could specify
and verify using such temporal operators, in the context of JAVA CARD or JAVA2
ME environments.

Bibliography

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and Systems Modeling, April 2004. Online
First issue, to appear in print.

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, 1996.

[BCC+04] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik
Poll. An overview of JML tools and applications. Springer, De-
cember 2004. Online First issue, to appear in print.

[BCHJ04] Cees-Bart Breunesse, Néstor Cataño, Marieke Huisman, and Bart
Jacobs. Formal methods for smart cards: An experience report.
In Science of Computer Programming, ENTCS. Elsevier, 2004. To
appear.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification
of JAVA CARD programs. In I. Attali and T. Jensen, editors,
JAVA on Smart Cards: Programming and Security. Revised Pa-
pers, JAVA CARD 2000, International Workshop, Cannes, France,
volume 2041 of LNCS, pages 6–24. Springer, 2001.

[BG98] Kent Beck and Erich Gamma. Test infected: Programmers love
writing tests. JAVA Report, 3(7):37–50, 1998.

[BGH+04] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner
Hähnle, Andreas Roth, Philipp Rümmer, and Steffen Schlager.
Taclets: a new paradigm for constructing interactive theorem
provers. Revista de la Real Academia de Ciencias Exactas, F́ısicas
y Naturales, Serie A: Matemáticas, 98(1), 2004. Special Issue on
Symbolic Computation in Logic and Artificial Intelligence.

[BH04] Richard Bubel and Reiner Hähnle. Integration of informal and
formal development of object-oriented safety-critical software – A

Bibliography 25

case study with the KeY system. International Journal on Software
Tools for Technology Transfer (STTT), 2004. To appear.

[BHSS00] Thomas Baar, Reiner Hähnle, Theo Sattler, and Peter H.
Schmitt. Entwurfsmustergesteuerte Erzeugung von OCL-Con-
straints. In K. Mehlhorn and G. Snelting, editors, Informatik 2000,
30. Jahrestagung der Gesellschaft für Infomatik, pages 389–404.
Springer, September 2000.

[BM03] Bernhard Beckert and Wojciech Mostowski. A program logic for
handling JAVA CARD’s transaction mechanism. In Mauro Pezzè,
editor, Proceedings, Fundamental Approaches to Software Engi-
neering (FASE) Conference 2003, Warsaw, Poland, volume 2621
of LNCS, pages 246–260. Springer, April 2003.

[Boy03] Robert Boyer. Proving theorems about JAVA and the JVM with
ACL2. In M. Broy and M. Pizka, editors, Models, Algebras and
Logic of Engineering Software, pages 227–290. IOS Press, Amster-
dam, 2003.

[BRL03] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. JAVA applet
correctness: A developer-oriented approach. In Proceedings, For-
mal Methods Europe 2003, volume 2805 of LNCS, pages 422–439.
Springer, 2003.

[BRS+00] Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel,
and Andreas Thums. Formal system development with KIV. In
T. Maibaum, editor, Fundamental Approaches to Software Engi-
neering, volume 1783 of LNCS. Springer-Verlag, 2000.

[BS01] Bernhard Beckert and Bettina Sasse. Handling JAVA’s abrupt ter-
mination in a sequent calculus for Dynamic Logic. In B. Beckert,
R. France, R. Hähnle, and B. Jacobs, editors, Proceedings, IJCAR
Workshop on Precise Modelling and Deduction for Object-oriented
Software Development, Siena, Italy, pages 5–14. Technical Report
DII 07/01, Dipartimento di Ingegneria dell’Informazione, Univer-
sità degli Studi di Siena, 2001.

[BS03] Bernhard Beckert and Peter H. Schmitt. Program verification us-
ing change information. In Proceedings, Software Engineering and
Formal Methods (SEFM), Brisbane, Australia, pages 91–99. IEEE
Press, 2003.

[BS04] Bernhard Beckert and Steffen Schlager. Software verification with
integrated data type refinement for integer arithmetic. In Eerke A.
Boiten, John Derrick, and Graeme Smith, editors, Proceedings, In-
ternational Conference on Integrated Formal Methods, Canterbury,
UK, volume 2999 of LNCS, pages 207–226. Springer, April 2004.

26 Introduction

[CDHR00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby.
A language framework for expressing checkable properties of dy-
namic software. In Proceedings, SPIN Software Model Checking
Workshop, LNCS, pages 205–223. Springer, 2000.

[CDT04] The Coq Development Team. The Coq Proof Assistant Ref-
erence Manual – Version 8.0, January 2004. Available from
http://coq.inria.fr.

[Che00] Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architec-
ture and Programmer’s Guide. JAVA Series. Addison-Wesley, 2000.

[CL02a] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker
for the JAVA Modeling Language (JML). In Hamid R. Arabnia
and Youngsong Mun, editors, The International Conference on
Software Engineering Research and Practice (SERP ’02), pages
322–328. CSREA Press, June 2002.

[CL02b] Yoonsik Cheon and Gary T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. In Boris Magnus-
son, editor, ECOOP 2002, volume 2374 of LNCS, pages 231–255.
Springer, June 2002.

[DHS04] Ádám Darvas, Reiner Hähnle, and Dave Sands. A theorem proving
approach to analysis of secure information flow. Technical Report
2004–01, Department of Computing Science, Chalmers University
of Technology and Göteborg University, 2004.

[Eng05] Christian Engel. A translation from JML to JAVADL. Minor thesis,
Karlsruhe University, Computer Science Department, Karlsruhe,
Germany, 2005.

[Ens01] Oliver Enseling. iContract: Design by contract in JAVA,
2001. Available from http://www.javaworld.com/archives/
index-jw-02-2001.html.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static check-
ing for JAVA. In Proceedings, ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, pages
234–245. ACM Press, 2002.

[GD03] Pablo Giambiagi and Mads Dam. Verification of confidentiality
properties for JAVA CARD applets. Manuscript. Report on ad-
ditional work in WP4.3. Available from http://www.cs.ru.nl/
VerifiCard/files/verConf-T4.3-item4.pdf, 2003.

[GHL04] Martin Giese, Reiner Hähnle, and Daniel Larsson. Rule-based
simplification of OCL constraints. In Octavian Patrascoiu et al.,

http://coq.inria.fr#
http://www.javaworld.com/archives/index-jw-02-2001.html#
http://www.javaworld.com/archives/index-jw-02-2001.html#
http://www.cs.ru.nl/VerifiCard/files/verConf-T4.3-item4.pdf#
http://www.cs.ru.nl/VerifiCard/files/verConf-T4.3-item4.pdf#

Bibliography 27

editor, Workshop on OCL and Model Driven Engineering at
UML2004, Lisbon, pages 84–98, 2004.

[Gie01] Martin Giese. Incremental closure of free variable tableaux. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Pro-
ceedings, International Joint Conference on Automated Reason-
ing (IJCAR), Siena, Italy, volume 2083 of LNCS, pages 545–560.
Springer-Verlag, 2001.

[Hab00] Elmar Habermalz. Interactive theorem proving with schematic
theory specific rules. Technical Report 19/00, Fakultät
für Informatik, Universität Karlsruhe, 2000. Available at
http://i12www.ira.uka.de/~key/doc/2000/stsr.ps.gz.

[HHB02] Rolf Hennicker, Heinrich Hußmann, and Michel Bidoit. On the
precise meaning of OCL constraints. In T. Clark and J. Warmer,
editors, Advances in Object Modelling with the OCL, volume 2263
of LNCS, pages 69–84. Springer, 2002.

[HJ00] Marieke Huisman and Bart Jacobs. JAVA program verification via a
Hoare logic with abrupt termination. In Proceedings, Fundamental
Approaches to Software Engineering (FASE 2000), volume 1783 of
LNCS, pages 284–303. Springer, 2000.

[HK76] Sidney L. Hantler and James C. King. An introduction to proving
the correctness of programs. ACM Computing Surveys (CSUR),
8(3):331–353, 1976.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic.
MIT Press, 2000.

[HLS+96] Dieter Hutter, Bruno Langenstein, Claus Sengler, Jörg H. Siek-
mann, and Werner Stephan. Deduction in the Verification Sup-
port Environment (VSE). In Marie-Claude Gaudel and James
Woodcock, editors, Proceedings, Formal Methods Europe: Indus-
trial Benefits Advances in Formal Methods. Springer, 1996.

[HM01] Pieter H. Hartel and Luc Moreau. Formalizing the safety of JAVA,
the JAVA virtual machine, and JAVA CARD. ACM Computing Sur-
veys, 33(4):517–558, December 2001.

[HM05] Reiner Hähnle and Wojciech Mostowski. Verification of safety
properties in the presence of transactions. In Gilles Barthe and
Marieke Huisman, editors, Proceedings, Construction and Analy-
sis of Safe, Secure and Interoperable Smart devices (CASSIS’04)
Workshop, volume 3362 of LNCS, pages 151–171. Springer, 2005.

[HP04] Engelbert Hubbers and Erik Poll. Reasoning about card tears and
transactions in JAVA CARD. In Fundamental Approaches to Soft-
ware Engineering (FASE’2004), Barcelona, Spain, volume 2984 of
LNCS, pages 114–128. Springer, 2004.

http://i12www.ira.uka.de/~key/doc/2000/stsr.ps.gz#

28 Introduction

[HW03] Reiner Hähnle and Angela Wallenburg. Using a software test-
ing technique to improve theorem proving. In Alex Petrenko and
Andreas Ulrich, editors, Post Conference Proceedings, 3rd Inter-
national Workshop on Formal Approaches to Testing of Software
(FATES), Montréal, Canada, volume 2931 of LNCS, pages 30–41.
Springer, 2003.

[JMP01] Bart Jacobs, Hans Meijer, and Erik Poll. VerifiCard: A european
project for smart card verification. Newsletter 5 of the Dutch Asso-
ciation for Theoretical Computer Science (NVTI), 2001. Available
from http://www.cs.kun.nl/~bart/PAPERS/nvti01.ps.Z.

[JMR04] Bart Jacobs, Claude Marché, and Nicole Rauch. Formal veri-
fication of a commercial smart card applet with multiple tools.
In Proceedings, Algebraic Methodology And Software Technology,
Stirling, UK, volume 3116 of LNCS, pages 241–256. Springer, July
2004.

[Joh04] Kristofer Johannisson. Disambiguating implicit constructions in
OCL. In Octavian Patrascoiu et al., editor, Workshop on OCL
and Model Driven Engineering at UML2004, Lisbon, pages 30–44,
2004.

[JP01] Bart Jacobs and Erik Poll. A logic for the JAVA modelling lan-
guage. In Heinrich Hußmann, editor, 4th Fundamental Approaches
to Software Engineering, Genova, Italy, volume 2029 of LNCS,
pages 284–299. Springer-Verlag, April 2001.

[JP03] Bart Jacobs and Erik Poll. JAVA program verification at Nijmegen:
Developments and perspective. In Software Security – Theories
and Systems: Second Mext-NSF-JSPS International Symposium,
ISSS 2003, Tokyo, Japan, November 4–6, 2003. Revised Papers,
volume 3233 of LNCS, pages 134–153. Springer, 2003.

[Kra98] Reto Kramer. iContract – the JAVA design by contract tool.
TOOLS 26: Technology of Object-Oriented Languages and Sys-
tems, Los Alamitos, California, pages 295–307, 1998.

[KT90] Dexter Kozen and Jerzy Tiuryn. Logic of programs. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chap-
ter 14, pages 89–133. Elsevier, 1990.

[Lar03] Daniel Larsson. OCL specifications for the JAVA CARD API. Mas-
ter’s thesis, Chalmers University of Technology, Department of
Computing Science, Göteborg, Sweden, 2003.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A
Notation for Detailed Design. Kluwer Academic Publishers, 1999.

http://www.cs.kun.nl/~bart/PAPERS/nvti01.ps.Z#

Bibliography 29

[LM04] Daniel Larsson and Wojciech Mostowski. Specifying JAVA CARD

API in OCL. In Peter H. Schmitt, editor, OCL 2.0 Workshop at
UML 2003, volume 102C of ENTCS, pages 3–19. Elsevier, Novem-
ber 2004.

[LS97] K. Rustan M. Leino and Raymie Stata. Checking object
invariants. Technical Note #1997-007, Digital Systems Re-
search Center, Palo Alto, USA, January 1997. Available
from ftp://ftp.digital.com/pub/DEC/SRC/technical-notes/
SRC-1997-007.ps.gz.

[Mey92] Bertrand Meyer. Applying “Design by Contract”. IEEE Com-
puter, 25(10):40–51, October 1992.

[MM01] Renaud Marlet and Daniel Le Métayer. Security properties and
JAVA CARD specificities to be studied in the SecSafe project. Tech-
nical Report SECSAFE-TL-006, Trusted Logic S.A., August 2001.

[MMPH00] Jörg Meyer, Peter Müller, and Arnd Poetzsch-Heffter. The
Jive system – Implementation description. Available from
http://softech.informatik.uni-kl.de/downloads/publica-
tions/jive.pdf, 2000.

[Mos02] Wojciech Mostowski. Rigorous development of JAVA CARD appli-
cations. In T. Clarke, A. Evans, and K. Lano, editors, Proceedings,
Fourth Workshop on Rigorous Object-Oriented Methods, London,
U.K., March 2002. Available from http://www.cs.chalmers.se/
~woj/papers/room2002.ps.gz.

[Mos04] Wojciech Mostowski. Formalisation and verification of JAVA CARD

security properties in Dynamic Logic. Technical Report 2004–08,
Department of Computing Science, Chalmers University of Tech-
nology, Göteborg, Sweden, October 2004.

[Mos05] Wojciech Mostowski. Formalisation and verification of JAVA CARD

security properties in dynamic logic. In Maura Cerioli, editor,
Proceedings, Fundamental Approaches to Software Engineering
(FASE) Conference 2005, Edinburgh, Scotland, LNCS. Springer,
April 2005. To appear.

[MP01] Hans Meijer and Erik Poll. Towards a full formal specification of
the JAVA CARD API. In I. Attali and T. Jensen, editors, Smart
Card Programming and Security, International Conference on Re-
search in Smart Cards, e-Smart 2001, Cannes, France, volume
2140 of LNCS, pages 165–178. Springer, September 2001.

[MPH00] Jörg Meyer and Arnd Poetzsch-Heffter. An architecture for inter-
active program provers. In S. Graf and M. Schwartzbach, editors,

http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#

30 Introduction

Tools and Algorithms for the Construction and Analysis of Sys-
tems: 6th International Conference, TACAS 2000, Berlin, Ger-
many, volume 1785 of LNCS, pages 63–77. Springer, April 2000.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain.
The Krakatoa tool for certification of JAVA/JAVA CARD programs
annotated in JML. Journal of Logic and Algebraic Programming,
58(1–2):89–106, 2004. http://krakatoa.lri.fr.

[Mül01] Peter Müller. Modular Specification and Verification of Object-
Oriented Programs. PhD thesis, FernUniversität Hagen, 2001.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information
flow control. In Proceedings of the 26th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL), pages 228–241. ACM, January 1999.

[Obj03] Object Modeling Group. Unified Modelling Language Specification,
version 1.5, March 2003.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von
Henke. Formal verification for fault-tolerant architectures: Pro-
legomena to the design of PVS. IEEE Transactions on Software
Engineering, 21(2):107–125, 1995.

[Pau94] Larry C. Paulson. Isabelle: A Generic Theorem Prover, volume
828 of LNCS. Springer, 1994.

[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic
for sequential JAVA. In S. D. Swierstra, editor, Programming Lan-
guages and Systems (ESOP ’99), volume 1576 of LNCS, pages
162–176. Springer-Verlag, 1999.

[PvdBJ00] Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of
the JAVA CARD API in JML. In J. Domingo-Ferrer, D. Chan, and
A. Watson, editors, Fourth Smart Card Research and Advanced
Application Conference (CARDIS’2000), pages 135–154. Kluwer
Academic Publishers, 2000.

[SSB01] Robert F. Stärk, Joachim Schmid, and Egon Börger. JAVA and
the JAVA Virtual Machine: Definition, Verification, Validation.
Springer-Verlag, 2001.

[Ste01] Kurt Stenzel. Verification of JAVA CARD programs. Technical Re-
port 2001–5, Institut für Informatik, Universität Augsburg, Ger-
many, 2001. Available from http://www.Informatik.Uni-Augs-
burg.DE/swt/fmg/papers/.

[Sun03] Sun Microsystems, Inc., Santa Clara/CA, USA. JAVA CARD 2.2.1
Platform Specification, October 2003.

http://krakatoa.lri.fr#
http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/#
http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/#

Bibliography 31

[vdBHJP00] Joachim van den Berg, Marieke Huisman, Bart Jacobs, and Erik
Poll. A type-theoretic memory model for verification of sequential
JAVA programs. In D. Bert and C. Choppy, editors, Recent Trends
in Algebraic Development Techniques, volume 1827 of LNCS, pages
1–21. Springer-Verlag, 2000.

[vdBJP01] Joachim van den Berg, Bart Jacobs, and Erik Poll. Formal Spec-
ification and Verification of JAVA CARD’s Application Identifier
Class. In I. Attali and Th. Jensen, editors, Proceedings of the
JAVA CARD 2000 Workshop, volume 2041 of LNCS, pages 137–
150. Springer-Verlag, 2001.

[vO01] David von Oheimb. Analyzing JAVA in Isabelle/HOL. PhD thesis,
Institut für Informatik, Technische Universität München, January
2001.

[Wal04] Angela Wallenburg. Induction rules for proving correctness of im-
perative programs. Licentiate Thesis 1L, Chalmers University of
Technology and Göteborg University, Department of Computer
Science and Engineering, Göteborg, Sweden, December 2004.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language,
Second Edition: Getting Your Models Ready for MDA. Object
Technology Series. Addison-Wesley, Reading/MA, 2003.

32 Introduction

Paper I Rigorous Development of
JAVA CARD Applications

Fourth Workshop on Rigorous Object-Oriented
Methods, London, U.K., March 2002

Rigorous Development of JAVA CARD Applications

Wojciech Mostowski

Abstract

We present an approach to rigorous, tool supported design and de-
velopment of JAVA CARD applications. We employ the Unified Modelling
Language (UML) and formal methods for object oriented software devel-
opment in our approach. Our goal is to make JAVA CARD applications
robust “by design”, to make the development process independent of the
JAVA CARD platform used and to enable applications to be verified for-
mally by the KeY system. First we analyse the current situation of JAVA

CARD application development, then we present a real life JAVA CARD

case study and describe the problems we found that should be addressed
by rigorous development. Finally we propose some solutions to selected
problems by using UML specifications, software design patterns, formal
specifications and a modern CASE tool support.

1 Introduction

In this article we present an approach to rigorous, tool supported design and
development of JAVA CARD applications. Our goal is to make JAVA CARD ap-
plications robust “by design”, to make the development process independent of
the JAVA CARD platform used and to enable applications to be formally ver-
ified by the KeY system [ABB+04]. First we analyse the current situation of
JAVA CARD application development, then we present a real life JAVA CARD case
study (pam iButton [Bol]) and describe the problems we found that should be
addressed by rigorous development and formal verification. We propose solu-
tions to selected problems by presenting a framework that incorporates the use
of UML [Obj03] specifications, software idioms and design patterns, a modern
CASE tool support, as well as formal specification and verification to provide a
systematic, rigorous development process for JAVA CARD applications.

1.1 JAVA CARD

We start with a short introduction to JAVA CARD technology [Che00]. JAVA

CARD provides a means of programming smart cards with (a subset of) the JAVA

programming language. Today’s smart cards are small computers, providing 8,
16 or 32 bit CPU with clock speeds ranging from 5 up to 40 MHz, ROM mem-
ory between 32 and 64 KB, EEPROM memory (writable, persistent) between 16

35

36 W. Mostowski

and 32KB and RAM memory (writable, non-persistent) between 1 and 4 KB.
Smart cards communicate with the rest of the world through application proto-
col data units (APDUs, ISO 7816–4 standard). The communication is done in
master-slave mode – it is always the master/terminal application that initialises
the communication by sending the command APDU to the card and then the
card replies by sending a response APDU (possibly with empty contents). In the
case of JAVA powered smart cards (JAVA CARDs) besides the operating system
the card’s ROM contains a JAVA CARD virtual machine which implements a sub-
set of the JAVA programming language and allows running JAVA CARD applets
on the card. The following are the features not supported by the JAVA CARD

language compared to full JAVA: large primitive data types (int, long, double,
float), characters and strings, multidimensional arrays, dynamic class loading,
threads and garbage collection. Some of the actual JAVA CARD devices go be-
yond those limitations and support, for example, the int data type and garbage
collection. Most of the remaining JAVA features, in particular object oriented
ones like interfaces, inheritance, virtual methods, overloading, dynamic object
creation, are supported by the JAVA CARD language. The card also contains the
standard JAVA CARD API, which provides support for handling APDUs, Appli-
cation IDentifiers (AIDs), JAVA CARD specific system routines, PIN codes, etc.
A proper JAVA CARD applet should implement the install method responsible
for the initialisation of the applet (usually it just calls the applet constructor)
and a process method for handling APDU communication with the host. There
can be more than one applet existing on a single JAVA CARD, but there can be
only one active at a time.

1.2 Analysis of the Current Situation

JAVA CARD technology is relatively young and still developing and so are design
and development techniques for JAVA CARD applications. Although the JAVA

CARD language is based on full JAVA, the nature of the JAVA CARD environment
(for example, constrained memory, no garbage collection) makes JAVA CARD

programming quite different from normal JAVA programming. Powerful devel-
opment and modelling tools for JAVA are not JAVA CARD “aware”. Such a JAVA

tool can become helpful provided it can be customised to JAVA CARD needs.
This however is not the common approach being taken. Instead, each JAVA

CARD vendor provides its own development environment and proposes its own
JAVA CARD specific solutions. The provided tools try to ease the actual process
of writing JAVA CARD programs, installing them to the card and testing, but
they hardly ever provide the support for the design of JAVA CARD applications
in a more abstract sense. Our experience is based on using the JAVA-powered
iButtons,1 which we use in our research, and the development environment, iB-
IDE, provided for this platform, but most of the following statements apply to
other environments too. The iB-IDE tool provides the following functionality:
automatic creation of the skeleton code for both the card (iButton) application

1 http://www.ibutton.com/

http://www.ibutton.com/#

I. Rigorous Development of JAVA CARD Applications 37

and Open Card Framework [Ope] compliant JAVA host application with conve-
nience methods for dispatching user defined command APDUs and converting
data types, debugging tools with the possibility of running the card applet in an
emulated environment, and finally a very handy APDU sender which is used to
communicate with the card applets without a host application and to provide
some card administration services – downloading applets to the card, erasing
card’s memory, etc. The tool however does not provide any kind of modelling or
design support for building JAVA CARD applications, nor does it provide any sup-
port for formal specification and verification. Moreover, the JAVA CARD virtual
machine in iButton devices implements garbage collection and the iB-IDE skele-
ton code and example applets make heavy use of that fact. Thus the solutions
provided by iB-IDE are not (easily) portable to other JAVA CARD platforms.
In contrast to this, SUN’s JAVA CARD reference development kit2 provides very
nice examples which take into account common JAVA CARD limitations and pro-
poses a very elegant way of writing JAVA CARD applets, but the development
kit itself does not contain any user friendly tools to create the applications, the
only support available are the command line tools for compiling and running
the applets in a simulated/emulated environment.

The next issue is the need for the use of formal methods in JAVA CARD ap-
plication development. There are two reasons for this. First of all, smart card
application are usually security critical, secondly, in contrast to normal com-
puter software, making updates on the cards distributed in large amounts is not
possible, thus correctness of the card application should be done by best means
possible. At the same time JAVA CARD applications seem to be suitable for for-
mal verification because they are small in size and the JAVA CARD programming
language lacks some of the complications of the full JAVA language that makes
formal verification difficult (like threads, graphical user interfaces, complex data
types). Finally a controlled software development process in general (like the
one we want to propose, or an industrial one, like Nokia OK process) will benefit
from adding the formal methods support to it.

Taking all this into account it is clear that the development of JAVA CARD

applications needs to be uniform, platform independent, and should be done in
a controlled, systematic, well defined, rigorous way giving the possibility to for-
mally verify the application’s properties. Our further experience [HM05] shows
that properly designed and developed JAVA CARD application substantially eases
the formal verification effort.

1.3 Related Work

Most of the efforts related to JAVA CARD program development are concentrated
on the verification issues. Those can be generally divided into low level (byte
code) and high level (source code) verification. An overview of work done on the
byte code level can be found in [Boy03]. For the source code verification of JAVA

CARD application we only name the most important tools and projects. The

2 http://java.sun.com/products/javacard/

http://java.sun.com/products/javacard/#

38 W. Mostowski

LOOP tool [JP03] employs the PVS theorem prover to prove properties about
JAVA CARD programs annotated with JML (JAVA Modelling Language) specifi-
cations. JML is also used as a specification language in ESC/JAVA2 [FLL+02],
Krakatoa [MPMU04], and Jive [MMPH00] tools. ESC/JAVA2 provides full
automation, trading off the completeness and soundness of the static checking
used to verify JAVA CARD programs. The Krakatoa tool, which is part of the
VerifiCard project,3 uses the Coq theorem prover as the basis for verification.
The Jive system employs an extended Hoare style calculus implemented in
Isabelle and PVS theorem provers through a dedicated graphical user interface.

Our work has been done in the context of the KeY Project 4 [ABB+04].
One of its main objectives is to integrate formal methods with object oriented
software design to provide user friendly formal verification environment for JAVA

CARD, thus, the KeY tool seems to be most suited for our purposes. The design
and specification languages used in KeY are respectively UML [Obj03] (Unified
Modelling Language) and OCL [WK03] (Object Constraint Language), which
is part of the UML standard. During the course of the paper we show how we
use the KeY tool to support formal development of JAVA CARD applications.

Apart from the formal approaches to JAVA CARD development the following
should be mentioned. The Open Card organisation [Ope] bundles efforts to
create a common and unified programming framework for writing host/terminal
applications for JAVA CARD devices coming from different manufacturers (Open
Card Framework). JAVA CARD applications are quite often security critical,
[Jür01] shows how UML can be used to express security requirements during
system development.

1.4 Our Approach

In our approach to the development of JAVA CARD applications we use UML
modelling techniques, software patterns and incorporate formal methods in an
incremental way. By incremental we mean that the use of formal methods should
be optional and it should be up to the developer (who might be unfamiliar
with formal methods) at which level of detail formal methods are used, a view
stressed in [ABB+04, BML01]. To enable and ease the usage of formal methods
we try to provide means of creating certain kinds of formal specifications semi
automatically in two ways. The first by applying software and specification
patterns solving some common problem to the application design [GHL04]. Such
patterns usually need to be provided with parameters during instantiation to
create a proper specification, but giving the parameters is the only job that is
required from the developer. The second way is to create a specification out
of certain kinds of UML diagrams (possibly taking some parameters from the
user). Both enable creating partial specifications without detailed knowledge
about the formal specification language. The created specifications are well
formed by design and ready to be formally verified.

3 http://www.verificard.org
4 http://www.key-project.org

http://www.verificard.org#
http://www.key-project.org#

I. Rigorous Development of JAVA CARD Applications 39

Having all this support we can make JAVA CARD applications robust and
secure by design and easier for verification. To achieve our goals we need support
from a modern, fully customisable UML CASE tool as well as a suitable formal
verification system. As we already mentioned, we use the KeY system [ABB+04]
as a basis in our framework. The KeY system extends a commercial UML
CASE tool with formal verification modules in a seamless way. The CASE tool
currently used by the KeY system is Together Control Center from Borland.5

It provides state of the art support for UML and is fully extensible through its
JAVA open API. Therefore, we can use powerful UML support as well as formal
verification tools in one framework. One of the KeY extensions to the CASE
tool provides a library of common design and specification patterns to support
creation of OCL specifications [GHL04]. Yet another extension we introduced to
the CASE tool supports low level JAVA CARD development tasks, like compiling,
installing, or testing applets, either in a simulated environment or on real JAVA

CARD devices [Mos]. Such framework allows us to make our solutions to JAVA

CARD design issues independent of the actual JAVA CARD platform and vendor
specific development environment. At the same time we obtain generic, powerful
UML support and direct access to the state of the art verification system.

In this work we limit ourselves to the card applications (JAVA CARD applets),
that is, we do not consider the problems of developing the host application. The
main reason is that host applications are mostly regular JAVA programs and
usually are part of a bigger project, to which existing development techniques
can be applied, for example, the Unified Process [JBR99]. Moreover, suitable
efforts to support uniform development of host applications are carried out, for
example the Open Card Framework [Ope]. The applets themselves seem to be
too small applications to be subject to “big” process like UP, we believe that
developing a JAVA CARD applet should be seen as a small subprocess, which
needs specific approach.

In this paper we present a motivating JAVA CARD case study (Section 2)
based on which we identify JAVA CARD specific design issues and problems we
want to tackle (Section 3). In Section 4 we walk through and reengineer our
example to present our framework. In Section 5 we discuss the solutions in
the framework that address the problems we identified. Finally, Section 6 sum-
marises the paper.

2 Case Study: pam iButton

It is time to present our case study, upon which we build up some of the common
design requirements for JAVA CARD applications. The pam iButton package was
written by Dierk Bolten and is available free of charge [Bol]. The package al-
lows a Linux user to authenticate himself to the system by inserting an iButton
device into the reader instead of giving the password. A JAVA-powered iButton
is a JAVA CARD device implementing JAVA CARD API version 2.0 (which differs

5 http://www.borland.com/together/

http://www.borland.com/together/#

40 W. Mostowski

substantially from the current JAVA CARD API 2.2) with int data type sup-
port and garbage collection. The most recent JAVA-powered iButton has an 8
bit processor, cryptographic (RSA and SHA1) coprocessor and 130 KB of non-
volatile RAM memory. The pam iButton package consists of a PAM (Pluggable
Authentication Module) Linux system library which is responsible for authenti-
cation on the system side, a setup utility to configure the necessary system files
and administrate the iButton and the JAVA CARD applet (Safe Applet) which
performs the actual authentication on the iButton device.

The following is an example pam iButton usage scenario. First a Linux user
account needs to be setup to be able to use the iButton authentication. The
user is assigned a unique ID number and a pair of private and public RSA
keys is generated on the iButton and stored together with the user’s ID in the
iButton’s memory (many different users can be registered on one iButton). The
public key is then retrieved by the system from the iButton and stored in the
system configuration file together with the user’s ID number. The iButton is
ready to be used for authentication. When the user wants to be authenticated
he types in his login name. The system looks up his ID number and encrypts
a random message with the user’s public key. The encrypted message and the
user’s ID number are sent to the iButton applet. The applet checks if the user is
registered and if so, it decrypts the message with the private key, computes the
SHA1 hash value from the decrypted message and sends it back to the system.
The system compares the received SHA1 value with its own and if they match
the user is authenticated successfully.

The following is the list of the most important and interesting command
APDUs that Safe Applet accepts:

• Store data – stores temporary data for a subsequent command.

• Authenticate user – given the user’s ID performs the challenge-response
authentication described earlier. In response sends back the SHA1 code
of the message. The encrypted message has to be sent beforehand with
the ‘store data’ command.

• Set PIN code (PIN code protected) – sets a new PIN code for PIN pro-
tected commands.

• Generate key pair (PIN code protected) – given the user’s ID generates an
RSA key pair (the generation is done on the card) and stores it together
with the user’s ID in the applet’s memory. In response sends back the
public part of the key.

• Get public key – given the user’s ID sends back the public part of the key.

• Delete key pair (PIN code protected) – given the user’s ID removes this
user’s key pair entry from applet’s memory.

• Get key information – sends back the ID numbers of users registered in
the applet.

I. Rigorous Development of JAVA CARD Applications 41

Any command (except for the first and the last) sent to the applet can cause
an error condition in which case instead of the expected answer the error code
(status word) is sent back to the host indicating what the error was caused by.
Internally in the JAVA CARD applet this is done by throwing an appropriate
exception (ISOException).

3 Design Issues for JAVA CARD Applications

In the following section we will describe what issues came up while we were
studying the example and we will try to list some common requirements that a
JAVA CARD application should satisfy.

One of the first questions that came to mind were the following. Who is the
owner of the applet PIN code, Linux system administrator or the user? Who
is the person to setup iButton for authentication, the system administrator,
the user, both? What are the applet deployment steps, who is responsible for
installing the applet to iButton, when is iButton ready to be passed to the user
for regular usage (that is, when does the applet get personalised)? Should it
be possible for one iButton applet to be used on two different Linux systems?
Answers to some of the questions imply answers to some of the other questions,
for example, if a single applet can be used on many different systems then it
certainly should be the user owning the applet’s PIN code and it should be the
user that sets up the system configuration, probably through some administrator
privileged system tool, which itself needs to be very carefully designed.

One way or the other, the answers to the posed questions are not provided by
the design of the applet, at least not explicitly, and since this kind of application
is security critical, things like those mentioned above need to be well defined
and carefully thought through.

Secondly, we took a closer look at the protocol that is used to exchange infor-
mation between the host application and the iButton applet and we discovered
the following. There is no order imposed on command sequences: in one possi-
ble type error attack scenario first the ‘store temporary data’ command is sent
to the applet with the intention for this data to be used with a given subsequent
command call (say ‘authenticate user’), but then a different command is sent
which also relies on ‘store temporary data‘, in which case the latter gets wrong
data (for example, intended for ‘authenticate user’), which may cause corruption
of the applet data. Apart from ‘authenticate user’ there are other commands
that rely on ‘store temporary data’. In case of this particular applet we did not
find a sequence of command calls that could put the applet in an unrecoverable
state, but it is definitely possible to corrupt the applet state with wrong data,
causing some (recoverable) malfunctioning. Connected to this problem as well
as to the next one, is the fact that there are no integrity checks on the data
being sent along. Some of the commands may require input that does not fit
into a single APDU, so there are multiple APDUs being sent. However, there is
no control whether the proper number of APDUs in a proper order is sent (in
particular this may cause the applet to run out of memory). The last thing we

42 W. Mostowski

found strange about the protocol is that the PIN code is sent along with each
command that requires PIN code authentication. Generally there is nothing
wrong with it, but it produces overhead and it is different from the commonly
used solution of establishing the PIN code once per command exchange (card)
session.

Another thing which we found problematic (and it applies to iButton applets
in general, not only the one presented) is the unconstrained memory usage. The
iButton applets make heavy use of garbage collection and do a lot of dynamic
memory allocation. Not watching for memory usage makes life much easier for
the developer, but it also makes the applet much less robust – due to lack of
memory the applet may refuse to function properly at any point of execution.
Such an approach to JAVA CARD programming also makes the applications not
portable to other JAVA CARD devices that do not support garbage collection.

Extensive testing of Safe Applet revealed one more problem. If the user
rips out the iButton from the reader during authentication, the applet is not
functioning properly any more during subsequent authentication sessions. The
main reason for this is the loose command exchange protocol, which does not
take the possibility of rip out into account. The design of a JAVA CARD appli-
cation should take such possibilities under consideration and try to make the
applets as robust and rip-out proof as possible. Our further research [HM05]
shows that formal verification is the right technique to ensure that applets are
rip-out safe.

The last thing we want to point out is that Safe Applet allows two different
key pairs registered with the same user ID number. While this is the author’s
deliberate design decision, we think the applet should forbid to make double
entries of this kind, instead of making the user responsible for controlling the
state of the key pair entries.

Some of the problems we mentioned may seem not to be an issue for such a
small application as Safe Applet, but we want to make the JAVA CARD design
and development process scalable, and for bigger applications the problems
raised here definitely become serious issues which need to be addressed. Based
on what we have already described we now list some of the common design
issues in JAVA CARD development we will try to face and give some support to
in the next section:

• the applet has to be robust in the sense that it should be protected against
malicious host application, tampering with and against ripping out the
card from the reader,

• the applet deployment steps and life cycle should be well defined and
controlled by the applet itself disabling improper applet usage,

• the message exchange protocol should be well defined, constrained and
controlled by the applet to disable illegal command invocation sequences
(this also includes proper support for the commands requiring data to be
sent in multiple APDUs),

I. Rigorous Development of JAVA CARD Applications 43

• the applets should be very careful about the memory (to say the least),
here we would like to take the safest approach of allocating all the memory
an applet may ever want to use during applet installation time [Che00].

To end this section we want to stress that in our work we do not want to impose
any ways of taking design decisions for JAVA CARD applications (for example,
what actual deployment steps the applet should have, whether a certain com-
mand should be PIN code protected, etc.), we only want to support the design
process and provide the developer with means and tools to make those design
decisions and control the development process in a rigorous way. The design
decisions we present in the next section are only examples among many possible,
the design decisions in real-life JAVA CARD world should be done by a domain
expert.

4 Developing JAVA CARD Applications

We now present how one can go about designing and developing a JAVA CARD

application by going through the case study again and reengineering it in a well
defined way. The large parts of the example that we present should give the
reader the complete overview of the development process. In the next Section
we will discuss the crucial features of our framework that make the developed
application robust and free of the problems we identified earlier.

4.1 Applet Life States

First we define the life states of the applet (deployment steps). These are the
distinguished states that the applet will go through during its life time. For our
application we can limit ourselves to the following:

• applet is selectable, this is the state of the applet just after installing
(downloading) it to the card, but before setting some data in the applet
that is necessary for proper functioning of the applet,

• applet is personalised, this is the state after setting the data on the applet.
This is also the applet’s “normal operation” state,

• applet is locked, this is the state after something goes wrong during normal
applet usage, for example, the user entered the wrong PIN code a number
of times and the applet access is blocked temporarily,

• applet is dead, this is the state after an unrecoverable misusage of the ap-
plet, in our case when the user enters a wrong master PIN code, which can
only be presented for verification once and is only allowed to be presented
in locked state.

An applet goes only once through the selectable state during its life and also it
can never leave the dead state after entering it. It can however move between

44 W. Mostowski

Applet Selectable

Applet Personalised

Applet Dead

Applet Locked

install applet

Figure 1. Safe Applet life states

personalised and locked states many times during its life time. We will show later
what the exact conditions that cause an applet’s life state change are. One last
thing that we will require from the applet is that it enforces the card terminal
session to be restarted after the applet has moved from one life state to another.
Figure 1 shows a UML state diagram presenting the life states idea we have just
described.

4.2 Applet Commands

We are now at the point where we can start defining the command APDUs
that the applet should support. To avoid some of the problems described ear-
lier (for example, unnecessary PIN code sending, see verifyUserPIN below), the
commands have been redesigned, so they differ slightly from the ones described
in Section 2. For each of the commands we give it a name, we say if it can be
invoked in a given applet life state and if it is a user or master PIN code pro-
tected command (for each state separately). Table 1 shows the list of commands
we are interested in. Without specifying formally what are a given command’s
parameters and responses we now give an informal description of the intended
meaning of the commands:

authenticateUser This command is used to authenticate a given user through a
challenge-response protocol. A single person owns one JAVA CARD device
with a single Safe Applet, however there can be more than one system
user registered in the applet. Hence, the command has to specify, by
giving a user ID, which user is to be authenticated.

updateUserPIN This command changes the user’s PIN code to a new one.
Depending in which life state the applet is, different security measures are
taken to protect the command. For example, since the personalisation
step should be taken in the issuer’s trusted area it is not necessary to
require PIN authentication for updating the user’s PIN in selectable state.

setMasterPIN This command sets the master PIN for the applet. It’s the only
command required to make the applet personalised, hence after successful

I. Rigorous Development of JAVA CARD Applications 45

Name/State Selectable Personalised Locked Dead
authenticateUser No Yes No No
updateUserPIN Yes Yes (PIN) Yes (Master PIN) No
setMasterPIN Yes No No No
verifyUserPIN No Yes No No
verifyMasterPIN No No Yes No
generateKeyPair No Yes (PIN) No No
deleteKeyPair No Yes (PIN) No No
getPublicKey No Yes No No
disableUser No Yes (PIN) No No
enableUser No Yes (PIN) No No
getKeysInfo No Yes No No

Table 1. Possible Safe Applet commands

invocation it should move the applet from the state selectable to person-
alised.

verifyUserPIN This command performs the verification of the user’s PIN which
after successful verification stays validated until the end of the terminal
session. All the commands that are PIN code protected can check the PIN
code validity flag.

verifyMasterPIN Same as the previous one, just for the master PIN. This com-
mand can only be invoked in the locked state to enable special behaviour to
unlock the applet. Usually the master PIN is only allowed to be presented
once, after an unsuccessful try the applet becomes dead.

generateKeyPair This command generates a pair of keys (public and private)
for a given user’s ID and stores this information in the applet’s memory
for future use.

deleteKeyPair This command removes the information about the keys for a
given user’s ID from applet’s memory.

getPublicKey This command retrieves the public part of a key for a given user’s
ID.

disableUser, enableUser These commands are used to disable and enable the
authentication of a given user specified by a user’s ID. The user may wish
to block the usage of Safe Applet when he has to pass the JAVA CARD

device (iButton) to somebody else (for example, to download some other
applets).

getKeysInfo This command should inform the owner of the applet about all
user IDs registered in it (for administrative purposes).

46 W. Mostowski

Applet Personalised

Applet Selectable

Selected/User Administration

setMasterPIN[successfull]

deselect, cardReset

select appletinstall applet

updateUserPIN, setMasterPIN

Figure 2. Command states in the selectable life state

The commands that can be invoked during the operational mode of the applet
(personalised) fall into certain categories, which in turn define possible sequences
of command invocations. For example authenticateUser is the only application
command that is going to be used on a daily basis, while updateUserPIN is a
user administration command, which is invoked rarely (if ever) and should not
be mixed with application mode commands. Commands like generateKeyPair or
getPublicKey fall into system administration category.

4.3 Command Invocation Protocol

The information we gathered so far is sufficient to define the protocol that
Safe Applet should follow. We do this by presenting further state charts, one
inside each state representing a single applet life state. We will call the new
substates the command states. In our application we distinguish four different
command states. The initial one is the selected state. This is after the applet
is selected by the JAVA CARD run time environment (this is usually by host
application). Then, depending on the commands invoked, the applet can be
in one of the three command states: application, user administration or system
administration.

Both in selectable and locked life states the command states selected and
user administration are in some sense equivalent and we put them together as
one state. At this stage we also define precisely under what conditions the
applet changes its life state.

Let us start with the selectable life state. Figure 2 shows the corresponding
state chart diagram. The black dot represents the state in which the applet is
not active and needs to be selected. When the applet gets deselected by the
JAVA CARD run-time environment or a card reset event occurs the applet has
to be selected again. There is only one command state inside the life state
selectable and only two commands possible. The invocation of updateUserPIN
is optional during the personalisation process – the applet issuer may wish to
release the applet without user PIN code set. Once setMasterPIN is invoked

I. Rigorous Development of JAVA CARD Applications 47

Applet Locked

Applet Personalised

Selected

User Administration

Application

System Administration

verifyUserPINdeselect, cardReset

enableUser, disableUser,
getKeysInfo, getPublicKey,
generateKeyPair, deleteKeyPair

deselect, cardReset

authenticateUser

select

verifyUserPIN[userPINBlocked]

deselect, cardReset
updateUserPIN, verifyUserPIN

verifyUserPIN[userPINBlocked]

updateUserPIN

authenticateUser

generateKeyPair, getPublicKey,
getKeysInfo, enableUser,
disableUser, deleteKeyPair

deselect, cardReset

verifyUserPIN

verifyUserPIN[userPINBlocked]

Figure 3. Command states in the personalised life state

successfully (no error occurs and the input data for setting the master PIN is
not corrupted) the applet changes its life state to personalised and never goes
back to selectable. The card/terminal session has to be restarted after a life
state change, which means that no further commands can be invoked after a
successful setMasterPIN until the applet is selected again.

Figure 3 shows the details of the personalised life state. This is the applet’s
main operational state in which most of the application and administration com-
mands are enabled. As before, after selection the applet is in selected command
state. Once a command belonging to one of the three classes (application, sys-
tem administration, user administration) is invoked the command state is changed
accordingly and the applet stays in this state until the end of the session. To
enter a different command mode the session has to be restarted. The veri-
fyUserPIN command is treated in a special way – since the PIN code is required
by the commands both in system and user administration modes invoking ver-
ifyUserPIN does not change the command state of the applet. However if the
PIN verification fails the maximum allowed number of times (userPINBlocked)
the applet’s life state is changed to state locked where special rules apply for
unblocking the PIN code. The only application mode command is authentica-
teUser, the only user administration command is updateUserPIN and in system
administration mode we have the following commands enabled: generateKeyPair,
deleteKeyPair, getPublicKey, getKeysInfo, disableUser and enableUser.

Finally, we describe the command protocol for the applet life state locked
(Figure 4). As in the case of life state selectable there are two equivalent com-
mand states – selected and user administration. The only two commands that
are allowed here are verifyMasterPIN and updateUserPIN. After successful master

48 W. Mostowski

Applet Personalised Applet Dead

Applet Locked

Selected/User Administrationselect

updateUserPIN[MasterPINOK]

verifyMasterPIN, updateUserPIN

deselect, cardReset

verifyMasterPIN[Blocked]

Figure 4. Command states in the locked life state

Name Input parameters Length Integrity APDUs
authenticateUser User ID, the challenge 1+256 No Many
updateUserPIN New PIN data 8 Yes 1
setMasterPIN PIN data 16 Yes 1
verifyUserPIN PIN data 8 Yes 1
verifyMasterPIN PIN data 16 Yes 1
generateKeyPair User ID 1 No 1
deleteKeyPair User ID 1 No 1
getPublicKey User ID 1 No 1
disableUser User ID 1 No 1
enableUser User ID 1 No 1
getKeysInfo None 0 No 1

Table 2. Command parameters

PIN verification (MasterPINOK) the updateUserPIN command sets the new user
PIN code and unblocks it moving the applet back to personalised life state. In
case the master PIN verification failed the applet life state changes to dead from
which there is no return – the applet becomes unoperational.

All the command invocation sequences that are not defined by the diagrams
are forbidden – in case of any attempt to violate the defined protocol the applet
should end the communication immediately by throwing a suitable exception.

Note that we already gave a lot of semi formal information about the applet
we are building without writing or presenting a single line of JAVA CARD code.
This shows how proper documenting can be useful to understand the intended
behaviour of the applet.

4.4 Command Processing

It is time to focus on the actual command processing. For each of the commands
we listed we now define which parameters a given command takes, whether there
should be extra integrity checks on the delivered data, if the command is allowed

I. Rigorous Development of JAVA CARD Applications 49

Name Response data Length Integrity
authenticateUser SHA1 code 20 No
updateUserPIN None 0 No
setMasterPIN None 0 No
verifyUserPIN None 0 No
verifyMasterPIN None 0 No
generateKeyPair None 0 No
deleteKeyPair None 0 No
getPublicKey User’s public key 131 Yes
disableUser None 0 No
enableUser None 0 No
getKeysInfo User IDs 0. . .Max Users No

Table 3. Command responses

to spread across multiple APDUs and what is the response data (again with the
indication of whether extra integrity checks are required). Tables 2 and 3 show
the complete list.

Taking into account everything we have said so far about commands we
now show how the actual dispatching of the commands can be done inside the
JAVA CARD applet based on the examples of updateUserPIN, getPublicKey and
authenticateUser. Let us start with updateUserPIN. Recall that this command
had a conditional PIN check depending on the current applet’s life state. It
also expects 8 bytes of input data and there is a required integrity check on the
data. There is no response data, just a status word is sent back to the host
indicating the (un)successful invocation of the command. The command should
also follow the protocol we defined. Here is the code:

/** @param apdu the incoming apdu packet to dispatch */

public void dispatchUpdateUserPin(APDU apdu) {

updateCommandState(UPDATE_USER_PIN);

switch (curr_applet_state) {

case AS_SELECTABLE: break;

case AS_PERSONALISED: checkPIN(); break;

case AS_LOCKED: checkMasterPIN(); break;

}

readInput(apdu, (short)28); // modifies temp

verifyInput((short)8);

userPIN.update(temp, (short)0, (byte)8);

if (curr_applet_state == AS_LOCKED) {

setAppletState(UPDATE_USER_PIN, AS_PERSONALISED);

}

}

The call to updateCommandState makes sure that the command is invoked ac-
cording to the protocol. The updateCommandState implements a state machine

50 W. Mostowski

that follows the diagrams shown. The switch statement performs the condi-
tional PIN check (the AS prefix stands for applet state). Then the input is read,
which has to be 8 bytes long plus 20 bytes for the SHA1 code for data integrity
verification. After the data is retrieved from the APDU packet it is stored in the
temp array, which is allocated once during applet installation and is sufficiently
big to serve all command dispatching methods, thus keeping memory consump-
tion fixed. The method verifyInput performs the actual verification of the
data stored in the temp array. Then the actual user PIN update happens. If
the applet happens to be in locked life state then it switches back to personalised
state after successful update (setAppletState).

Let us take a look at getPublicKey now. This command does not require any
PIN checks, expects 1 byte of input data without integrity verification and sends
back 131 bytes of response plus additional 20 bytes of SHA1 code for integrity
verification on the host side. We skip the actual key retrieval code as it is not
relevant at this point. Here is the code:

public void dispatchGetPublicKey(APDU apdu) {

updateCommandState(GET_PUBLIC_KEY);

readInput(apdu, (short)1);

// retrieve the key, prepare the response data in temp

integrifyOutput((short)131);

sendResponse(apdu, (short)151);

}

The sendResponse method simply sends the data prepared in the temp array
back to the host.

Now let us see how the code for authenticateUser command is constructed.
This command is the only one that is allowed to be sent in parts in multiple
APDUs. There is no PIN check nor input data integrity verification required.
The response is 20 bytes of SHA1 code calculated from the received message.
Here is the code:

/** @param apdu the incoming apdu packet to dispatch */

public void dispatchAuthUser(APDU apdu) {

updateCommandState(AUTH_USER);

readBigInput(apdu, (short)257);

if (multiple_package == (byte)0) { // everything read

// process bigtemp, prepare the response in temp

sendResponse(apdu, (short)20);

}

}

Methods readBigInput and updateCommandState make sure that the data
parts contained in different APDUs are sent in proper order and are not in-
terleaved by any other commands. This is done by using global applet variables
and requiring the multiple APDUs sent over to the applet to be properly marked
as we will show shortly.

Now we give some more details about the auxiliary methods that are used by
dispatch methods. The readInput method reads the input from the incoming

I. Rigorous Development of JAVA CARD Applications 51

APDU into the temp array in a standard way reporting any possible data length
mismatches by throwing an appropriate exception, which in turn causes a status
word indicating an error condition to be sent back to the host:

/**

* @param apdu the incoming apdu to read data from

* @param expectedLength the expected data length to read

*/

public void readInput(APDU apdu, short expectedLength) {

byte buffer[] = apdu.getBuffer();

short apduDataOffset = 0;

short dataLength =

(short)(buffer[ISO7816.OFFSET_LC] & (byte)0xFF);

if (dataLength != expectedLength) {

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

}

short bytesRead = apdu.setIncomingAndReceive();

while (bytesRead > 0) {

if ((short)(bytesRead + apduDataOffset) > expectedLength) {

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

}

Util.arrayCopyNonAtomic(buffer, ISO7816.OFFSET_CDATA,

temp, apduDataOffset, bytesRead);

apduDataOffset += bytesRead;

bytesRead = apdu.receiveBytes(ISO7816.OFFSET_CDATA);

}

}

Methods setAppletState, updateCommandState, and readBigInput are
more interesting. The first one is responsible for setting and changing the ap-
plet’s life state. It is the calling method’s responsibility to ensure that a proper
condition for changing this state is satisfied (for example, that master PIN is
verified when updateUserPIN changes the state from locked to personalised). The
method manipulates the global applet variable called curr applet state. Here
is a small part of setAppletState:

/**

* @param command the code of the command changing the state

* @param newstate the new state to be set

*/

public void setAppletState(byte command, short newstate) {

switch (command) {

// ...

case UPDATE_USER_PIN:

// ’masterPIN.isValidated() == true’ should hold here

if (curr_applet_state == AS_LOCKED) {

curr_applet_state = newstate;

curr_command_state = CS_START;

}

break;

52 W. Mostowski

// ...

}

}

Finally, we get to the updateCommandState and readBigInput methods that
share some global applet variables to ensure that the protocol is followed. One
of them is multiple package which indicates whether a multiple APDU com-
mand is being processed – when equal to 0 there is no multiple APDU command
process in progress, when greater than 0 it is equal to the code of the multiple
command being processed. The updateCommandState method first checks if
the life state of the applet is the dead state and if so, it throws an exception
interrupting the communication. Then it checks if there is multiple APDU pro-
cessing in progress and if so if the current command belongs to the sequence
of currently processed multiple APDUs throwing an exception if there is a mis-
match. Finally, the method checks if the command invocation is according to
the protocol defined. The global applet variable curr command state stores
the current command state (selected, application, user administration or system
administration). The code follows the diagrams shown before, throwing an ex-
ception if the command is invoked out of the allowed sequence:

/** @param command the code of the invoking command */

public void updateCommandState(byte command) {

if (curr_applet_state == AS_DEAD) {

ISOException.throwIt(SW_APPLET_DEAD);

}

if (multiple_package != (byte)0 && command != multiple_package) {

ISOException.throwIt(SW_COMMAND_OUT_OF_SEQUENCE);

}

switch (command) {

case VERIFY_USER_PIN:

if (curr_applet_state != AS_PERSONALISED) {

ISOException.throwIt(SW_COMMAND_OUT_OF_SEQUENCE);

} else {

if (curr_command_state == CS_APPLICATION) {

ISOException.throwIt(SW_COMMAND_OUT_OF_SEQUENCE);

} else {

// do nothing, there is no state change

}

}

break;

case UPDATE_USER_PIN:

// ...

}

}

The readBigInput method uses both global variables and the form of the APDU
to control the multiple APDU communication. The p2 header byte of the in-
coming APDU indicates the total number of APDUs to come, the p1 header
byte indicates which APDU packet is being received (“p1-th out of p2 packets”).

I. Rigorous Development of JAVA CARD Applications 53

The global variables multiple curr and multiple total are used to control
this. Whenever a multiple APDU packet is received p1 and p2 are checked
against global variables to verify that the proper sequence is maintained. Then
the data from the APDU is appended to the bigtemp array which collects the
data from the multiple APDUs. The code for readBigInput is the following:

/**

* @param apdu the incoming apdu to read data from

* @param expectedLength the expected data length to read

*/

public void readBigInput(APDU apdu, short expectedLength) {

byte buffer[] = apdu.getBuffer();

byte ins = buffer[ISO7816.OFFSET_INS];

byte p1 = buffer[ISO7816.OFFSET_P1];

byte p2 = buffer[ISO7816.OFFSET_P2];

if (p1 == (byte)0 && multiple_total == (byte)0) {

multiple_total = p2;

multiple_package = ins;

} else {

if (p1 >= p2 || p2 != multiple_total ||

p1 != (byte)(multiple_curr + (byte)1)) {

ISOException.throwIt(ISO7816.SW_WRONG_DATA);

}

}

multiple_curr = p1;

// append the data from APDU to bigtemp array

multiple_readnum = apduDataOffset;

if ((byte)(multiple_curr + (byte)1) == multiple_total) {

resetMultiple(); // data in bigtemp ready for use

}

}

5 The Framework

We did not discover any problems during extensive testing of the resulting,
reengineered applet. In particular, the “rip-out” problem is no longer present.
This was achieved mostly by enforcing the applet to follow strict command
exchange protocol we defined during the design. Thus, the most important
guideline in our framework is to define the applet life and communication pro-
tocols with UML state chart diagrams and enforce the applet to adhere to
these protocols by embedding corresponding state machines into the applet it-
self. Moreover, the actual command processing (types of parameters, responses,
etc.) should be defined and implemented in a strict way. To achieve that, we
used dedicated methods (readInput, sendResponse, etc.) in our applet respon-
sible for reading the input and sending the output. Such methods are in most
part independent of the actual applet and can be used in other applications.

The artifacts of the design produced documentation that makes understand-
ing the workings of the applet much easier for the developers and prospective

54 W. Mostowski

users of the applet. Further support for the developers can be provided by the
CASE tool and the use of formal specification and verification techniques. We
discuss these issues in the following sections.

5.1 Support from the CASE Tool

We used the support of the Together Control Center tool in many places. For
the low level task like compiling, installing and testing the applet we used the ex-
tension module we wrote ourselves [Mos]. Some parts of the applet were created
with the same module by using JAVA CARD specific code patterns, which were
used to introduce skeletons of the command dispatching methods automatically.
Furthermore, the KeY extensions were used to introduce formal specifications
into the design and to perform formal verification (see next subsections). The
remaining code was engineered “by hand”, however we still see possibilities to
introduce further automation to the process with the support of a CASE tool
in the following ways:

• Having methods like readInput, readBigInput, verifyInput, etc.
among the standard set of JAVA CARD helper methods, idioms and design
patterns, together with the specifications. This can be easily implemented
in Together Control Center.

• Generating (possibly with a little of developers help) the code for set-
AppletState and updateCommandState methods from the state chart dia-
grams like the ones presented here also incorporating formal specifications
for verification. Again this should be implementable in Together Control
Center, for example there are existing tools to create code from sequence
diagrams and vice versa.

• The PIN check routines seem to be a good candidate for a pattern, too,
as it is done in a very similar way in every JAVA CARD applet: there is a
global applet object representing the PIN, there is one APDU command
that verifies the delivered PIN, sets the validation flag of the PIN object
accordingly for the current terminal session and returns the result of PIN
verification back to the host also indicating the number of tries left in case
of failure. Then any command requiring PIN authentication can refer to
PIN object by a single method call.

5.2 Formal Specification and Verification

It is almost clear that the presented dispatching methods follow the semi formal
specifications we gave earlier. The setAppletState, updateCommandState and
readBigInput and possibly readInput methods require a bit more attention
and this is where we turn to formal specification.

First we can define the state chart behaviour more formally by giving OCL
specifications like the following. Those specifications do not reflect the whole
diagram set that we have shown, they are just examples. First we can tie a

I. Rigorous Development of JAVA CARD Applications 55

given applet life state to a condition that causes the applet to be in a given
state, for example:

context Safe_Applet

inv: self.curr_applet_state = AS_LOCKED implies

self.userPIN.getTriesRemaining() = 0

inv: self.curr_applet_state = AS_DEAD implies

self.masterPIN.getTriesRemaining() = 0

Next we can limit a set of possible command states in a given life state by the
following expression:

context Safe_Applet

inv: self.curr_applet_state = AS_LOCKED implies

self.curr_command_state = CS_START or

self.curr_command_state = CS_SELECTED

Finally, we can describe some of the behaviour of setAppletState and update-
CommandState with the following expressions:

context Safe_Applet::setAppletState(command: byte, newstate: short)

pre: command = UPDATE_USER_PIN and newstate = AS_PERSONALISED implies

self.masterPIN.isValidated() and

self.curr_applet_state = AS_LOCKED

post: self.curr_applet_state = AS_PERSONALISED and

self.curr_command_state = CS_START

context Safe_Applet::updateCommandState(command: byte)

post: command = VERIFY_USER_PIN and

self.curr_applet_state@pre = AS_PERSONALISED and

self.curr_command_state@pre <> CS_APPLICATION and

self.curr_command_state@pre <> CS_START

implies

self.curr_command_state = self.curr_command_state@pre

As mentioned before, such specifications follow exactly the diagrams and it
should be possible to just generate them automatically, possibly with a little bit
of user intervention.

The second set of specifications makes sure that the readInput and read-
BigInput methods behave in a consistent and safe way. The following OCL
invariants express the consistency conditions that the global applet variables
used by the read methods should satisfy:

context Safe_Applet

inv: self.multiple_readnum <= self.bigtemp->size()

inv: self.multiple_package <> 0 implies

self.multiple_curr < self.multiple_total

inv: self.multiple_package = 0 or self.multiple_package = AUTH_USER

inv: self.multiple_total > 0 implies self.multiple_package <> 0

56 W. Mostowski

Here we also stated that the authenticateUser command is the only one that can
spread over multiple APDUs. The next are two preconditions that make sure
the read methods do not exceed the temporary array space they operate on:

context Safe_Applet::readInput(apdu: APDU, expectedLength: short)

pre: self.temp <> null and expectedLength <= self.temp->size()

context Safe_Applet::readBigInput(apdu: APDU, expectedLength: short)

pre: self.bigtemp <> null and expectedLength <= self.bigtemp->size()

Such specifications should be associated with a general JAVA CARD pattern that
produces the read methods and put into design automatically together with the
actual code.

Of course one may want to give some more in-depth specifications of the
application describing its functionality or some safety properties [MM01]. In
the next subsection we show how the already existing KeY tool features can
be used to produce such a specification, here we briefly discuss other situations
where formal specification can prove itself helpful. Suppose we would like to
extend our application to keep track of unsuccessful authentication attempts
and disable the access once a certain number of unsuccessful attempts has been
reached (similarly to PIN code verification). This is quite straightforward to
program – a counter variable needs to be increased after each failed attempt
and once some threshold value is reached the following access attempts are
rejected. However, when coded uncarefully, the counter may get increased dur-
ing rejected attempts as well. After reaching the maximal value for a data
type used (say byte) it will leap back to 0 ending up in an undesired, security
breaching state. A typical security related specification idiom that could be
used here would be that a card stays blocked after the maximum number of
tries has been reached until it is explicitly released, for example, by giving the
master PIN. To verify such a property one needs formalisation of JAVA integer
arithmetics that handles properly the overflow behaviour of JAVA integer types.
The KeY system both supports the specification idioms [GHL04] and contains
formalisation of JAVA integer arithmetics as part of the KeY specification li-
brary [BS04].

Another area, where we turn to formal methods is to ensure that the ap-
plet data stays consistent in the case when the applet’s execution terminates
abnormally by ripping out the card from the reader. This requires to specify
a kind of invariant for our program that holds at any point of execution of the
program, not only before and after the program is executed. This is not possible
to express in plain OCL, but the Dynamic Logic for JAVA CARD used in the KeY
system can handle such properties (strong invariants) [BM03].

The specifications we have shown and discussed are subject to formal veri-
fication. Extensive research based on the case study presented here as well as
on other JAVA CARD programs has been done in this direction [HM05, Mos04].
Here we should say that verification of quite advanced properties (including the
“rip-out” properties) can be performed mostly automatically by the KeY system
in a matter of minutes. Simpler properties, like the specification of the state

I. Rigorous Development of JAVA CARD Applications 57

Figure 5. Applying specification patterns in the KeY system

machines controlling the life cycle and the protocol of the applet, are easily
verified in the KeY system.

5.3 Employing the KeY System

Here we show how the KeY system can be used to support creation of the formal
specification. Recall that one of the problems we found in Safe Applet was that
a single user ID can be registered more than once in the applet. First let us
look at the class representing a single user record in the applet:

public class User {

boolean empty = true;

boolean enabled = true;

byte userID = (byte)0;

KeyData keydata = null;

}

Given this we would like to specify that there should not exist two (non empty)
objects of this class in our applet having the same user ID. Then it can be verified
formally that any code that operates on those records does not violate this
condition. The condition just mentioned is a slight modification of a standard
specification pattern in the KeY system called AttributeHasKeyProp as Figure 5
shows. After the pattern is applied the following invariant is produced for User
class:

context User:

inv: User.allInstances->forAll(c1, c2 |

c1.userID = c2.userID implies c1 = c2)

After a small modification we get what we want:

58 W. Mostowski

context User:

inv: User.allInstances->forAll(c1, c2 |

not c1.empty and not c2.empty and

c1.userID = c2.userID implies c1 = c2)

The KeY system provides a whole library of such specification patterns (some
also based on the GoF patterns [GHJV99, BHSS00]) applicable to any JAVA

CARD program and, more generally, any JAVA program.

6 Conclusions

We presented an approach to rigorous development of JAVA CARD applications.
We have shown how UML can be used to specify an applet’s behaviour and how
such specifications can be translated into actual code. We have also presented
how we can support formal specification and verification in JAVA CARD devel-
opment. A modern CASE tool plays an important role in our approach giving
support for UML specifications, software patterns, formal verification (KeY sys-
tem) and last but not least easy testing of JAVA CARD applets. Large parts of
the code we have shown were developed by hand, but we were precisely following
the UML diagrams we constructed, the coding was quite straightforward and
almost a one pass process – we made the applet work in the expected way in a
very short time and extensive testing revealed no problems in the applet. Fur-
ther research showed that formal verification of JAVA CARD applets is feasible
and can formally ensure robustness of the applet.

References

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and Systems Modeling, April 2004. Online
First issue, to appear in print.

[BHSS00] Thomas Baar, Reiner Hähnle, Theo Sattler, and Peter H.
Schmitt. Entwurfsmustergesteuerte Erzeugung von OCL-Con-
straints. In K. Mehlhorn and G. Snelting, editors, Informatik 2000,
30. Jahrestagung der Gesellschaft für Infomatik, pages 389–404.
Springer, September 2000.

[BM03] Bernhard Beckert and Wojciech Mostowski. A program logic for
handling JAVA CARD’s transaction mechanism. In Mauro Pezzè, ed-
itor, Proceedings, Fundamental Approaches to Software Engineering
(FASE) Conference 2003, Warsaw, Poland, volume 2621 of LNCS,
pages 246–260. Springer, April 2003.

[BML01] Dominique Bolignano, Daniel Le Métayer, and Claire Loiseaux. For-
mal Methods in Practice: the Missing Link. A Perspective from the

I. Rigorous Development of JAVA CARD Applications 59

Security Area. In Franck Cassez, Claude Jard, Brigitte Rozoy, and
Mark Dermot Ryan, editors, Modeling and Verification of Paral-
lel Processes, 4th Summer School, MOVEP 2000, Nantes, France,
June 19–23, 2000, volume 2067 of LNCS. Springer-Verlag, 2001.

[Bol] Dierk Bolten. PAM authentication with an iButton. http://www-
-users.rwth-aachen.de/dierk.bolten/pam ibutton.html.

[Boy03] Robert Boyer. Proving theorems about JAVA and the JVM with
ACL2. In M. Broy and M. Pizka, editors, Models, Algebras and
Logic of Engineering Software, pages 227–290. IOS Press, Amster-
dam, 2003.

[BS04] Bernhard Beckert and Steffen Schlager. Software verification with
integrated data type refinement for integer arithmetic. In Eerke A.
Boiten, John Derrick, and Graeme Smith, editors, Proceedings, In-
ternational Conference on Integrated Formal Methods, Canterbury,
UK, volume 2999 of LNCS, pages 207–226. Springer, April 2004.

[Che00] Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architec-
ture and Programmer’s Guide. JAVA Series. Addison-Wesley, 2000.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static check-
ing for JAVA. In Proceedings, ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, pages
234–245. ACM Press, 2002.

[GHJV99] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison Wesley, 1999.

[GHL04] Martin Giese, Reiner Hähnle, and Daniel Larsson. Rule-based sim-
plification of OCL constraints. In Octavian Patrascoiu et al., editor,
Workshop on OCL and Model Driven Engineering at UML2004,
Lisbon, pages 84–98, 2004.

[HM05] Reiner Hähnle and Wojciech Mostowski. Verification of safety prop-
erties in the presence of transactions. In Gilles Barthe and Marieke
Huisman, editors, Proceedings, Construction and Analysis of Safe,
Secure and Interoperable Smart devices (CASSIS’04) Workshop,
volume 3362 of LNCS, pages 151–171. Springer, 2005.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified
Software Development Process. Addison Wesley, 1999.

[JP03] Bart Jacobs and Erik Poll. JAVA program verification at Nijmegen:
Developments and perspective. In Software Security – Theories and
Systems: Second Mext-NSF-JSPS International Symposium, ISSS
2003, Tokyo, Japan, November 4–6, 2003. Revised Papers, volume
3233 of LNCS, pages 134–153. Springer, 2003.

http://www-users.rwth-aachen.de/dierk.bolten/pam_ibutton.html#
http://www-users.rwth-aachen.de/dierk.bolten/pam_ibutton.html#

60 W. Mostowski

[Jür01] Jan Jürjens. Towards development of secure systems using UMLsec.
In Heinrich Hußmann, editor, Fundamental Approaches to Soft-
ware Engineering (FASE, 4th International Conference, Part of
ETAPS), volume 2029 of LNCS, pages 187–200. Springer, 2001.

[MM01] Renaud Marlet and Daniel Le Métayer. Security properties and
JAVA CARD specificities to be studied in the SecSafe project. Tech-
nical Report SECSAFE-TL-006, Trusted Logic S.A., August 2001.

[MMPH00] Jörg Meyer, Peter Müller, and Arnd Poetzsch-Heffter. The
Jive system – Implementation description. Available from
http://softech.informatik.uni-kl.de/downloads/publica-
tions/jive.pdf, 2000.

[Mos] Wojciech Mostowski. JAVA CARD tools for Together Control Center.
http://www.cs.chalmers.se/~woj/papers/jctools.pdf.

[Mos04] Wojciech Mostowski. Formalisation and verification of JAVA CARD

security properties in Dynamic Logic. Technical Report 2004–08,
Department of Computing Science, Chalmers University of Tech-
nology, Göteborg, Sweden, October 2004.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The
Krakatoa tool for certification of JAVA/JAVA CARD programs an-
notated in JML. Journal of Logic and Algebraic Programming,
58(1–2):89–106, 2004. http://krakatoa.lri.fr.

[Obj03] Object Modeling Group. Unified Modelling Language Specification,
version 1.5, March 2003.

[Ope] Open Card homepage. http://www.opencard.org.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language,
Second Edition: Getting Your Models Ready for MDA. Object Tech-
nology Series. Addison-Wesley, Reading/MA, 2003.

http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://www.cs.chalmers.se/~woj/papers/jctools.pdf#
http://krakatoa.lri.fr#
http://www.opencard.org#

Paper II A Program Logic for Handling
JAVA CARD’s Transaction Mechanism

Fundamental Approaches to Software Engineering
Conference 2003, Warsaw, Poland, April 2003

A Program Logic for Handling JAVA CARD’s

Transaction Mechanism

Bernhard Beckert∗ Wojciech Mostowski

Abstract

In this paper we extend a program logic for verifying JAVA CARD ap-
plications by introducing a “throughout” operator that allows us to prove
“strong” invariants. Strong invariants can be used to ensure “rip out”
properties of JAVA CARD programs (properties that are to be maintained
in case of unexpected termination of the program). Along with introduc-
ing the “throughout” operator, we show how to handle the JAVA CARD

transaction mechanism (and, thus, conditional assignments) in our logic.
We present sequent calculus rules for the extended logic.

1 Introduction

Overview. The work presented in this paper is part of the KeY project1

[ABB+04]. One of the main goals of KeY is to provide deductive verification
for a real world programming language. Our choice is the JAVA CARD lan-
guage [Che00] (a subset of JAVA) for programming smart cards. This choice
is motivated by the following reasons. First of all JAVA CARD applications are
subject to formal verification, because they are usually security critical (e.g.,
authentication) and difficult to update in case a fault is discovered. At the
same time the JAVA CARD language is easier to handle than full JAVA (for ex-
ample, there is no concurrency and no GUI). Also, JAVA CARD programs are
smaller than normal JAVA programs and thus easier to verify. However, there
is one particular aspect of JAVA CARD that does not exist in JAVA and which
requires the verification mechanism to be extended with additional rules and
concepts: the persistency of the objects stored on a smart card in combination
with JAVA CARD’s transaction mechanism (ensuring atomicity of bigger pieces
of a program) and the possibility of a card “rip out” (unexpected termination
of a JAVA CARD program by taking the smart card out of the reader/terminal).
Since we want to have support for the full JAVA CARD language in the KeY
system we have to handle this aspect.

∗ Department of Computer Science, University of Koblenz-Landau, Germany, e-mail:
beckert@uni-koblenz.de

1 http://www.key-project.org

63

mailto:beckert@uni-koblenz.de#
http://www.key-project.org#

64 B. Beckert and W. Mostowski

To ensure that a JAVA CARD program is “rip-out safe” we need to be able
to specify “strong” invariants – invariants that must hold throughout the whole
execution of a JAVA CARD program (except when a transaction is in progress).
The KeY system’s deduction component uses a program logic, which is a version
of Dynamic Logic modified to handle JAVA CARD programs (JAVA CARD DL)
[Bec01, BS01a]. An extension to pure Dynamic Logic to include trace modalities
“throughout” and “at least once” is presented in [BS01b]. Here we extend
that work and introduce the “throughout” operator to JAVA CARD DL (we
do not introduce “at least once” since it is not necessary for handling “rip
out” properties). Then we add techniques necessary to deal with the JAVA

CARD transaction mechanism (specifically conditional assignments inside the
transactions). We present the sequent calculus rules for our extensions. So far
we have not implemented the new rules in the KeY system’s interactive prover
(the implementation for the unextended JAVA CARD DL is fully functional). But
considering the extensibility and open architecture of the KeY prover it is not
a difficult task.

Related Work. As said above, the work presented here is based on [BS01b],
which extends pure Dynamic Logic with trace modalities “throughout” and “at
least once”. There exist a number of attempts to extend OCL with temporal
constructs, see [BFS02] for an overview. In [TH02] temporal constructs are
introduced to the JAVA Modelling Language (JML), but they refer to sequences
of method invocations and not to sequences of intermediate program states.

Structure of the Paper. The rest of this paper is organised as follows.
Section 2 gives some more details on the background and motivation of our
work and some insights into the JAVA CARD transaction mechanism. Section 3
contains a brief introduction to JAVA CARD Dynamic Logic. Section 4 introduces
the “throughout” operator in detail and presents sequent calculus rules to handle
the new operator and the transaction mechanism. Section 5 shows some of the
rules in action by giving simple proof examples and finally Section 6 summarises
the paper.

2 Background

The KeY Project. The main goal of the KeY project [ABB+04] is to en-
hance a commercial CASE tool with functionality for formal specification and
deductive verification and, thus, to integrate formal methods into real-world
software development processes. Accordingly, the design principles for the soft-
ware verification component of the KeY system are:

• The specification language should be usable by people who do not have
years of training in formal methods. The Object Constraint Language
(OCL), which is incorporated into current version of the Unified Modelling
Language (UML), is the specification language of our choice.

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 65

• The programs that are verified should be written in a “real” object-
oriented programming language. We decided to use JAVA CARD (we al-
ready stated our reasons for this in the introduction).

For verifying JAVA CARD programs, the already mentioned JAVA CARD Dynamic
Logic has been developed within the KeY project (Section 3 contains a detailed
description of this logic). The KeY system translates OCL specifications into
JAVA CARD DL formulas, whose validity can then be proved with the KeY sys-
tem’s deduction component.

Motivation. The main motivation for this work resulted from an analysis
of a JAVA CARD case study [Mos02]. In short, the case study involves a JAVA

CARD applet that is used for user authentication in a Linux system (instead
of a password mechanism). After analysing the application and testing it, the
following observation was made: the JAVA CARD applet in question is not “rip-
out safe”. That is, it is possible to destroy the applet’s functionality by removing
(ripping out) the JAVA CARD device from the card reader (terminal) during
the authentication process. The applet’s memory is corrupted and it is left
in an undefined state, causing all subsequent authentication attempts to be
unsuccessful (fortunately this error causes the applet to become useless but
does not allow unauthorised access, which would have been worse).

It became clear that, to avoid such errors, one has to be able to specify
(and if possible verify) the property that a certain invariant is maintained at all
times during the applet’s execution, such that it holds in particular in case of
an abrupt termination. Standard UML/OCL invariants do not suffice for this
purpose, because their semantics is that if they hold before a method is executed
then they hold after the execution of a method. Normally it is not required for
an invariant to hold in the intermediate states of a method’s execution. To solve
this problem, we introduce “strong” invariants, which allow to specify properties
about all intermediate states of a program.

For example, the following “strong” invariant (expressed in pseudo OCL)
says that we do not allow partially initialised PersonalData objects at any
point in our program. In case the program is abruptly terminated we should
end up with either a fully initialised object or an uninitialised (empty) one:
context PersonalData throughout:

not self.empty implies
self.firstName <> null and self.lastName <> null and self.age > 0

Since the case study was explored in the context of the KeY project, we extended
the existing JAVA CARD DL with a new modality to handle strong invariants.

The JAVA CARD Transaction Mechanism. Here we describe the aspects
of transaction handling in JAVA CARD relevant to this paper. A full description
of the transaction mechanism can be found in [Che00, Sun02a, Sun02b, Sun02c].

The memory model of JAVA CARD differs slightly from JAVA’s model. In
smart cards there are two kinds of writable memory: persistent memory (EEP-
ROM), which holds its contents between card sessions, and transient memory

66 B. Beckert and W. Mostowski

(RAM), whose contents disappear when power loss occurs, i.e. when the card
is removed from the card reader. Thus every memory element in JAVA CARD

(variable or object field) is either persistent or transient. The JAVA CARD lan-
guage specification gives the following rules (this is a slightly simplified view of
what is really happening):

• All objects (including the reference to the currently running applet, this,
and arrays) are created in persistent memory. Thus, in JAVA CARD all as-
signments like “o.attr = 2;”, “this.a = 3;” and “arr[i] = 4;” have
permanent character; that is, the assigned values will be kept after the
card loses power.

• A programmer can create an array with transient elements by calling a
certain method from the JAVA CARD API (JCSystem.makeTransient...),
but currently there is no possibility to make objects (fields) other than
array elements transient.

• All local variables are transient.

The distinction between persistent and transient objects is very important since
these two types of objects are treated in a different way by JAVA CARD’s transac-
tion mechanism. The following are the JAVA CARD system calls for transactions
with their description:

• JCSystem.beginTransaction() begins an atomic transaction. From this
point on, all assignments to fields of persistent objects are executed con-
ditionally, while assignments to transient variables or array elements are
executed unconditionally (immediately).

• JCSystem.commitTransaction() commits the transaction. All condi-
tional assignments are committed (in one atomic step).

• JCSystem.abortTransaction() aborts the transaction. All the condi-
tional assignments are rolled back to the state in which the transaction
started. Assignments to transient variables and array elements remain
unchanged (as if there had not been a transaction in progress).

As an example to illustrate how transactions work in practice, consider the
following fragment of a JAVA CARD program:

this.a = 100;

int i = 0;

JCSystem.beginTransaction();

i = this.a;

this.a = 200;

JCSystem.abortTransaction();

After the execution of this program, the value of this.a is still 100 (value before
the transaction), while the value of i now is 100 (the value it was updated to
during the transaction).

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 67

Transactions do not have to be nested properly with other program con-
structs, e.g., a transaction can be started within one method and committed
within another method. However, transactions must be nested properly with
each other (which is not relevant for the current version of JAVA CARD, where
the nesting depth of transactions is restricted to 1).

The whole program piece inside the transaction is seen by the outside world
as if it were executed in one atomic step (considering the persistent objects). By
introducing strong invariants we want to ensure the consistency of the persistent
memory of a JAVA CARD applet, thus strong invariants will not (and should not)
be checked within a transaction – in case our program is terminated abruptly
during a transaction, the persistent variables will be rolled back to the state
before the transaction was started for which the strong invariant was established.

3 JAVA CARD Dynamic Logic

Dynamic Logic [Har84, HKT00, KT90, Pra77] can be seen as an extension of
Hoare logic. It is a first-order modal logic with modalities [p] and 〈p〉 for every
program p (we allow p to be any sequence of JAVA CARD statements). In the
semantics of these modalities a world w (called state in the DL framework) is
accessible from the current world, if the program p terminates in w when started
in the current world. The formula [p]φ expresses that φ holds in all final states
of p, and 〈p〉φ expresses that φ holds in some final state of p. In versions of DL
with a non-deterministic programming language there can be several such final
states (worlds). Here, since JAVA CARD programs are deterministic, there is
exactly one such world (if p terminates) or there is no such world (if p does not
terminate). The formula φ→ 〈p〉ψ is valid if, for every state s satisfying precon-
dition φ, a run of the program p starting in s terminates, and in the terminating
state the post-condition ψ holds. The formula φ→ [p]ψ expresses the same, ex-
cept that termination of p is not required, i.e., ψ must only hold if p terminates.

The formula φ→ [p]ψ is similar to the Hoare triple {φ}p{ψ}. But in contrast
to Hoare logic, the set of formulas of DL is closed under the usual logical oper-
ators. In Hoare logic, the formulas φ and ψ are pure first-order formulas. DL
allows to involve programs in the descriptions φ resp. ψ of states. For example,
using a program, it is easy to specify that a data structure is not cyclic, which is
impossible in pure first-order logic. Because all JAVA constructs are available in
DL for the description of states (including while loops and recursion) it is not
necessary to define an abstract data type state and to represent states as terms
of that type; instead DL formulas can be used to give a (partial) description of
states, which is a more flexible technique and allows one to concentrate on the
relevant properties of a state.

3.1 Syntax of JAVA CARD DL

As said above, a dynamic logic is constructed by extending some non-dynamic
logic with modal operators of the form 〈·〉 and [·]. The non-dynamic base logic of

68 B. Beckert and W. Mostowski

our DL is a typed first-order predicate logic. We do not describe in detail what
the types of our logic are (basically they are identical with the JAVA types)
nor how exactly terms and formulas are built. The definitions can be found
in [Bec01]. Note that terms (which we often call “logical terms” in the following)
are different from JAVA expressions – they never have side effects.

In order to reduce the complexity of the programs occurring in DL formu-
las, we introduce the notion of a program context. The context can consist of
any JAVA CARD program, i.e. it is a sequence of class and interface definitions.
Syntax and semantics of DL formulas are then defined with respect to a given
context; and the programs in DL formulas are assumed not to contain class
definitions.

The programs in DL formulas are basically executable JAVA CARD code.
However, we introduced an additional construct not available in plain JAVA

CARD, whose purpose is the handling of method calls. Methods are invoked by
syntactically replacing the call by the method’s implementation. To treat the
return statement in the right way, it is necessary (a) to record the object field
or variable x that the result is to be assigned to, and (b) to mark the boundaries
of the implementation prog when it is substituted for the method call. For that
purpose, we allow statements of the form method-frame(x){prog} to occur.
This is a “harmless” extension because the additional construct is only used for
proof purposes and never occurs in the verified JAVA CARD programs.

3.2 Semantics of JAVA CARD DL

The semantics of a program p is a state transition, i.e., it assigns to each state s
the set of all states that can be reached by running p starting in s. Since JAVA

CARD is deterministic, that set either contains exactly one state (if p terminates
normally) or is empty (if p does not terminate or terminates abruptly).

For formulas φ that do not contain programs, the notion of φ being satisfied
by a state is defined as usual in first-order logic. A formula 〈p〉φ is satisfied by
a state s if the program p, when started in s, terminates normally in a state s′

in which φ is satisfied. A formula is satisfied by a model M , if it is satisfied by
one of the states of M . A formula is valid in a model M if it is satisfied by all
states of M ; and a formula is valid if it is valid in all models.

As mentioned above, we consider programs that terminate abruptly to be
non-terminating. Thus, for example, 〈throw x;〉φ is unsatisfiable for all φ. Nev-
ertheless, it is possible to express and (if true) prove the fact that a program p
terminates abruptly. For example, the formula

e .= null → 〈try{p}catch(Exception e){}〉(¬ (e .= null))

is true in a state s if and only if the program p, when started in s, terminates
abruptly by throwing an exception (as otherwise no object is bound to e).

Sequents are notated following the scheme φ1, . . . , φm ` ψ1, . . . , ψn which
has the same semantics as the formula (∀x1) · · · (∀xk)((φ1 ∧ . . . ∧ φm) → (ψ1 ∨
. . . ∨ ψn)), where x1, . . . , xk are the free variables of the sequent.

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 69

3.3 State Updates

We allow updates of the form {x := t} resp. {o.a := t} to be attached to terms
and formulas, where x is a program variable, o is a term denoting an object
with attribute a, and t is a term. The intuitive meaning of an update is that
the term or formula that it is attached to is to be evaluated after changing the
state accordingly, i.e., {x := t}φ has the same semantics as 〈x = t;〉φ.

3.4 Rules of the Sequent Calculus

Here we only present a small number of rules necessary to get proper intuition
of how the JAVA CARD DL sequent calculus works.

Notation. The rules of our calculus operate on the first active statement p
of a program πpω. The non-active prefix π consists of an arbitrary sequence
of opening braces “{”, labels, beginnings “try{” of try-catch-finally blocks,
and beginnings “method-frame(. . .){” of method invocation blocks. The prefix
is needed to keep track of the blocks that the (first) active command is part
of, such that the abruptly terminating statements throw, return, break, and
continue can be handled appropriately.2 The postfix ω denotes the “rest” of
the program, i.e., everything except the non-active prefix and the part of the
program the rule operates on. For example, if a rule is applied to the following
JAVA block operating on its first active command i=0; then the non-active
prefix π and the “rest” ω are the marked parts of the block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; }finally{ k=0; }}︸ ︷︷ ︸
ω

In the following rule schemata, U stands for an arbitrary update.

The Rule for if. As the first simple example, we present the rule for the if
statement:

Γ, U(b .= true) ` U〈 π p ω 〉φ Γ, U(b .= false) ` U〈 π q ω 〉φ
Γ ` U〈 π if(b) {p} else {q} ω 〉φ

(R1)

The rule has two premises, which correspond to the two cases of the if state-
ment. The semantics of this rule is that, if the two premises hold in a state, then
the conclusion is true in that state. In particular, if the two premises are valid,
then the conclusion is valid. In practice, rules are applied from bottom to top:
from the old proof obligation new proof obligations are derived. As the if rule
demonstrates, applying a rule from bottom to top corresponds to a symbolic
execution of the program to be verified.
2 In DL versions for simple artificial programming languages, where no prefixes are needed,

any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ. In our calculus, splitting of
〈πpqω〉φ into 〈πp〉〈qω〉φ is not possible (unless the prefix π is empty) because πp is not a
valid program; and the formula 〈πpω〉〈πqω〉φ cannot be used either because its semantics
is in general different from that of 〈πpqω〉φ.

70 B. Beckert and W. Mostowski

The Assignment Rule and Handling State Updates. The assignment
rule

Γ ` U{loc := expr}〈 π ω 〉φ
Γ ` U〈 π loc = expr; ω 〉φ

(R2)

adds the assignment to the list of updates U . Of course, this does not solve
the problem of computing the effect of an assignment, which is particularly
complicated in JAVA because of aliasing. This problem is postponed and solved
by rules for simplifying updates that are attached to formulas whenever possible
(without branching the proof).

The assignment rule can only be used if the expression expr is a logical
term. Otherwise, other rules have to be applied first to evaluate expr (as that
evaluation may have side effects). For example, these rules replace the formula
〈x = ++i;〉φ with 〈i = i+1; x = i;〉φ.

4 Extension for Handling “Throughout” and
Transactions

In some regard JAVA CARD DL (and other versions of DL) lacks expressivity
– the semantics of a program is a relation between states; formulas can only
describe the input/output behaviour of programs. JAVA CARD DL cannot be
used to reason about program behaviour not manifested in the input/output
relation. Therefore, it is inadequate for verifying strong invariants that must be
valid throughout program execution.

Following [BS01b], we overcome this deficiency and increase the expressivity
of JAVA CARD DL by adding a new modality [[·]] (“throughout”). In the extended
logic, the semantics of a program is the sequence of all states its execution
passes through when started in the current state (its trace). Using [[·]], it is
possible to specify properties of the intermediate states of terminating and non-
terminating programs. And such properties (typically strong invariants and
safety constraints) can be verified using the JAVA CARD DL calculus extended
with additional sequent rules for [[·]] presented in Section 4.1.

A “throughout” property (formula) has to be checked after every single
field or variable assignment, i.e., the sequent rules for the throughout modality
will have more premises and branch more frequently. According to the JAVA

CARD runtime environment specification [Sun02b], each single field or variable
assignment is atomic. This matches exactly JAVA CARD DL’s notion of a single
update. Thus, a “throughout” property has to hold after every single JAVA

CARD DL update. However, additional checks have to be suspended when a
transaction is in progress. This will require marking the modality (resp. the
program in the modality) with a tag saying that a transaction is in progress, so
that different rules apply. Since transactions do not have to be nested properly
with other program constructs, enclosing a transaction in a block with a separate
set of rules for that kind of block (like the method-frame blocks) is not possible.

In addition, we have to cover conditional assignments and assignment roll-
back (after abortTransaction) in the calculus. This not only affects the

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 71

“throughout” modality, but the 〈·〉 and [·] modalities as well, since rolling back
an assignment affects the final program state.

In practice only formulas of the form φ → [[p]]φ will be considered. If tran-
sient arrays are involved in φ (explicitly or implicitly), one also has to prove
φ → 〈initAllTransientArrays();〉φ, i.e., that after a card rip-out the reini-
tialisation of transient arrays preserves the invariant.

4.1 Additional Sequent Calculus Rules for the
Throughout Modality

Below, we present the assignment and the while rules for the [[·]] modality. Due
to space restrictions, we cannot list all additional rules. However, the other loop
rules are very similar to the while rule, and all other [[·]] rules are essentially the
same as for [·] – except for the transaction rules which we present in the next
subsection.

The Assignment Rule for [[·]]. An assignment loc = expr; is an atomic
program, if expr is a logical term (and, in particular, is free of side effects and can
be computed in a single step). By definition, its semantics is a trace consisting
of the initial state s and the final state s′ = {loc := vals(expr)}s. Therefore,
the meaning of [[loc = expr;]]φ is that φ is true in both s and s′, which is what
the two premises of the following assignment rule express:

Γ ` Uφ Γ ` U{loc := expr}[[π ω]]φ
Γ ` U [[π loc = expr; ω]]φ

(R3)

The left premise states that the formula φ has to hold in the state s before
the assignment takes place. The right premise says that φ has to hold in the
state s′ after the assignment – and in all states thereafter during the execution
of the rest ω of the program. As for the other modalities, the precondition for
an application of the assignment rule is that expr is a logical term (and, in
particular, free of side effects).

It is easy to see that using this rule causes some extra branching of the proofs
involving the [[·]] modality. This branching is unavoidable due to the fact that
the strong invariant has to be checked (evaluated) for each intermediate state of
the program execution. However, many of those branches, which do not involve
JAVA CARD programs any more, can be closed automatically.

The while Rule for [[·]]. Another essential programming construct, where the
rule for the [[·]] modality differs from the corresponding rule for the [·] modality,
is the while loop. As in the case of the while rule for the [·] modality a user
has to supply a loop invariant Inv . Intuitively, the rule establishes three things:

1. In the state before the loop is executed, some invariant Inv holds.

2. If the body of the loop terminates normally (there is no break and no
exception is thrown but possibly continue is used) then at the end of a
single execution of the loop body the invariant Inv has to hold again.

72 B. Beckert and W. Mostowski

3. Provided Inv holds, the formula φ has to hold during and continuously
after loop body execution in all of the following cases: (i) when the loop
body is executed once and terminates normally, (ii) when the loop body is
not executed (the loop condition is not satisfied), and (iii) when the loop
body terminates abruptly (by break, continue, or throwing an exception)
resulting in a termination of the whole loop.

Formally, the while rule for [[·]] is the following:

Γ ` UInv Inv ` 〈α〉true, [β]Inv Inv ` [[π β ω]]φ
Γ ` U [[π λwhile(a) {p} ω]]φ

(R4)

where

α ≡ if(a) {lbreak : {try {lcont : {p′} abort;} catch(Exception e){}}}
β ≡ if(a) lcont : lbreak : {p′}

In the above rule, λ is a (possibly empty) sequence “l1 : . . . ln : ” of labels,
and p′ is p with (a) every “continue;” and every “continue li;” changed
to “break lcont;” and (b) every “break;” and every “break li;” changed to
“break lbreak;”. The three premises establish the three conditions listed above,
respectively. When the program p′ terminates normally, the abort in α is
reached and, thus, the formula 〈α〉true evaluates to false and [β]Inv has to be
proved. Enclosing program p′ in “if(a) . . .” takes care of both cases, where
the loop body is executed (intermediate loop body execution) and where it is
not executed (loop exit). They are later in the proof considered separately by
applying the rule for if.

4.2 Additional Sequent Calculus Rules for Transactions

Additional Syntax. Before presenting the sequent rules for transactions, we
first have to introduce some new programming constructs (statements) and
transaction markers to JAVA CARD DL. The three new statements we need are
the following:

• bT – JAVA CARD beginning of a transaction,

• cT – JAVA CARD end of a transaction (commit),

• aT – JAVA CARD end of a transaction (abort).

These statements are used in the proof when the transaction is started resp. fin-
ished in the JAVA CARD program. The statements are only part of the rules and
not the JAVA CARD programming language. Thus for example, when a transac-
tion is started in a JAVA CARD program by a call to JCSystem.beginTransac-
tion() the calculus assumes the following implementation of beginTransac-
tion():

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 73

public class JCSystem {

private static int _transDepth = 0;

public static void beginTransaction() throws TransactionException {

if(_transDepth > 0)

TransactionException.throwIt(TransactionException.IN_PROGRESS);

_transDepth++;

bT;

}

...

Thus, when we encounter any of bT, cT or aT in our proof we can assume they
are properly used (nested).

The second thing we need is the possibility to mark modalities (resp. the
programs they contain) with a tag saying that a transaction is in progress. We
will use two kinds of tags and make them part of the inactive program prefix π
in the sequent. The two markers are:

• TRcommit: – a transaction is in progress and is expected to be committed
(cT),

• TRabort: – a transaction is in progress and is expected to aborted (aT).

This distinction is very helpful in taking care of conditional assignments – since
we know how the transaction is going to terminate “beforehand” we can treat
conditional assignments correspondingly, commit them immediately in the first
case or “forget” them in the second case. Shortly we will show exactly how this
is done in the rules.

Rules for Beginning a Transaction. For each of the three operators (〈·〉, [·],
[[·]]) there is one “begin transaction” rule. The rules for 〈·〉 and [·] are identical,
so we only show one of them:

Γ ` Uφ Γ ` U [[TRcommit:π ω]]φ Γ ` U [[TRabort:π ω]]φ
Γ ` U [[π bT; ω]]φ

(R5)

Γ ` U〈TRabort:π ω 〉φ Γ ` U〈TRcommit:π ω 〉φ
Γ ` U〈π bT; ω 〉φ

(R6)

In case of the [[·]] operator the following things have to be established. First of all,
φ has to hold before the transaction is started. Then we split the sequent into
two cases: the transaction will be terminated by a commit, or the transaction
will be terminated by an abort. In both cases the sequent is marked with the
proper tag, so that corresponding rules can be applied later, depending on the
case. The 〈·〉 and [·] rules for “begin transaction” are very similar to [[·]] except
that φ does not have to hold before the transaction is started.

Rules for Committing and Aborting Transactions. These rules are the
same for all three operators, so we only show the [[·]] rules.

74 B. Beckert and W. Mostowski

The first two rules apply when the expected type of termination is encoun-
tered (“TRcommit: ” for commit resp. “TRabort: ” for abort). In that case, the
corresponding transaction marker is simply removed, which means that the
transaction is no longer in progress. These are the rules:

Γ ` U [[π ω]]φ
Γ ` U [[TRcommit:π cT; ω]]φ

(R7)

Γ ` U [[π ω]]φ
Γ ` U [[TRabort:π aT; ω]]φ

(R8)

We also have to deal with the case where the transaction is terminated in an
unexpected way, i.e., a commit is encountered when the transaction was ex-
pected to abort and vice versa. In this case we simply use an axiom rule, which
immediately closes the proof branch (one of the proof branches produced by the
“begin transaction” rule will always become obsolete since each transaction can
only terminate by either commit or abort). The rules are the following:

Γ ` U [[TRabort:π cT ; ω]]φ
(R9)

Γ ` U [[TRcommit:π aT; ω]]φ
(R10)

Rules for Conditional Assignment Handling within a Transaction.
Finally, we come to the essence of conditional assignment handling in our rules.
In case the transaction is expected to commit, no special handling is required –
all the assignments are executed immediately. Thus, the rule for an assignment
in the scope of [[TRcommit: . . .]] is the same as the rule for an assignment within [·]
(the same holds for all other programming constructs). Note that, even using
the [[TRcommit: . . .]] modality, φ only has to hold at the end of the transaction,
which is considered to be atomic.

Γ ` U{loc := expr}[[TRcommit:π ω]]φ
Γ ` U [[TRcommit:π loc = expr; ω]]φ

(R11)

In case a transaction is terminated by an abort, all the conditional assignments
are rolled back as if they were not performed. If we know that the transaction is
going to abort because of a TRabort: marker, we can deliberately choose not to
perform the updates to persistent objects as we encounter them. However, we
cannot simply skip them since the new values assigned to (fields of) persistent
objects during a transaction may be referred to later in the same transaction
(before the abort). The idea to handle this, is to assign the new value to a
copy of the object field or array element while leaving the original unchanged,
and to replace – until the transaction is aborted – references to persistent fields
and array elements by references to their copies holding the new value. Note
that if an object field to which no new value has been assigned is referenced
(and for which therefore no copy has been initialised), the original reference is
used.

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 75

Making this work in practice, requires changing the assignment rule for the
cases where a transaction is in progress and is expected to abort (i.e., where
the “TRabort: ” marker is present). Also the rules for update evaluation change a
bit, which changes the semantics of an update as well, see description of the
rule below. The following is the assignment rule for the [[·]] modality with
the “TRabort: ” tag present. The corresponding rules for 〈·〉 and [·] are the
same:

Γ ` U{loc′ := expr ′}[[TRabort:π ω]]φ
Γ ` U [[TRabort:π loc = expr; ω]]φ

(R12)

As usual expr has to be a logical term. To handle objects fields persistent arrays
elements, all sub-expressions such as obj .a1.arr [e].a2 . . . in expr are replaced by
obj .a ′

1.arr
′[e ′]′.a ′

2 . . . in expr ′ (for object fields the prime denotes a copy of that
field and for array access function [] the prime denotes a “shadow” access func-
tion that operates on copies of elements of a given array). The first reference
obj or arr (as in arr [i].a) in expr is not primed, since it is either a local vari-
able, which is not persistent, or the this reference, which is not assignable,
or a static class reference, like SomeClass, which also can be viewed as not
assignable. All subexpressions that are local variables are left unchanged in
expr ′. The expression loc on the left side of the assignment and the subexpres-
sion e are changed into loc′ resp. e ′ in the same way as all the subexpressions
in expr .

As mentioned, the semantics of an update has to be changed to take care of
the cases when a copy of an object’s field has not been initialised. In the new
semantics, if the value of obj .a ′ or arr [i]′ is referred to in an update but is not
known (i.e., there was no such value assigned in the preceding updates) then it
is considered to be equal to obj .a or arr [i], respectively.

The assignments to the copies are not visible outside the transaction, where
the original values are used again – the effect of a roll-back is accomplished.
Each separate transaction has to have its own copies of fields or array elements,
so the second encountered transaction can, for example, use ′′, the third one ′′′,
etc.

One more thing that we have to handle here is the case when the programmer
explicitly defines an array to be transient (the above rule assumes that it was
not the case). It is not possible to know beforehand which arrays are transient
and which are not, since they are defined to be transient by reference and not
by name. This problem can be treated by adding an extra field to each array
(only in the rules) indicating whether the given array is transient or persistent
(rules for initialising arrays can set this field). Then for each occurrence of array
reference arr in loc and expr in rule (R12) we can split the proof into two cases,
following the schema:

Γ , U(o.arr ′.trans .= true) ` U{o.arr ′[e ′] := expr ′}[[TRabort:π ω]]φ
Γ , U(o.arr ′.trans .= false) ` U{o.arr ′[e ′]′ := expr ′}[[TRabort:π ω]]φ

Γ ` U [[TRabort:π o.arr[e] = expr; ω]]φ
(R13)

76 B. Beckert and W. Mostowski

The remaining rules for [[TRabort: ·]] (i.e., for other programming constructs)
are the same as for [·], and the remaining rules for [TRabort: ·] and 〈TRabort: ·〉 are
the same as if there were no transaction marker.

5 Examples

In the following, we show two examples of proofs using the above rules. The first
example shows how the [[·]] assignment and while rules are used, the second ex-
ample shows the transaction rules in action. The formula we are trying to prove
in the second example is deliberately not provable and shows the importance of
the transaction mechanism when it comes to “throughout” properties.

The proofs presented here may look like tedious work, but most of the steps
can be done automatically, in fact the only place where user interaction is re-
quired, is providing the loop invariant. The KeY system provides necessary
mechanisms to perform proof steps automatically whenever possible.

Example 1. Consider the following program p:

x = 3;

while (x < 10) {

if(x == 2) x = 1;

else x++;

}

We show that throughout the execution of this program, the strong invariant
φ ≡ x ≥ 2 holds, i.e., we prove the formula x ≥ 2 → [[p]]x ≥ 2.

Proof. We start the proof with the sequent

x ≥ 2 ` [[x = 3; . . .]]x ≥ 2 (1)

Applying the assignment rule (R3) to (1) produces two proof obligations:

x ≥ 2 ` x ≥ 2 (2)
x ≥ 2 ` {x := 3}[[while . . .]]x ≥ 2 (3)

Sequent (2) is valid. Applying the while rule (R4) to (3) with x ≥ 3 as the
loop invariant Inv gives us the three proof obligations below. Note that here it
is necessary to use x ≥ 3 as the invariant. Using Inv ′ = φ = x ≥ 2 would not
be enough, because the statement x = 1 inside the if statement could not be
discarded and x would be assigned 1, which would break the x ≥ 2 property.

x ≥ 2 ` {x := 3}x ≥ 3 (4)
x ≥ 3 ` [[if(x<10)λ{β}]]x ≥ 2 (5)

x ≥ 3 ` 〈α〉true, [if(x<10)λ{β}]x ≥ 3 (6)

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 77

where:
α ≡ if(x < 10) { . . . β; abort; . . . }

β ≡ if(x == 2) x = 1; else x++;

λ ≡ lcont : lbreak :

Reducing (4) results in x ≥ 2 ` 3 ≥ 3 which is valid. In the program α, abort
will be reached (for x < 10) after some proof steps that we do not show here
due to space restrictions. Since abort is a non-terminating program formula
〈abort;〉φ is always false. Thus, (6) can be reduced to:

x ≥ 3, x < 10 ` [if(x<10)λ{β}]x ≥ 3 (7)

We are left with (5) and (7) to prove. Applying the if rule to (5) gives two
proof obligations:

x ≥ 3, x < 10 ` [[λ{β}]]x ≥ 2 (8)
x ≥ 3, x ≥ 10 ` [[]]x ≥ 2 (9)

Sequent (9) is reduced to x ≥ 3, x ≥ 10 ` x ≥ 2, which is valid. After
simplifying and applying the if rule to (8) we get:

x ≥ 3, x < 10, x .= 2 ` [[x = 1;]]x ≥ 2 (10)
x ≥ 3, x < 10, ¬x .= 2 ` [[x = x + 1;]]x ≥ 2 (11)

Sequent (10) is valid by contradiction in the antecedent. Applying the assign-
ment rule to (11) gives two proof obligations:

x ≥ 3, x < 10, ¬x .= 2 ` x ≥ 2 (12)
x ≥ 3, x < 10, ¬x .= 2 ` {x := x + 1}[[]]x ≥ 2 (13)

Sequent (12) is valid. Sequent (13) is reduced to:

x ≥ 3, x < 10, ¬x .= 2 ` x + 1 ≥ 2 (14)

Sequent (14) is valid. We can go back to (7) and apply the if rule yielding two
proof obligations:

x ≥ 3, x < 10, x < 10 ` [λ{β}]x ≥ 3 (15)
x ≥ 3, x ≥ 10, x < 10 ` []x ≥ 3 (16)

Sequent (16) is valid by contradiction in the antecedent. Applying the if rule
to (15) gives us:

x ≥ 3, x < 10, x .= 2 ` [x = 1;]x ≥ 3 (17)
x ≥ 3, x < 10, ¬x .= 2 ` [x = x + 1;]x ≥ 3 (18)

Again (17) is valid by contradiction in the antecedent. Applying the assignment
rule to (18) gives:

x ≥ 3, x < 10, ¬x .= 2 ` {x := x + 1}[]x ≥ 3 (19)

78 B. Beckert and W. Mostowski

(2)

(4)

(10)

(12)

(14)

(13)

(11)
(R3)

(8)
(R1)

(9)

(5)
(R1)

(17)

(20)

(19)

(18)
(R2)

(15)
(R1)

(16)

(7)

(6)

(3)
(R4)

(1)
(R3)

Figure 1. The proof from Example 1

which is reduced to:

x ≥ 3, x < 10, ¬x .= 2 ` x + 1 ≥ 3 (20)

Sequent (20) is valid and thus we have proved the initial formula. Figure 1
shows the proof tree for this example.

Example 2. Now consider the following program p (fields of o are persistent):

bT;

o.x = 60;

o.y = 40;

cT;

t = o.x;

o.x = o.y;

o.y = t;

We try to prove that the strong invariant o.x + o.y .= 100 holds throughout the
execution of this program The formula to prove is the following:

o.x + o.y .= 100 ` [[bT; . . .]]o.x + o.y .= 100 (1)

Note that this is not provable.

Proof. We start our proof by applying the begin transaction rule to (1) yield-
ing three proof obligations:

o.x + o.y .= 100 ` o.x + o.y .= 100 (2)
o.x + o.y .= 100 ` [[TRcommit: o.x = 60; . . .]]o.x + o.y .= 100 (3)
o.x + o.y .= 100 ` [[TRabort: o.x = 60; . . .]]o.x + o.y .= 100 (4)

Sequent (2) is obviously valid. Applying the assignment rule to (4) gives:

o.x + o.y .= 100 ` {o.x ′ := 60}[[TRabort: o.y = 40; . . .]]o.x + o.y .= 100 (5)

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 79

Notice that since we are inside a transaction the assignment rule does not
branch. Again the assignment rule to (5) gives:

o.x + o.y .= 100 `
{o.x ′ := 60}{o.y ′ := 40}[[TRabort: cT; . . .]]o.x + o.y .= 100 (6)

Applying the exit transaction rule (R9) (transaction commits unexpectedly) to
(6) proves (6) to be valid. Applying the assignment rule to (3) gives:

o.x + o.y .= 100 ` {o.x := 60}[[TRcommit: o.y = 40; . . .]]o.x + o.y .= 100 (7)

Again the assignment rule to (7) gives:

o.x + o.y .= 100 `
{o.x := 60}{o.y := 40}[[TRcommit: cT; . . .]]o.x + o.y .= 100 (8)

Applying the exit transaction rule to (8) gives:

o.x + o.y .= 100 `
{o.x := 60}{o.y := 40}[[t = o.x; . . .]]o.x + o.y .= 100 (9)

Applying the assignment rule to (9) gives two proof obligations:

o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}o.x + o.y .= 100 (10)
o.x + o.y .= 100 `

{o.x := 60}{o.y := 40}{t := o.x}[[o.x = o.y; . . .]]o.x + o.y .= 100 (11)

Sequent (10) is reduced to:

o.x + o.y .= 100 ` 60 + 40 .= 100 (12)

which is valid. Applying the assignment rule to (11) gives two proof obligations:

o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}{t := o.x}o.x + o.y .= 100 (13)
o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}

{t := o.x}{o.x := o.y}[[o.y = t; . . .]]o.x + o.y .= 100 (14)

Sequent (13) is reduced to:

o.x + o.y .= 100 ` 60 + 40 .= 100 (15)

which is valid. Applying the assignment rule to (14) gives again two proof
obligations:

o.x + o.y .= 100 `
{o.x := 60}{o.y := 40}{t := o.x}{o.x := o.y}o.x + o.y .= 100 (16)

o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}
{t := o.x}{o.x := o.y}{o.y := t}[[]]o.x + o.y .= 100 (17)

80 B. Beckert and W. Mostowski

(2)

(6)
(R9)

(5)
(R11)

(4)
(R11)

(12)

(10)

(15)

(13)

(18)

(16)

(19)

(17)

(14)
(R3)

(11)
(R3)

(9)
(R3)

(8)
(R7)

(7)
(R12)

(3)
(R12)

(1)
(R5)

Figure 2. The proof from Example 2

Sequents (16) and (17) are reduced to, respectively:

o.x + o.y .= 100 ` 40 + 40 .= 100 (18)
o.x + o.y .= 100 ` 60 + 40 .= 100 (19)

Sequent (19) is obviously valid. Sequent (18) is not provable. Inspecting our
program closely shows that indeed both o.x and o.y are equal to 40 at some
point (after line 6 is executed) and their sum is 80, which violates the property
we wanted to prove. Figure 2 shows the proof tree for this example with an
open proof goal.

6 Conclusions and Future Work

We introduced the “throughout” modality (and, thus, strong invariants) to JAVA

CARD Dynamic Logic and presented the necessary sequent calculus rules to
handle this modality and conditional assignments in JAVA CARD transactions.
Introduction of this modality was a manageable task and the set of presented
rules is quite easy to use in theorem proving as shown in the examples. Our
future plan is to implement our rules in the KeY prover and then try our calculus
with “real” examples.

References

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool.
Software and Systems Modeling, April 2004. Online First issue, to
appear in print.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of
JAVA CARD programs. In I. Attali and T. Jensen, editors, JAVA

on Smart Cards: Programming and Security. Revised Papers, JAVA

II. A Program Logic for Handling JAVA CARD’s Transaction Mechanism 81

CARD 2000, International Workshop, Cannes, France, volume 2041
of LNCS, pages 6–24. Springer, 2001.

[BFS02] Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens. En-
riching OCL using observational mu-calculus. In Ralf-Detlef Kutsche
and Herbert Weber, editors, Fundamental Approaches to Software
Engineering, 5th International Conference, FASE 2002, held as Part
of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings,
volume 2306 of LNCS, pages 203–217. Springer, 2002.

[BS01a] Bernhard Beckert and Bettina Sasse. Handling JAVA’s abrupt ter-
mination in a sequent calculus for Dynamic Logic. In B. Beckert,
R. France, R. Hähnle, and B. Jacobs, editors, Proceedings, IJCAR
Workshop on Precise Modelling and Deduction for Object-oriented
Software Development, Siena, Italy, pages 5–14. Technical Report
DII 07/01, Dipartimento di Ingegneria dell’Informazione, Università
degli Studi di Siena, 2001.

[BS01b] Bernhard Beckert and Steffen Schlager. A sequent calculus for first-
order dynamic logic with trace modalities. In R. Gorè, A. Leitsch,
and T. Nipkow, editors, Proceedings, International Joint Conference
on Automated Reasoning, Siena, Italy, LNCS 2083, pages 626–641.
Springer, 2001.

[Che00] Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architecture
and Programmer’s Guide. JAVA Series. Addison-Wesley, 2000.

[Har84] David Harel. Dynamic Logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, Volume II: Extensions of
Classical Logic. Reidel, 1984.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT
Press, 2000.

[KT90] Dexter Kozen and Jerzy Tiuryn. Logic of programs. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chap-
ter 14, pages 89–133. Elsevier, 1990.

[Mos02] Wojciech Mostowski. Rigorous development of JAVA CARD applica-
tions. In T. Clarke, A. Evans, and K. Lano, editors, Proceedings,
Fourth Workshop on Rigorous Object-Oriented Methods, London,
U.K., March 2002. Available from http://www.cs.chalmers.se/
~woj/papers/room2002.ps.gz.

[Pra77] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic.
In Proceedings, 18th Annual IEEE Symposium on Foundation of
Computer Science, 1977.

http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#

82 B. Beckert and W. Mostowski

[Sun02a] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVA CARD 2.2 Ap-
plication Programming Interface, September 2002.

[Sun02b] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVA CARD 2.2 Run-
time Environment Specification, September 2002.

[Sun02c] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVA CARD 2.2 Virtual
Machine Specification, September 2002.

[TH02] Kerry Trentelman and Marieke Huisman. Extending JML specifica-
tions with temporal logic. In Algebraic Methodology And Software
Technology (AMAST ’02), volume 2422 of LNCS, pages 334–348.
Springer-Verlag, 2002.

Paper III Specifying JAVA CARD API in OCL

OCL 2.0: Industry Standard or Scientific
Playground? Satellite Workshop at UML
Conference 2003, San Francisco, U.S.A.,
October 2003

Specifying JAVA CARD API in OCL

Daniel Larsson∗ Wojciech Mostowski

Abstract

We discuss the development of an OCL specification for the JAVA CARD

API. The main purpose of this specification is to support and aid the ver-
ification of JAVA CARD programs in the KeY system. The main goal of
the KeY system is to integrate object oriented design and formal meth-
ods. The already existing specification written in JML (JAVA Modelling
Language) has been used as a starting point for the development of the
OCL specification. In this paper we report on the problems that we en-
countered when writing the specification and their solutions, we present
the most interesting parts of the specification, we report on successful
verification attempts and finally we evaluate OCL and compare it to JML
in the context of JAVA CARD program specification and verification.

1 Introduction

This paper reports on the development of an OCL specification for the JAVA

CARD API [Sun02]. JAVA CARD [Che00] is a subset of the JAVA programming
language and is used to program smart cards. The JAVA CARD API (Application
Programming Interface) is a set of library classes used in JAVA CARD programs.
JAVA CARD API is a much smaller version of the standard JAVA API and is
specifically designed for smart card programming. The OCL specification is
necessary to perform formal verification of such programs when the implemen-
tation of the API classes is not available. Even if the API implementation is
available, having the OCL specification helps to avoid repetitive work of prov-
ing the API implementation each time API method is used in a JAVA CARD

program. The secondary purpose of writing the specification is to document
the behaviour of the JAVA CARD API in a formal way. We discuss the problems
we encountered when writing the specification in OCL and their solutions. We
present some of the most interesting parts of the specification and report on
successful verification attempts of the reference implementation of JAVA CARD

API with respect to our specification. Finally, we evaluate OCL and compare it
to JML in the context of this work. This paper summarises results from [Lar03].

In the following section we give more details about the background and mo-
tivation of this work. In Section 3 we give a detailed report on the development
∗ Department of Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden, e-mail: danla@cs.chalmers.se

85

mailto:danla@cs.chalmers.se#

86 D. Larsson and W. Mostowski

of the specification, in Section 4 we present some interesting parts of our speci-
fication, in Section 5 we evaluate OCL in the context of the presented work and
finally we conclude in Section 6.

2 Background

2.1 The KeY Project

The work presented in this paper has been carried out as part of the KeY
project1 [ABB+04]. The main goal of the KeY project is to enhance a com-
mercial CASE (Computer Aided Software Engineering) tool with functionality
for formal specification and deductive verification and, thus, to integrate for-
mal methods into real-world software development processes. Accordingly, the
design principles for the software verification component of the KeY system are:

1. The specification language should be usable by people who do not have
years of training in formal methods. The Object Constraint Language
(OCL) [WK03], which is incorporated into the current version of the Uni-
fied Modelling Language (UML) [Obj03], is the specification language of
our choice.

2. The programs that are verified should be written in a “real” object-
oriented programming language. We decided to use JAVA CARD. This
choice is motivated by the following reasons. First of all, many JAVA CARD

applications are subject to formal verification, because they are usually
security critical (for example, authentication) and difficult to update in
case a fault is discovered. At the same time the JAVA CARD language is
easier to handle than full JAVA (for example, there is no concurrency and
no GUI – see Section 2.2). Also, JAVA CARD programs are smaller than
normal JAVA programs and thus easier to verify.

The architecture of the KeY system is shown in Figure 1. It is built on top of
a commercial CASE tool (Borland Together Control Center)2 and extends it
with facilities for formal specification and verification of JAVA programs in the
following ways:

• It supports creation and manipulation of OCL constraints, for example,
the KeY system can automatically create a partial OCL specification by in-
stantiating an OCL template (commonly used OCL specification schema)
or use a syntax based editor to create OCL expressions.

• The deduction component is used to actually construct proofs for JAVA

Dynamic Logic proof obligations generated from the UML model, OCL
constraints and JAVA implementation. The deduction component is an in-
teractive verification system based on JAVA Dynamic Logic, a logic specif-
ically designed for formal verification of JAVA programs [Bec01].

1 http://www.key-project.org
2 http://www.borland.com/together/

http://www.key-project.org#
http://www.borland.com/together/#

III. Specifying JAVA CARD API in OCL 87

Verification Middleware

automated interactive

Deduction Component

CASE Tool Together CC

extension

for formal

specification

UML OCL Java

Dynamic Logic

Figure 1. The architecture of the KeY system

2.2 JAVA CARD and JAVA CARD API

JAVA CARD is a technology that provides means to program smart cards with (a
subset of) the JAVA programming language. Due to limited resources of smart
cards, the JAVA CARD language is limited in a number of ways as compared to
full JAVA. The following is the list of features that are not supported in JAVA

CARD: large primitive data types (int, long, double, float), characters and
strings, multidimensional arrays, dynamic class loading, threads and garbage
collection. Most of the remaining JAVA features, in particular object-oriented
ones like interfaces, inheritance, virtual methods, overloading, dynamic object
creation are supported by the JAVA CARD language.

The JAVA CARD API is a library that handles smart card specific features, like
Application Protocol Data Units (APDUs – used for communication between
the card and the rest of the world), Application IDentifiers (AIDs), JAVA CARD

specific system routines, PIN codes, etc. [Sun02]. Some of the packages included
in the JAVA CARD API 2.2 are the following:

• java.lang – provides classes that are fundamental to the design of the
JAVA CARD technology subset of the JAVA programming language. The
classes in this package are derived from java.lang in the standard JAVA

programming language and represent the core functionality required by
the JAVA CARD Virtual Machine.

• javacard.framework – provides a framework of classes and interfaces for
building, communicating and working with JAVA CARD applets. These
classes and interfaces provide the minimum required functionality for a

88 D. Larsson and W. Mostowski

JAVA CARD environment. The key classes and interfaces in this package
are:

– AID – encapsulates the Application IDentifier (AID) associated with
an applet.

– APDU – provides methods for controlling card input and output.

– Applet – the base class for all JAVA CARD applets on the card. It pro-
vides methods for working with applets to be loaded onto, installed
into and executed on a JAVA CARD compliant smart card.

– JCSystem – provides methods for controlling system functions such
as transaction management, transient objects, object deletion mech-
anism, resource management, and inter-applet object sharing.

– Util – provides convenience methods for working with arrays and
array data.

The whole JAVA CARD API consists of 57 classes and interfaces, many of which
are very simple (for example, exception classes).

2.3 Use Cases for OCL Specification of the
JAVA CARD API

One of the purposes of the KeY system is the possibility to formally verify JAVA

CARD applications. To successfully verify a program that uses the JAVA CARD

API one has to have access to either the implementation of the API or its formal
specification. Since the implementation of the API is usually not available (es-
pecially when the methods are native), the latter is the solution we are aiming
for. Let us look at an example to illustrate how the JAVA CARD API specifica-
tion is used in the verification process. Suppose we have implemented a method
aMethod in our JAVA CARD program. We now want to verify that the imple-
mentation satisfies the formal specification (the pair of pre- and postconditions)
of method aMethod:

/**

* @preconditions <pre>

* @postconditions <post>

*/

public void aMethod(...) {

...

APIClass.apiMethod(...);

...

}

Our method invokes a method from the JAVA CARD API, which we assume has
been already specified. The specification of aMethod and its implementation is
translated into a proof obligation, which in turn is passed to the KeY deduction
component (prover). When trying to construct a proof for this proof obligation,
we sooner or later have to apply a rule that takes care of the invocation of the

III. Specifying JAVA CARD API in OCL 89

API method apiMethod. If we had no specification of this method we would
have to replace the method call with the actual method body. In case the spec-
ification of apiMethod is available it is enough to verify that the precondition
of apiMethod is satisfied in the state before apiMethod is executed and then we
can simply “replace” the method call to apiMethod with its postcondition. This
however is not as straightforward as it sounds, there is ongoing work in the KeY
project which investigates when and under what conditions such a replacement
can be safely done [BS03].

In addition to this, having an OCL specification of the API saves a lot of
work during verification of JAVA CARD programs in the long run. When there
is no specification available, the same API method call has to be replaced by
the method’s implementation and proved each time the method in question is
used. In practice it can happen that the same piece of API implementation is
going to be placed in the proof more than one time in one program.

The secondary purpose of writing the OCL specification for JAVA CARD

API is for documentation purposes – an OCL specification can serve as formal
documentation of the JAVA CARD API. This is very useful, because the informal
specification does not always contain all the necessary information about the
behaviour of the API.

2.4 Related Work

As already mentioned, the starting point for this work was the formal spec-
ification of the JAVA CARD API written in JAVA Modelling Language (JML)
[LBR99, MP01, PvdBJ00]. That work has been done for similar reasons as
stated above, the main difference is the specification language used. The LOOP
tool presented in [vdBJ01] uses JML and PVS as the means to formally verify
JAVA CARD programs, thus, the necessity for the API specification written in
JML. As we use the industry standard OCL as a specification language in the
KeY project we need to have the JAVA CARD API specification formulated in
OCL. We also made an effort to have more complete coverage of the JAVA CARD

API in our specification.

3 The Development of OCL Specification

As stated above, we based our specification on the JML specification of the
JAVA CARD API. We then extended it based on the informal specification (API
documentation) and we tried to make use of OCL’s expressiveness wherever
possible. Later on we tested parts of our specification by formally verifying
(using the KeY system) part of the reference implementation of the JAVA CARD

API with respect to our specification.
We start by giving an overall description of JML and the JML specification

of the JAVA CARD API. Based on that we will describe the main problems to be
tackled when writing OCL specification for the API.

90 D. Larsson and W. Mostowski

3.1 JML vs. OCL

As in OCL, the specifications in JML are expressed as class invariants and
method pre-/postconditions. Class invariants are assertions that should hold
for all instances of the class at any time. Pre- and postconditions are contracts
between the provider and the user of the method. The user has to fulfil the pre-
condition when he or she calls the method. The provider guarantees that if the
precondition holds at the beginning of the method call, then the corresponding
postcondition will hold after the method call. In addition, JML allows one to
express when a method throws an exception and which attributes of the class
can be modified by the method. All the JML specifications are only valid in
the context of their JAVA source code and are presented in the form of JAVA

comments. Below is the general syntax of JML used to express the method’s
behaviour:

/**

@public behavior

@requires <precondition>;

@assignable <list of attributes>;

@ensures <postcondition>;

@signals (Exception_1 e1) <ex1postcondition>;

@signals (Exception_2 e2) <ex2postcondition>;

*/

public void aMethod() throws Exception { ... }

The @requires clause defines the method’s precondition, the @assignable
clause tells which attributes the method can modify. The meaning of the rest
of the specification is the following: if the precondition is satisfied then either
the method terminates normally (i.e., does not throw any exception) and the
postcondition (@ensures) holds or one of the listed exceptions is thrown and
then the corresponding postcondition holds.

JML also allows to use a simpler syntax in case the method is not supposed
to throw any exceptions, as the example below shows. The example gives a
general impression of what the JAVA CARD API specification in JML looks like.
The following is a part of the OwnerPIN class:

public class OwnerPIN implements PIN {

private byte[] pin;

private byte maxTries;

private byte triesRemaining;

public boolean check(byte[] thePin, short offset, byte length)

throws ArrayIndexOutOfBoundsException, NullPointerException {

...

}

...

}

The pin array contains the PIN number, maxTries is the maximal number
of attempts allowed to present the correct PIN before the card is locked, and

III. Specifying JAVA CARD API in OCL 91

triesRemaining the number of attempts left to present the correct PIN. A JML
invariant for this class is the following:

/**

@invariant triesRemaining >= 0 && triesRemaining <= maxTries;

*/

A JML specification of the method check is given below. The arrayCompare
method compares length elements of array this.pin starting at element in-
dexed by 0 with length elements of array thePin starting at element indexed
by offset:

/**

@public normal_behavior

@requires triesRemaining > 0 &&

@ Util.arrayCompare(this.pin, (short)0,

@ thePin, offset, length) == 0;

@ensures result == true && triesRemaining == maxTries;

*/

At this point we are ready to define the main differences between JML
and OCL that caused us some problems when writing the JAVA CARD API
specification in OCL. The KeY system provides extensions to OCL to overcome
most of those problems.

3.2 Exceptions

The current version of OCL in its standard form does not provide a straight-
forward way to specify that an exception is thrown by a method. A possible
solution is to have an association link thrownException in our class, which rep-
resents a possible exception thrown by methods of that class. Then it is possible
to specify that a method aMethod of class MyClass throws an exception of type
MyException this way:

context MyClass::aMethod():

pre: true

post: let e : self.thrownException in

not e.oclIsUndefined() and e.oclIsKindOf(MyException)

and e.oclIsNew()

The KeY system has a unified solution for this – one can use an excThrown(My-
Exception) clause in the postcondition, which has a very similar meaning.
Later on, when the OCL specification is transformed to a JAVA Dynamic Logic
proof obligation for the prover, the excThrown clauses are properly translated
to corresponding JAVA Dynamic Logic formulas.

Having that, we can now give the general representation of JML’s @behavior
clause in OCL:

context MyClass::aMethod()

pre: <precondition>

92 D. Larsson and W. Mostowski

post: (not excThrown(java::lang::Exception)

and <postcondition>)

or (excThrown(Exception_1) and <ex1postcondition>)

or ...

or (excThrown(Exception_n) and <exnpostcondition>)

3.3 The null value

Another thing that is commonly used in JAVA, but which is not supported in
the current version of OCL is the null value. This can be handled in OCL in
two ways:

• When one wants to compare a class attribute to a null value, then it is
possible to treat the attribute as an association end, which in OCL can
be treated as a set. In that case one can simply say attr->isEmpty() to
express the fact that attr has a null value.

• When comparing objects other than class attributes (for example, method
arguments) to the null value things are a bit more difficult. If such an
object is an array or a collection type, one can use the same technique
as described above. Otherwise there is no way to specify that an object
should (or should not) have the null value.

Fortunately, the KeY system provides a workaround for this problem as well.
One can use the null value directly as if it were defined in OCL, and then
during the translation to JAVA Dynamic Logic the null values are handled
appropriately.

3.4 Integer Arithmetics

The main data types that JAVA CARD programs deal with are JAVA shorts,
bytes and arrays. Arrays do not cause much of a problem, in OCL they can
be represented as the Sequence type. The JAVA arithmetic types short and
byte however do not have a corresponding type in OCL. The only integer type
in OCL is Integer. The most important aspect of JAVA shorts and bytes
is that they can overflow (i.e., they are finite types), while the OCL Integer
is an infinite type and never overflows. Since the overflow behaviour is a very
important aspect of JAVA programs, we have to be able to distinguish between
different integer types in OCL. For this purpose we used dummy “wrapper”
classes JByte and JShort to represent corresponding JAVA types. They can be
used like this:

context PIN::check(pin: Sequence(JByte), offset: JShort,

length: JByte): Boolean

...

This still does not solve the problem of proper interpretation of overflow be-
haviour in OCL. Luckily, the KeY system comes to the rescue again. When

III. Specifying JAVA CARD API in OCL 93

the OCL specification is translated to a JAVA Dynamic Logic formula, the user
can choose how the integer types are interpreted by the prover: either as finite
JAVA types short and byte, or as infinite arithmetic types arithShort and
arithByte. In both cases the issue of overflow is treated appropriately. More
about handling arithmetics in the KeY system can be found in [BS04]. Also,
[Cha03] gives insights into problems associated with integer arithmetics in JML.

3.5 JML assignable clause

As mentioned before, JML offers a possibility to express (with the @assignable
clause) that a given method is allowed to change a limited set of attributes
during its execution. OCL does not offer any mechanism or language construct
to specify this in a nice way. One can of course state in the postcondition that
the value of a given attribute is not changed by the method by saying:

post: self.attr = self.attr@pre

This is not a good solution, though. Suppose we have a class with 20 attributes
and we want to express the fact that only one attribute is assignable. That
means we have to write 19 expressions like the one above for all the remaining
attributes. There is ongoing work that aims at solving this problem in the KeY
system [BS03]. The work is about how to properly specify attribute modification
behaviour and how such specification can be used in proofs. In the current
version of our work we left out the parts of the specification corresponding to
the @assignable clause in JML.

4 The Specification

The present work resulted in an OCL specification for all classes and interfaces
of the JAVA CARD API 2.2. This specification expresses, with a few exceptions
(some of the signals clauses and the assignable clauses were not possible to
be fully expressed in OCL), as much as the JML specification for JAVA CARD

API 2.1.1. In some cases the OCL specification expresses more than the JML
specification. In the following we illustrate by example how our OCL specifica-
tion was created and how it was improved (compared to JML).

First, let us look at the PIN interface (which OwnerPIN implements). The
informal specification of method check in the PIN interface is the following:

public boolean check(byte[] pin, short offset, byte length)

Compares pin against the PIN value. If they match and the PIN is not
blocked, it sets the validated flag and resets the try counter to its max-
imum. If it does not match, it decrements the try counter and, if the
counter has reached zero, blocks the PIN. Even if a transaction is in
progress, the internal state such as the try counter, the validated flag
and the blocking state must not be conditionally updated.

94 D. Larsson and W. Mostowski

Notes:

• If NullPointerException or ArrayIndexOutOfBoundsException is
thrown, the validated flag must be set to false, the try counter
must be decremented, and the PIN blocked if the counter reaches
zero.

• If offset or length parameter is negative an ArrayIndexOutOf-

BoundsException is thrown.

• If offset+length is greater than pin.length, the length of the pin

array, an ArrayIndexOutOfBoundsException is thrown.

• If pin parameter is null a NullPointerException is thrown.

Parameters:

pin the byte array containing the PIN value being checked

offset the starting offset in the pin array

length the length of pin

Returns:

true if the PIN value matches; false otherwise

Throws:

ArrayIndexOutOfBoundsException if the check operation would cause
access of data outside array bounds.

NullPointerException if pin is null.

The JML specification for this method found in [Pol] is the following (the \old
construct corresponds to OCL’s @pre):

/**

@ public normal_behavior

@ requires triesRemaining == 0;

@ assignable \nothing;

@ ensures result == false;

@ also

@ public normal_behavior

@ requires triesRemaining > 0 && pin != null && offset >= 0

@ && length >= 0 && offset + length == pin.length &&

@ Util.arrayCompare(this.pin, (short)0, pin,

@ offset, length) == 0;

@ assignable isValidated, triesRemaining;

@ ensures result == true && isValidated &&

@ triesRemaining == maxTries;

@ also

@ public behavior

@ requires triesRemaining > 0 && !(pin != null &&

@ offset >= 0 && length >= 0 &&

@ offset+length == pin.length &&

III. Specifying JAVA CARD API in OCL 95

@ Util.arrayCompare(this.pin, (short)0, pin,

@ offset, length) == 0);

@ assignable isValidated, triesRemaining;

@ ensures result == false &&

@ !isValidated && triesRemaining ==

@ \old(triesRemaining) - 1;

@ signals (NullPointerException)

@ !isValidated &&

@ triesRemaining == \old(triesRemaining) - 1;

@ signals (ArrayIndexOutOfBoundsException)

@ !isValidated &&

@ triesRemaining == \old(triesRemaining) - 1;

@

*/

public boolean check(byte[] pin, short offset, byte length)

throws ArrayIndexOutOfBoundsException, NullPointerException;

It seems that the JML specification agrees with the informal specification in
most part. One subject that is not touched upon in the JML specification is
the following sentence from the informal specification: Even if a transaction is
in progress, the internal state such as the try counter, the validated flag and
the blocking state must not be conditionally updated. This is not possible to
specify in either JML or OCL, as it has to do with the internal transaction
mechanism of the JAVA CARD Runtime Environment. The issue of specifying
and verifying the programs involving JAVA CARD’s transaction mechanism has
been investigated thoroughly in the KeY project [BM03]. For now, however,
we decided to leave this issue out in our OCL specification. Another thing to
notice is that the informal specification and the JML specification disagree on
the subject of whether offset + length must be equal to pin.length or if
offset + length might be less than or equal to pin.length. It seems that
a mistake has been made in the JML specification, since it clearly disagrees
with the informal specification and since there seems to be no good reason to
demand that there must be no free elements in the pin array following the actual
PIN value. Therefore our resulting OCL specification agrees with the informal
specification in this case:

context PIN::check(pin : Sequence(JByte), offset : JShort,

length : JByte): Boolean

pre: true

post: self.triesRemaining = 0 implies result = false

and (self.triesRemaining > 0 and pin <> null

and offset >= 0 and length >= 0 and

offset+length <= pin->size()

and self.pin->subSequence(1, length) =

pin->subSequence(offset + 1, offset + length))

implies (

result = true and self.isValidated

and self.triesRemaining = self.maxTries)

and (self.triesRemaining > 0 and

96 D. Larsson and W. Mostowski

not(pin <> null and offset >= 0 and length >= 0

and offset + length <= pin->size() and

self.pin->subSequence(1, length) =

pin->subSequence(offset + 1, offset + length)))

implies (not self.isValidated and

self.triesRemaining = self.triesRemaining@pre-1 and (

(not excThrown(java::lang::Exception) and

result = false)

or excThrown(java::lang::NullPointerException)

or excThrown(java::lang::ArrayIndexOutOfBoundsException)))

In the next example we show how the specification of method setKey in class
DESKey has been enriched compared to JML specification. The method setKey
copies the data (an array of bytes) that is passed as an argument and constitutes
the actual key to the internal attribute data. Under certain circumstances, this
data is not passed to the method in plain text but as a cipher and the method
must then decrypt the data before it is copied into the internal representation.
Here is the JML specification for this method:

/**

@public behavior

@ requires keyData != null && kOff >= 0 &&

@ kOff < keyData.length;

@ assignable CryptoException.systemInstance.reason;

@ ensures isInitialized();

@ signals (CryptoException e)

@ e.getReason() == CryptoException.ILLEGAL_VALUE;

*/

void setKey(byte[] keyData, short kOff) throws CryptoException;

This specification does not give much information about what this method ac-
tually accomplishes. In the OCL specification though, we try to give an idea
about this:

context DESKey::setKey(keyData : Sequence(JByte), kOff : JShort)

pre: not (keyData = null) and kOff >= 0 and

kOff < keyData->size()

post: (not excThrown(java::lang::Exception)

and self.isInitialized() and (

not self.oclIsKindOf(javacardx::crypto::KeyEncryption)

or self.getKeyCipher() = null implies

self.data->subSequence(1, self.getSize() / 8) =

keyData->subSequence(kOff + 1, kOff + self.getSize() / 8))

) or (

excThrown(javacard::security::CryptoException) and

CryptoException.systemInstance.reason

= CryptoException.ILLEGAL_VALUE

and (

not self.oclIsKindOf(javacardx::crypto::KeyEncryption)

or self.getKeyCipher() = null implies

kOff + self.getSize() / 8 > keyData->size()))

III. Specifying JAVA CARD API in OCL 97

What we added in this specification is the following. If this particular instance
of DESKey is not an instance of javacardx.crypto.KeyEncryption or if this
instance is not associated with a Cipher object (the circumstances under which
the input keyData have to be decrypted), then the input data is to be copied
directly into the internal attribute data.

While studying the JML specification we found a small number of minor
inconsistencies. In the class OwnerPIN for example, the invariant states that
the internal class attribute pin should not be null at any point, which requires
the constructor of that class to set pin (which is initially null) to a non null
value. In that case the constructor should be able to modify the pin attribute,
but a corresponding @assignable clause is missing in the specification of the
OwnerPIN constructor. The informal specification of that constructor also says
that two exceptions can be thrown – PINException and SystemException. The
condition for throwing the PINException is clearly defined, but this information
is not included in the constructor’s specification.

We tried to fix all those small deficiencies in our OCL specification and
express as much as possible, but, as we mentioned before, giving the full speci-
fication of the JAVA CARD API in OCL is not possible at the moment.

4.1 Formal Verification

To give our specification a test we looked into the source of the implementa-
tion of the JAVA CARD API distributed with SUN’s JAVA CARD Development
Kit version 2.1.1 [Sun]. We tried to verify this implementation with respect
to the specification we have written. Due to current limitations of the KeY
system this was not done to the extent one might wish for. One of the tech-
nical reasons for this is the fact that the KeY system does not handle arrays
in the version we used. Since the arrays are present almost everywhere in the
JAVA CARD API this was a major obstacle. We can however report that a
number of simple getReason/setReason methods in the exception classes of
javacard.framework package have been verified. A more complicated success-
ful proof attempt was the verification of the reset method in the OwnerPIN
class. The specification is the following:

context OwnerPIN inv:

self.maxPINSize > 0 and self.maxTries > 0 and

self.triesRemaining >= 0 and

self.triesRemaining <= self.maxTries

context OwnerPIN::reset()

pre: true

post: not excThrown(java::lang::Exception)

and

not self.isValidated

and

if self.isValidated@pre then

self.triesRemaining = self.maxTries

98 D. Larsson and W. Mostowski

else

self.triesRemaining = self.triesRemaining@pre

endif

A proof obligation generated by the KeY system states the following: the ex-
ecution of the reset method preserves the invariant and if the precondition is
satisfied before reset is executed then the postcondition is satisfied after reset
is executed. Explaining what this proof obligation looks like would require in-
troducing the JAVA Dynamic Logic used in the KeY system in more detail. This
would go beyond the scope of this paper. One thing we should say though, is
that the proof to verify this specification is performed automatically by the KeY
prover, reducing the user interaction to absolute minimum.

5 Short Evaluation of OCL

There are a few things that we found very useful about OCL. First of all, it
is practically an industry standard and is (partially) supported by some CASE
tools (for example, Borland Together Control Center that we use in the KeY
project). Second, it seems that the OCL language is richer than JML in some
respects, for example, the whole library of collection type operations makes
expressing properties about Sequence (array) type much easier than in JML.
Also, for the same reason, we find OCL much easier to read and understand.

When it comes to JAVA specific features, OCL turns out to be not as good as
JML. Just to recapitulate the most important findings from Section 3.1: there is
no standard way in OCL to express the fact that a method throws an exception,
there is only one (infinite) integer type in OCL as compared to the whole set
of JAVA integer types and there is no JML’s @assignable counterpart in OCL.
In this respect JML is a much stronger language than OCL. Of course, this is
because JML was designed specifically for JAVA, while OCL was mainly designed
for UML.

6 Conclusions

In this paper we presented our experience from the development of an OCL
specification for the JAVA CARD API 2.2. Despite the mentioned problems with
OCL we managed to specify the whole JAVA CARD API to a reasonable extent.
The specification is available on-line at:

http://www.key-project.org/doc/2003/exjob.html

The two main purposes of this work were to aid and support formal verification
of JAVA CARD programs in the KeY system and to document the JAVA CARD API
in a formal way. We tested our specification by formally verifying the reference
implementation of the JAVA CARD API with the KeY system, however, due
to technical limitations, this was not done to the desirable extent. Still, the
proofs we attempted were successful and were performed automatically by the

http://www.key-project.org/doc/2003/exjob.html#

III. Specifying JAVA CARD API in OCL 99

KeY system. In the near future the KeY system will cover the full JAVA CARD

standard. Then we plan to continue in this direction and also, based on our
specification, perform formal verification of real life JAVA CARD case studies.

References

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and Systems Modeling, April 2004. Online
First issue, to appear in print.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of
JAVA CARD programs. In I. Attali and T. Jensen, editors, JAVA

on Smart Cards: Programming and Security. Revised Papers, JAVA

CARD 2000, International Workshop, Cannes, France, volume 2041
of LNCS, pages 6–24. Springer, 2001.

[BM03] Bernhard Beckert and Wojciech Mostowski. A program logic for
handling JAVA CARD’s transaction mechanism. In Mauro Pezzè, ed-
itor, Proceedings, Fundamental Approaches to Software Engineering
(FASE) Conference 2003, Warsaw, Poland, volume 2621 of LNCS,
pages 246–260. Springer, April 2003.

[BS03] Bernhard Beckert and Peter H. Schmitt. Program verification us-
ing change information. In Proceedings, Software Engineering and
Formal Methods (SEFM), Brisbane, Australia, pages 91–99. IEEE
Press, 2003.

[BS04] Bernhard Beckert and Steffen Schlager. Software verification with
integrated data type refinement for integer arithmetic. In Eerke A.
Boiten, John Derrick, and Graeme Smith, editors, Proceedings, In-
ternational Conference on Integrated Formal Methods, Canterbury,
UK, volume 2999 of LNCS, pages 207–226. Springer, April 2004.

[Cha03] Patrice Chalin. Improving JML: For a safer and more effective lan-
guage. In Stefania Gnesi, Keijiro Araki, and Dino Mandrioli, editors,
International Symposium of Formal Methods Europe, Proceedings,
volume 2805 of LNCS, pages 440–461, Pisa, Italy, September 2003.
Springer.

[Che00] Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architecture
and Programmer’s Guide. JAVA Series. Addison-Wesley, 2000.

[Lar03] Daniel Larsson. OCL specifications for the JAVA CARD API. Master’s
thesis, Chalmers University of Technology, Department of Comput-
ing Science, Göteborg, Sweden, 2003.

100 D. Larsson and W. Mostowski

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Nota-
tion for Detailed Design. Kluwer Academic Publishers, 1999.

[MP01] Hans Meijer and Erik Poll. Towards a full formal specification of
the JAVA CARD API. In I. Attali and T. Jensen, editors, Smart Card
Programming and Security, International Conference on Research in
Smart Cards, e-Smart 2001, Cannes, France, volume 2140 of LNCS,
pages 165–178. Springer, September 2001.

[Obj03] Object Modeling Group. Unified Modelling Language Specification,
version 1.5, March 2003.

[Pol] Erik Poll. Formal interface JAVA specifications for the JAVA CARD

API 2.1.1. http://www.cs.kun.nl/~erikpoll/publications/
jc211 specs.html.

[PvdBJ00] Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of
the JAVA CARD API in JML. In J. Domingo-Ferrer, D. Chan, and
A. Watson, editors, Fourth Smart Card Research and Advanced Ap-
plication Conference (CARDIS’2000), pages 135–154. Kluwer Aca-
demic Publishers, 2000.

[Sun] Sun JAVA CARD developement kit 2.1.1. http://java.sun.com/
products/javacard/dev kit.html#211.

[Sun02] Sun Microsystems, Inc. JAVA CARD 2.2 Application Program-
ming Interface, 2002. http://java.sun.com/products/javacard/
specs.html.

[vdBJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for
JAVA and JML. In T. Margaria and W. Yi, editors, Tools and Al-
gorithms for the Construction and Analysis of Software (TACAS),
volume 2031 of LNCS, pages 299–312. Springer, 2001.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language,
Second Edition: Getting Your Models Ready for MDA. Object Tech-
nology Series. Addison-Wesley, Reading/MA, 2003.

http://www.cs.kun.nl/~erikpoll/publications/jc211_specs.html#
http://www.cs.kun.nl/~erikpoll/publications/jc211_specs.html#
http://java.sun.com/products/javacard/dev_kit.html#211
http://java.sun.com/products/javacard/dev_kit.html#211
http://java.sun.com/products/javacard/specs.html#
http://java.sun.com/products/javacard/specs.html#

Paper IV Verification of Safety Properties in
the Presence of Transactions

Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS’04)
Workshop, Marseille, France, March 2004

Verification of Safety Properties in the

Presence of Transactions

Reiner Hähnle∗ Wojciech Mostowski

Abstract

The JAVA CARD transaction mechanism can ensure that a sequence
of statements either is executed to completion or is not executed at all.
Transactions make verification of JAVA CARD programs considerably more
difficult, because they cannot be formalised in a logic based on pre- and
postconditions. The KeY system includes an interactive theorem prover
for JAVA CARD source code that models the full JAVA CARD standard
including transactions. Based on a case study of realistic size we show the
practical difficulties encountered during verification of safety properties.
We provide an assessment of current JAVA CARD source code verification,
and we make concrete suggestions towards overcoming the difficulties by
design for verification. The main conclusion is that largely automatic
verification of realistic JAVA CARD software is possible provided that it is
designed with verification in mind from the start.

1 Introduction

As JAVA CARD technology is picking up speed it becomes more and more inter-
esting to employ formal analysis techniques in order to ensure that JAVA CARD

applications work as intended. Formal approaches to JAVA CARD application de-
velopment encompass a wide spectrum from byte code to source code, from fully
automated to highly interactive, and from abstract to fully concrete semantics
(see Section 5 for a brief overview).

Our work is aimed at JAVA CARD source code verification with full modelling
of all semantic aspects. This includes the JAVA CARD transaction mechanism
that ensures a sequence of statements either being executed to completion or
not being executed at all. The underlying technology, described in Section 2.2,
is theorem proving in an expressive logic, in which programs and their require-
ments are formalised. Fully automatic inference in this context is in general
unachievable, but one goal of the presented work was to find out just how far
automation reaches.

The experiments described in this paper were made with the KeY theorem
prover, which is an interactive verification system for JAVA CARD featuring a
∗ Department of Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden, e-mail: reiner@cs.chalmers.se

103

mailto:reiner@cs.chalmers.se#

104 R. Hähnle and W. Mostowski

complete formalisation of atomic transactions [BM03]. It is part of the KeY
system [ABB+04], an integrated tool for informal and formal development of
object-oriented software described in Section 2.1. This paper makes the follow-
ing contributions:

• An experience report about the verification of parts of a JAVA CARD elec-
tronic purse application (Demoney) of realistic complexity [MM02]. The
code includes atomic transactions. To our best knowledge, this is the
first report on verification of JAVA CARD source programs with transac-
tions without any simplification or abstraction. The case study and the
experiments are described in Section 3.

• An assessment of current source code verification technology: what can
be automatically proven in terms of LoC, complexity, etc.? Which desir-
able requirements can be expressed and which not? This is discussed in
Section 4.1.

• An analysis of the limitations of current technology and how they can be
overcome. We explain why the Demoney case study had to be partially
refactored to make verification feasible. In particular, we make concrete
suggestions towards overcoming the difficulties by design for verification
in Section 4.2.

The main conclusion we draw in this paper is that largely automatic verification
of realistic JAVA CARD software is in the realm of the possible, but it is essential
to move from post hoc verification to a more aggressive approach, where software
is designed with verification in mind from the start.

2 Background

2.1 The KeY Project

The work presented in this paper is part of the KeY project1 [ABB+04]. The
main goals of KeY are to (1) provide deductive verification for a real world
programming language and to (2) integrate formal methods into industrial soft-
ware development processes. For the first goal a deductive verification tool, the
KeY Prover, has been developed. The verification is based on a specifically tai-
lored version of Dynamic Logic – JAVA CARD Dynamic Logic (JAVA CARD DL),
which supports most of sequential JAVA including the full JAVA CARD language
specification. For the second goal we enhance a commercial CASE tool with
functionality for formal specification and deductive verification. The design and
specification languages of our choice are respectively UML (Unified Modelling
Language) and OCL (Object Constraint Language), which is part of the UML
standard. The KeY system translates OCL specifications into JAVA CARD DL
formulae, whose validity can then be proved with the KeY Prover. All this is
1 http://www.key-project.org

http://www.key-project.org#

IV. Verification of Safety Properties in the Presence of Transactions 105

tightly integrated into a CASE tool, which makes formal verification as trans-
parent as possible to the untrained user.

Of course, the use of OCL is not mandatory: logically savvy users of the
KeY system can write their proof obligations directly in JAVA CARD DL and use
its full expressive power. As we see later, this is even relatively straightforward.

2.2 JAVA CARD Dynamic Logic

We give a very brief introduction to JAVA CARD DL. We are not going to present
or explain any of its sequent calculus rules. Dynamic Logic [Pra77, HKT00] can
be seen as an extension of Hoare logic. It is a first-order modal logic with
parametric modalities [p] and 〈p〉 for every program p (we allow p to be any
sequence of legal JAVA CARD statements). In the Kripke semantics of Dynamic
Logic the worlds are identified with execution states of programs. A state s′ is
accessible from state s via p, if p terminates with final state s′ when started in
state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ
expresses that φ holds in some final state of p. In versions of DL with a non-
deterministic programming language there can be several final states, but JAVA

CARD programs are deterministic, so there is exactly one final state (when p
terminates) or no final state (when p does not terminate). The formula φ→ 〈p〉ψ
is valid if, for every state s satisfying precondition φ, a run of the program p
starting in s terminates, and in the terminating state the postcondition ψ holds.
The formula φ→ [p]ψ expresses the same, except that termination of p is not
required, that is ψ needs only to hold if p terminates.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive
verification of JAVA CARD programs. The detailed description of the calculus
can be found in [Bec01]. The calculus covers all features of JAVA CARD, such as
exceptions, complex method calls, atomic transactions (see below), JAVA arith-
metic. The full JAVA CARD DL sequent calculus is implemented in the KeY
Prover. The prover itself is implemented in JAVA. The calculus is implemented
by means of so-called taclets [BGH+04], that avoid rules being hard coded into
the prover. Instead, rules can be dynamically added to the prover. As a con-
sequence, one can, for example, use different versions of arithmetic during a
proof: idealised arithmetic, where all integer types are infinite and do not over-
flow, or JAVA arithmetic, where integer types are bounded and exhibit overflow
behaviour [BS04].

To sum up the description of JAVA CARD DL and to give the reader an im-
pression of concrete JAVA CARD DL formulae, we present a simple JAVA CARD DL
proof obligation:

card.balance
.= b ` 〈card.charge(amount);〉 card.balance .= b+ amount

It says that if the card object’s balance attribute is equal to b in the initial
state, then the execution of method charge with argument amount terminates
normally (no exception thrown) and afterwards the card object’s initial balance

106 R. Hähnle and W. Mostowski

is increased by amount. The validity of this proof obligation under JAVA integer
semantics depends on whether charge() accounts for overflow, the type of the
+ operator, etc.

2.3 Strong Invariants

While working on one of the JAVA CARD case studies [Mos02] it became apparent
that the specification semantics based on the initial and final states of a program
is not enough to specify and verify some JAVA CARD safety properties. It turned
out that the JAVA CARD applet in question was not “rip-out safe”: it is possible
to destroy the applet’s functionality by removing (ripping out) the JAVA CARD

device from the card reader (terminal) while the applet on the card executes.
As a result of this the applet’s memory may become corrupted and left in an
undefined state, causing malfunctioning of the applet.

To avoid such errors one has to be able to specify and verify the property
that a certain invariant on the objects’ data is maintained at any time during
applet execution and, in particular, in case of abrupt termination. Usually, class
invariants (in OCL and elsewhere) are interpreted with respect to pre/post state
semantics, that is, if the invariant holds before a method is executed then it holds
again after the execution of a method. This semantics does not suffice to ensure
properties of data in intermediate states during method’s execution. To solve
this problem, we introduced strong invariants, which allow to specify properties
about all intermediate states of a program.2

For example, the following strong invariant (expressed in pseudo OCL) says
that we do not allow partially initialised PersonalData objects at any point
in our program. In case the program is abruptly terminated we should end up
with either a fully initialised object or an uninitialised (empty) one:

context PersonalData throughout:
not self.empty implies

self.firstName <> null and self.lastName <> null and self.age > 0

To introduce the notion of a strong invariant it was necessary to extend the
JAVA CARD DL with a new modal operator [[·]] (“throughout”), which closely cor-
responds to Temporal Logic’s 2 operator. In the extended logic, the semantics of
a program is a sequence of all states the execution passes through when started
in the current state (its trace). Using [[·]], it is possible to specify properties
of intermediate states in traces of terminating and non-terminating programs.
And such properties (typically strong invariants and safety constraints) can be
verified using the JAVA CARD DL calculus extended with additional sequent
rules for the “throughout” modality [BM03].

2 In extended static checking a closely related concept called object invariants is used [LS97].
The semantics of OCL invariants is interpreted in the strong sense in [ZG03], where a
temporal extension of OCL is introduced.

IV. Verification of Safety Properties in the Presence of Transactions 107

2.4 JAVA CARD Atomic Transactions

There is one particular aspect of JAVA CARD that makes the “throughout” ex-
tension considerably more complicated than expected, namely, the JAVA CARD

transaction mechanism. The transaction mechanism allows a programmer to
enforce atomicity of sequences of JAVA CARD statements. It is typically used to
ensure consistency of related data that have to be updated simultaneously.

The memory model of JAVA CARD differs somewhat from JAVA’s memory
model [Che00, Sun03]. In smart cards there are two kinds of writable memory:
persistent memory (EEPROM), which is preserved between card sessions, and
transient memory (RAM), whose contents disappears when power loss occurs,
for example, when the card is removed from the reader. Hence, every memory
location in JAVA CARD (variable or object field) is either persistent or transient.
The JAVA CARD language specification gives the following rules (slightly simpli-
fied for this presentation): all objects (including the reference to the currently
running applet, this, and arrays) are created in persistent memory. There-
fore, in JAVA CARD assignments such as “o.attr = 2;”, “this.a = 3;”, and
“arr[i] = 4;” all have a permanent character; that is, the assigned values will
be kept after the card loses power. A programmer can create an array with
transient elements, but currently there is no possibility to make objects (fields)
other than array elements transient. All local variables are transient.

The distinction between persistent and transient objects is very important
since these two types of objects are treated in a different way by JAVA CARD’s
transaction mechanism. The following are the JAVA CARD system calls for trans-
actions with their description:

JCSystem.beginTransaction() begins an atomic transaction. From this point
onwards, until the transaction finishes, all assignments to fields of objects
are executed conditionally, while assignments to transient variables or ar-
ray elements are executed unconditionally (immediately).

JCSystem.commitTransaction() commits the transaction. All conditional as-
signments are committed (in one atomic step).

JCSystem.abortTransaction() aborts the transaction. All the conditional as-
signments are rolled back to the state in which the transaction started.
Assignments to transient variables and array elements remain unchanged
(as if there were no transaction in progress).

A “throughout” property (formula) has to be checked after every single field
or variable assignment which, according to the JAVA CARD runtime environment
specification [Sun03], is atomic. Such checks have to be suspended, however,
when a transaction is in progress, because the assignments inside a transaction
are not atomic, only the whole transaction is atomic. Moreover, as already
said, each transaction can either finish successfully, in which case it commits all
the conditional assignments, or it can fail and in that case the transaction is
aborted and all the conditional assignments have to be rolled back. The logic

108 R. Hähnle and W. Mostowski

has to account for the possibility of an abort and for the difference between
persistent and transient data.

Observe that the possibility of an aborted transaction affects even the se-
mantics of the standard modal operators 〈·〉 and [·], because an abort affects the
final state of the program. Details of how the extension of JAVA CARD DL that
deals with transactions is handled in the calculus can be found in [BM03]. We
do not repeat the technical solution in this paper, but we stress that the details
are rather involved and surprisingly complex. The KeY Prover implements the
whole extension of JAVA CARD DL with “throughout” and transaction mech-
anism. To our knowledge the KeY Prover is the only prover for JAVA CARD

programs that fully handles JAVA CARD transactions.
When a strong invariant has been specified for a JAVA CARD program, say,

for a class C, each of C’s methods can be a subject to verification with respect
to the strong invariant. A typical proof obligation for a method m() involving
a strong invariant looks as follows:

(Inv ∧ Pre ∧ StrongInv) → [[C :: m();]] StrongInv

Inv stands for a standard (weak) invariant of class C and Pre stands for the
method’s precondition. Apart from those two premises one also has to assume
that the strong invariant StrongInv holds before method m() is executed to
establish that StrongInv holds throughout the execution of m().

3 Case Study: JAVA CARD Electronic Purse

The case study presented here is based on the JAVA CARD electronic purse
application Demoney [MM02]. While Demoney has not all the features of a
purse application actually used in production, it is provided by Trusted Logic
S.A. as a realistic demonstration application that includes all major complexities
of a commercial program.

Our target program is a somewhat refactored fragment of Demoney and
concentrates on the important aspects of the application to highlight our veri-
fication results. The Demoney source code is at present not publicly available,
and we do not show it. The program we verified is, however, very close to
Demoney and follows the Demoney specification [MM02]. We deviate from De-
money mainly in that our program is designed to make verification simpler. We
discuss these issues in detail in Section 4.2.

The safety properties that we discuss here were directly motivated by the
ones described in [MM01]. In fact the property we prove (that the current
balance of the purse is always in sync with the balance recorded in the most
recent log entry) for the processSale method presented in Section 3.4 is exactly
the one described in [MM01, Section 3.5]. The example mentioned there is also
based on the Demoney application.

IV. Verification of Safety Properties in the Presence of Transactions 109

0..*

LogRecord

-balance:short=-1

-date:SaleDate=null

-transactionId:int=-1

-empty:boolean=true

+LogRecord()

+setRecord(balance:short,date:SaleDate,transId:int):void

LogFile

-logFileSize:int=20

-currentRecord:int

-log:LogRecord[]=new LogRecord[logFileSize]

+LogFile()

+addRecord(balance:short,date:SaleDate,transId:int):void

Purse

logFile:LogFile=new LogFile()

balance:short=1000

+Purse()

+processSale(amount:short,sellerId:int):void

Figure 1. Purse application class diagram

3.1 The LogRecord Class

The UML class diagram of our program is shown in Figure 1. The basic class
is LogRecord which is used to store data about a single purse transaction. The
data consists of the new balance after the transaction (balance:short), trans-
action identifier (transactionId:int) and transaction date (date:SaleDate).
Additionally, the attribute empty states if a particular instance of LogRecord
is in use.

Such an attribute is characteristic for the JAVA CARD platform, which is a
memory constrained device and in general does not possess a garbage collector.
To avoid memory overflow during execution all objects are allocated during the
initialisation phase of JAVA CARD applets and the programmer keeps track of
which objects are already in use, for example by introducing attributes like
empty.3 The LogRecord class contains only one method, which is responsible
for assigning values to its attributes:

public void setRecord(short balance, SaleDate date, int transId) {

this.balance = balance;

this.date = date;

this.transactionId = transId;

this.empty = false;

}

3 Some design and implementation choices in our example may seem artificial (for example,
the value of empty never changes from false to true), but the point was to illustrate certain
critical issues.

110 R. Hähnle and W. Mostowski

3.2 Specification and Verification of setRecord

Regarding data consistency, the main property one needs to establish about the
class LogRecord is to assure that at any point all the instances of this class that
are in use are properly initialised. Expressed in (pseudo) OCL this property
reads:

context LogRecord throughout:
not self.empty implies

self.balance >= 0 and self.transactionId > 0 and self.date <> null

This states that all attributes of LogRecord objects that are in use have proper
values at any point in time. We want to prove that the method setRecord
preserves this strong invariant. In order to do this, one needs a precondition
saying that the parameters that are passed to setRecord have proper values.
The resulting JAVA CARD DL proof obligation in the actual notation used by
the KeY Prover is:

!self = null

& balance >= 0 & !date = null & transId > 0

& (self.empty = FALSE ->

(self.balance >= 0 & !self.date = null & self.transactionId > 0))

-> [[{ self.setRecord(balance, date, transId); }]]

(self.empty = FALSE ->

(self.balance >= 0 & !self.date = null & self.transactionId > 0))

This is proved automatically with 230 rule applications in 2 seconds.4 If we
change the strong invariant into a weak invariant, that is, replace the throughout
modality in the formula above with a diamond modality, the resulting proof
obligation is (as expected) also provable (125 rules, less than 2 seconds).

Observe that the order of attribute assignments in setRecord’s body is cru-
cial for the strong invariant to hold. If we change setRecord’s implementation
to

public void setRecord(short balance, SaleDate date, int transId) {

this.empty = false;

this.balance = balance;

this.date = date;

this.transactionId = transId;

}

then it does not preserve the strong invariant anymore, while it still preserves
the weak invariant. When trying to prove the strong invariant for this imple-
mentation the prover stops after 248 rule applications with 6 open proof goals.
The proof for the weak invariant proceeds in the same fashion as for the previous
implementation.

4 All the benchmarks presented in this paper were run on a Pentium IV 2.6GHz Linux
system with 512MB of memory. The version of the KeY Prover used (0.1200) is available
on request. The prover was run with JAVA 1.4.2.

IV. Verification of Safety Properties in the Presence of Transactions 111

3.3 The Purse Class

The Purse class is the top level class in our design. The Purse stores a cyclic
file of log records (each new entry allocates an unused entry object or overwrites
the oldest one), which is represented in a class LogFile. LogFile allocates an
array of LogRecord objects, keeps track of the most recent entry to the log and
provides a method to add new records – addRecord.

The Purse class provides only one method – processSale. It is responsible
for processing a single sale performed with the purse – debiting the purchase
amount from the balance of the purse and recording the sale in the log file.
To ensure consistency of all modified data, JAVA CARD transaction statements
are used in processSale’s body. Figure 2 shows the UML sequence diagram
of processSale. The total amount of code invoked by processSale amounts
to less than 30 lines, however, it consists of nested method calls to 5 different
classes.

3.4 Specification and Verification of processSale

As stipulated in [MM01], we need to ensure consistency of related data. In our
case, this means to express that the state of the log file is always consistent with
the current state of the purse. More precisely, we state that the current balance
of the purse is always equal to the balance stored in the most recent entry in
the log file. The corresponding strong invariant expressed in pseudo OCL is:

context Purse throughout:
self.logFile.log.get(self.logFile.currentRecord).balance = self.balance

Since processSale is the method that modifies both the log file and the state
of the purse, we have to show that it preserves this strong invariant. The most
important part of the resulting proof obligation expressed in JAVA CARD DL is
the following:

JCSystem.transactionDepth = 0

& !self = null

& !self.logFile = null

& !self.logFile.log = null

& self.logFile.currentRecord >= 0

& self.logFile.currentRecord < self.logFile.log.length

& self.logFile.log[self.logFile.currentRecord].balance = self.balance

-> [[{ self.processSale(amount, sellerId); }]]

self.logFile.log[self.logFile.currentRecord].balance = self.balance

This proof obligation is proved automatically by the KeY Prover modelling the
full JAVA CARD standard (see Section 3.6) in less than 2 minutes (7264 proof
steps).

3.5 Post Hoc Verification of Unaltered Code

We just reported on successful verification attempts of a refactored and par-
tial version of the Demoney purse application. When it comes to capabilities

112 R. Hähnle and W. Mostowski

m
et

ho
dC

al
le

r

in
iti

al

P
ur

se

if(
ba

la
nc

e
<

0)

el
se

st
at

ic

JC
S

ys
te

m

if(
tr

an
sa

ct
io

nD
ep

th
 >

 (b
yt

e)
0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

=
(b

yt
e)

0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

=
(b

yt
e)

0)

st
at

ic

Tr
an

sa
ct

io
nE

xc
ep

tio
n

sy
st

em
In

st
an

ce

Tr
an

sa
ct

io
nE

xc
ep

tio
n

lo
gF

ile

Lo
gF

ile

if(
cu

rr
en

tR
ec

or
d

==
 lo

gF
ile

Si
ze

)

if(
lo

g[
po

sT
oI

ns
er

t]
==

 n
ul

l)

lo
gR

ec
or

d

Lo
gR

ec
or

d

if(
ba

la
nc

e
<

0)

el
se

if(
tr

an
sa

ct
io

nD
ep

th
 >

 (b
yt

e)
0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

=
(b

yt
e)

0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

=
(b

yt
e)

0)

if(
cu

rr
en

tR
ec

or
d

==
 lo

gF
ile

Si
ze

)

if(
lo

g[
po

sT
oI

ns
er

t]
==

 n
ul

l)

1.
3.

1.
3:

 s
et

R
ec

or
d(

ba
la

nc
e,

 d
at

e,
 tr

an
sa

ct
io

nI
d)

:v
oi

d

1.
1.

1.
1.

1:
 s

et
R

ea
so

n(
re

as
on

):v
oi

d

1.
3.

2.
2:

 jv
m

C
om

m
itT

ra
ns

ac
tio

n(
):v

oi
d

1.
3.

2.
1.

1:
 th

ro
w

It(
Tr

an
sa

ct
io

nE
xc

ep
tio

n.
N

O
T_

IN
_P

R
O

G
R

ES
S)

...

1.
2.

1.
2:

 jv
m

A
bo

rt
Tr

an
sa

ct
io

n(
):v

oi
d

1.
2.

1.
1.

1:
 th

ro
w

It(
Tr

an
sa

ct
io

nE
xc

ep
tio

n.
N

O
T_

IN
_P

R
O

G
R

ES
S)

...

1.
1.

2:
 jv

m
B

eg
in

Tr
an

sa
ct

io
n(

):v
oi

d

1.
1.

1.
1:

 th
ro

w
It(

Tr
an

sa
ct

io
nE

xc
ep

tio
n.

IN
_P

R
O

G
R

ES
S)

:v
oi

d

1.
3.

2:
 c

om
m

itT
ra

ns
ac

tio
n(

):v
oi

d

1.
3.

1:
 a

dd
R

ec
or

d(
ba

la
nc

e,
 c

ur
re

nt
D

at
e,

 s
el

le
rId

):v
oi

d

1.
2.

1:
 a

bo
rt

Tr
an

sa
ct

io
n(

):v
oi

d

1.
1:

 b
eg

in
Tr

an
sa

ct
io

n(
):v

oi
d

1:
 p

ro
ce

ss
S

al
e(

am
ou

nt
,s

el
le

rId
):v

oi
d

Figure 2. Sequence diagram of the processSale method

IV. Verification of Safety Properties in the Presence of Transactions 113

and theoretical features of the KeY Prover there is nothing that prevents us in
principle from proving properties about the real Demoney application. There
are, however, some design features in Demoney that make the verification task
difficult. We discuss them in detail in Section 4.2.

We also proved total correctness proof obligations for two simple, but com-
pletely unaltered, methods of Demoney called keyNum2tag and keyNum2keySet.
This was possible, because the problems discussed in Section 4.2 below stayed
manageable in these relatively small examples. It was crucial that the KeY
Prover allows to prove properties of unaltered JAVA code. This implies that,
in principle, JAVA code does not have to be prepared, translated, or simplified
in any way before it can be processed by the prover. Unaltered JAVA source
programs are first-class citizens in Dynamic Logic. JAVA CARD DL formulae
simply contain references to source code locations such as this:

fr.trustedlogic.demo.demoney.Demoney self;

byte keyNum;

byte result;

...

result = self.keyNum2tag(keyNum);

As the source code we proved properties about was given beforehand, what we
did can be called post hoc verification.

3.6 Performance

We emphasise that all mentioned proofs were achieved fully automatically.
What it means for the user is that there is no interaction required during the
proof and, as a consequence, the user does not have to understand the workings
of the JAVA CARD DL calculus.

Table 1 summarises proof statistics relating to the examples discussed pre-
viously. Some explanations about the three different versions of the proof for
processSale are due: the KeY Prover allows to use different settings for the
rules used during a proof. One of those settings concerns the kind of arithmetics
(see Section 2.2). When ideal arithmetic is used, then all integer types are con-
sidered to be infinite and, therefore, without overflow. When JAVA arithmetic
is used, the peculiarities of integer types as implemented in JAVA are taken into
account: different range (byte, short, etc.), finiteness, and cyclic overflow.

Another prover setting is the null value check. When switched off, many
variables with object references are assumed to be non null without bothering
to prove this fact. When switched on, the prover establishes the proper value
of every object reference. Obviously, proofs involving null checks are more
expensive. The checks for index out of bounds in arrays are always performed
by the prover. The benchmark for the third version of processSale represents
the prover’s behaviour with support for the full JAVA CARD standard.

Figure 3 shows a screenshot of the KeY Prover with a successful proof for
the third version of processSale.

114 R. Hähnle and W. Mostowski

Proof Obligation Time (sec.) Steps Branches
[[setRecord]] 2.0 230 20
〈setRecord〉 1.5 125 6
[[setRecord]]F 2.1 248 6 open
〈keyNum2tag〉D 3.3 392 18
〈keyNum2keySet〉D 5.5 640 33
[[processSale]]1 41.4 3453 79
[[processSale]]2 51.3 4763 248
[[processSale]]3 111.1 7264 338

F Failed proof attempt
D Methods from Demoney (full pre/post behavioural specification)
1 Ideal arithmetic, no null pointer checks
2 Ideal arithmetic, with null pointer checks
3 JAVA arithmetic, with null pointer checks

Table 1. Performance of KeY Prover for examples discussed in the text

Figure 3. KeY Prover window with successful proof

IV. Verification of Safety Properties in the Presence of Transactions 115

4 Results

4.1 Verification Technology

Although we so far managed to verify only a small and partly refactored part of
Demoney , we are encouraged by what we could achieve. The verified programs
contain many complex features: nearly every statement can throw an exception,
many JAVA arithmetic and array types occur, there are several nested method
calls and, above all, JAVA CARD transactions that may cause subtle errors.

The largest example involves about 30 lines of source code. This may not
seem much, but it clearly indicates that methods and classes of non-trivial size
can be handled. In addition, the next version of the KeY prover will sup-
port composition of proofs including a treatment of representation exposure by
computation of modifier sets [BS03]. Consequently, we expect that formal ver-
ification of JAVA CARD programs comparable to Demoney is achievable before
long.

On the other hand, there are also serious limitations. To start with, we ob-
served that verification of the more complex methods of the unaltered Demoney
program results in specifications and proof obligations that simply become too
long and complex. In our opinion, this problem must be attacked by moving
from post hoc verification to design for verification, see the following section.

It would be desirable to have a more formal statement here relating types
of programs and proof complexity. The problem is that even loop-free JAVA

CARD programs contain control structures like exceptions and transactions that
have a global effect on control flow. Taking away all critical features yields
an uninteresting programming language, while leaving them in renders general
statements on proof complexity (at least the ones we could think of) simply
untrue.

A principal obstacle against automating program verification is the necessity
to perform induction in order to handle loops (and recursion). In most cases, the
induction hypothesis needs to be generalised, which requires considerable user
skill. There is extensive work on automating induction proofs, however, mostly
for simple functional programming languages as the target. Only recently, pre-
liminary work for imperative target languages [RCK03, HW03] appeared. If,
however, Demoney is a typical JAVA CARD application, then loops might be
much less of a problem than thought: of 10 loops in Demoney (9 for, 1 while)
most are used to initialise or traverse arrays of known bounds. Such loops do
not require induction at all. The next version of the KeY Prover contains a
special automated rule for handling them. Our analysis showed that at most
one loop in Demoney perhaps needs induction. There is no recursion.

Speed and automated theorem proving support, for example, for arithmetic
properties, need to be improved in order to achieve an interactive working mode
with the prover, which is not possible with proofs that in some cases take min-
utes. There is no principal obstacle here; for example, the speed increased by
an order of magnitude since we began the case study.

An important question is whether we are able to express all relevant require-

116 R. Hähnle and W. Mostowski

ments. There is no agreement on standard requirements for JAVA CARD, but
the report [MM01] can serve as a guideline. Many of the security properties
related there can be expressed in JAVA CARD DL including strong invariants.
In the present paper we concentrated on data consistency in connection with
atomic transactions. The examples included also overflow control. In [DHS04]
it was shown that also information flow properties are expressible. We have
strong evidence that also memory allocation control, error control and even the
well-formedness of transactions can be formulated. For example, the follow-
ing two properties, taken from [MM01] can be formulated in JAVA CARD DL:
(i) no TransactionException related to well-formedness is thrown, (ii) only
ISOExceptions are thrown at the top level of an applet.

The main limitation of the currently used version of JAVA CARD DL is the
impossibility to express complex temporal relationships between the execution
of different code fragments to establish advanced control flow properties such as
a certain temporal order on method calls. This requires more complex temporal
operators than “throughout” or some kind of event mechanism, and is a topic
for future research. On the specification side, some work was done in [TH02],
while [BCW+02] looked at abstracted byte code in a model checking framework.

4.2 Design for Specification and Verification

The way Demoney is designed and coded causes certain technical complications
both when specifying and proving safety properties of programs with transac-
tions. We demonstrate two issues and discuss their impact on the process of
specification and verification of JAVA CARD programs. Thereby, we give guide-
lines for the design of JAVA CARD applications to avoid such problems.

Byte Arrays. Following the specification in [MM02, p. 17] Demoney imple-
ments a cyclic log file in a very similar fashion to our Purse class. Demoney
stores more information than our program in a single log record, but that’s not
an issue when it comes to formal verification. The major difference is that each
single log record is implemented as a byte array instead of an object (of class
LogRecord in our case). We suspect that the main reason for implementing a
log record as a byte array is to ease the transportation of log data to the card
terminal. Another reason, explicitly mentioned in the specification, is to follow
the schema of recording data in the form of TLVs (Tag-Length-Value). Finally,
because of memory costs in smart cards, byte arrays are still much used to save
some small memory overhead one has to pay for object instances and booleans.5

The use of a byte array instead of an object type has consequences for the
verification process. To start with, JAVA CARD allows only one dimensional
arrays, which means that one cannot explicitly declare in a JAVA CARD program
that a log file is a two-dimensional array. So, instead of saying

byte[][] logFile;

5 The last point was confirmed by Renaud Marlet, Trusted Logic S.A., in personal commu-
nication.

IV. Verification of Safety Properties in the Presence of Transactions 117

one has to say

Object[] logFile;

and then allocate this data structure by saying:

logFile = new Object[logFileSize];

for(short i=0; i<logFile.length; i++)

logFile[i] = new byte[LOG_RECORD_SIZE];

Since this is a dynamic allocation, there is no static information on the type of
elements in the logFile array. Statically, one can only deduce that those ele-
ments are of type Object. In the verification process however, such information
has to be made more precise. Since it cannot be deduced statically, it has to be
included in the assumptions (that is, preconditions) of a proof obligation explic-
itly. In JAVA CARD DL this requires use of existential quantifiers and lengthy
Dynamic Logic expressions. In many cases, existential quantification makes it
harder to find a proof automatically. If, instead, one declares a logFile as

LogRecord[] logFile;

the situation is much clearer from the prover’s point of view. The only assump-
tion needed in this case is that the elements of the logFile array are not null.
In general it would also require a quantifier (universal), but in the special case
of our program we are only interested in two elements of this array, so that the
following assumption is sufficient:

!logFile[currentRecord] = null &

!logFile[(currentRecord + 1) % logFileSize] = null

This, together with the declaration of logFile, is enough for the prover to
establish type information about all relevant elements of logFile. Moreover, if
the logFile is statically allocated right after it is declared,

LogRecord[] logFile = new LogRecord[20];

then no assumptions about the elements of logFile are necessary at all. The
logFile example is not an isolated case, as one can find several occurrences of
declarations of Object arrays in Demoney .

The second issue with the use of byte arrays for storing log records is related
to arithmetics. The strong invariant for our Purse class states:

self.logFile.log[self.logFile.currentRecord].balance = self.balance

The type of attribute balance both in LogRecord and in Purse is short. When
the byte array is used for storing log record data, then the value of balance is
stored in two byte elements of this array. Comparing such a two byte value
stored in an array to a short value becomes a bit complicated:

self.logFile.log[self.logFile.currentRecord][OFF_BALANCE] =

castToByte((self.balance - castToByte(self.balance % 256)) / 256) &

self.logFile.log[self.logFile.currentRecord][OFF_BALANCE + 1] =

castToByte(self.balance % 256)

118 R. Hähnle and W. Mostowski

This specification expression is based on an educated guess of how the JAVA

CARD API method Util.setShort [Sun03] is implemented (setShort is a na-
tive method and its implementation is not disclosed). Expanding the Dynamic
Logic function symbol castToByte results in another modulo operation. Also
note that all arithmetic function symbols have JAVA types and must be checked
against overflow. Proving with expressions such as the one shown above is
difficult, if not practically unfeasible.

We sum up the problems associated to byte arrays: (1) typing information
is difficult to establish, causing very complicated preconditions, and (2) com-
parison of short values unwrapped into two byte values requires the use of
complex expressions involving modulo arithmetics. Both problems have serious
impact on the size of proofs and automation.

The use of byte arrays is partially steered by the TLV standard. We do not
argue with the purpose or usability of this standard in smart card technology,
and we accept its motivations, such as the performance and space optimisation
of JAVA CARD applets. It seems obvious, however, that some things have to be
traded off to ease formal specification and verification of JAVA CARD programs.

One general guideline would be to use object types to store any kind of non-
primitive data, at least if they are persistent (for transient data there is no choice
but an array in JAVA CARD). Furthermore, serialise objects only if necessary
(in case of JAVA CARD for communication). As part of a bigger picture one
should consider to decouple application functionality from the communication
model. Such a decoupled design is likely to allow decomposable, and thus easier,
verification. It is more robust, too. We point to the fact that the examples
presented in [MM01] follow for the most part the guideline of using object types
instead of byte arrays for storing data.

Cyclic Indexing of Arrays. Another problematic issue for specification and
verification is the way information on the most recent record in the log file is
kept and updated in Demoney . This is rather a problem of coding conventions
and not a design issue. Demoney ’s cyclic file class has an attribute that stores
the index of the next record to be used – nextRecordIndex. In order to access
the most recent entry in the log, one writes an expression like:

logFile[(nextRecordIndex - 1) % logFileSize] ...

Modulo arithmetics is used to calculate the actual index. If we add the way the
nextRecordIndex is updated, that is

nextRecordIndex = (nextRecordIndex + 1) % logFileSize;

then the prover has to establish the validity of equations such as:

index = (((index - 1) % logFileSize) + 1) % logFileSize

where all arithmetic function symbols have JAVA types and must be checked
against overflow. This is certainly not impossible, but it adds substantially to
the complexity of the resulting first-order proof obligations and, in connection

IV. Verification of Safety Properties in the Presence of Transactions 119

with other phenomena, can make the problems too difficult to prove automati-
cally.

To avoid these complications, we suggest two simple guidelines. The first
is to keep track of those indices that are relevant for specification and ver-
ification, instead of those for implementation (or simply keep both kinds of
indices). The second is to avoid modulo operations, if possible. The update of
nextRecordIndex can be easily rewritten as:

nextRecordIndex++;

if (nextRecordIndex == logFileSize)

nextRecordIndex = 0;

This program fragment might not be as simple and fast as the one before, but
it considerably eases verification.

We believe that if the problems mentioned in this section were not present
we would be able to verify automatically that Demoney ’s performTransaction
method preserves the kind of strong invariant that we had in our Purse class.

Discussion. Asking a programmer to rewrite the code to ease verification may
seem unrealistic. It may look as if we put the burden of making verification
feasible on the programmer instead of enabling the prover handle arbitrarily
complex programs. This is not the case. Our aim is to make the KeY prover
powerful enough to deal with complex JAVA CARD code, however, one cannot
expect a prover to deal with baroque programs optimised for performance. A
trade-off has to be found. The guidelines we proposed are simple to follow
and, in addition, make sense from a software engineering point of view. In
particular, we do not assume that the programmer has any knowledge of the
theorem prover.

Another counter argument against rewriting the code is that abstraction
and interface specification should be used to simplify the verification process
and get around some of the problems we described above. We fully agree with
this, where this possibility is applicable, but in the context of JAVA CARD applet
verification it is not so. For example, when one proves a rip-out related property,
one cannot abstract away from the implementation of the API methods, because
the actual implementation of an API method affects the intermediate states of
the program being verified.

5 Related Work

A version of Dynamic Logic that extends pure Dynamic Logic with trace modal-
ities “throughout” and “at least once” was first presented in [BS01]. The ax-
iomatisation of transactions was provided in [BM03]. Paper [HP04] proposes
another approach to reasoning about rip-out properties (called card tears there).
It presents a theoretical framework for dealing with card tears and transactions
based on global program (method) transformation (as opposed to the KeY ap-
proach of local transformations). This paper does not report on any practical

120 R. Hähnle and W. Mostowski

verification attempts. In [TH02] temporal constructs are introduced to the JAVA

Modelling Language (JML), but they refer to sequences of method invocations
and not to sequences of intermediate program states.

Paper [JMR04] is closely related to our work in the sense that it reports
on successful verification attempts of a commercial JAVA CARD applet with
different verification tools (ESC/JAVA2, Jive, Krakatoa, LOOP). The se-
curity property under consideration, also mentioned in Section 4.1, is that
only ISOExceptions are thrown at the top level. Transaction related prop-
erties are not investigated. Like in the present study, it is stressed that two-
dimensional byte arrays and the use of byte arrays in general are problematic
in JAVA CARD verification, and have serious impact on the size and complex-
ity of proofs. One of the main results is that subtle bugs were found in the
applet.

Gemplus provides a JAVA CARD case study similar to Demoney [BMGL01],
also a purse application and publicly available.6 We do not use it at the moment,
because it contains a large number of features that detract from the basic issues
and make it less suitable as a starting point for JAVA CARD verification. In
addition, it was not developed further in the last three years.

Related work in JAVA CARD verification can be classified according to several
criteria. Working on byte code avoids the problems of source code availability
and compiler trustworthiness, but makes full verification more difficult due to
information loss during compilation. An overview of work done on the byte code
level is provided in [Boy03] – we concentrate on efforts targeted at source code:
here, one can distinguish between methods that attempt complete modelling
of the JAVA CARD semantics and those that do not. The latter include model
checking and extended static checking.

Model checking is based on a suitable abstraction of the execution model,
which in the Bandera project [CDHR00] is JAVA, and of the requirements. The
advantages are full automation of the model checking phase, trace generation
for counter models, and treatment of concurrent JAVA programs. The draw-
back is the need for abstraction which poses difficulties for programs containing
JAVA arithmetic and other inductive data structures. Bandera handles JAVA,
not JAVA CARD, and hence no transactions. In design-by-contract [Mey92] and
extended static checking (ESC) [FLL+02] JAVA source code is decorated with
annotations from a restricted language. Annotated programs (via an inter-
mediate representation) undergo a dynamic analysis that produces first-order
verification conditions for a theorem prover. The analysis does not attempt to
be complete, but it is fully automatic and produces warnings, when annota-
tions are potentially violated. ESC is related to our strong invariants, because
arbitrary code locations can be annotated with object invariants [LS97]. An
approximation of strong invariants within ESC can be obtained by annotating
every program point with the desired invariant.7 Again, atomic transactions
are not supported, as the target language is JAVA.

6 http://www.gemplus.com/smart/enews/st1/pacap.html
7 We thank Rustan Leino for pointing this out.

http://www.gemplus.com/smart/enews/st1/pacap.html#

IV. Verification of Safety Properties in the Presence of Transactions 121

Closest to our approach are source code verifiers for JAVA based on vari-
ous program calculi. The LOOP tool [JP03] translates JAVA source code with
JML specifications into theories for the PVS theorem prover. JAVA semantics is
described with co-algebras and uses higher-order logic as an internal representa-
tion. Higher-order logic is also used to formalise syntax and semantics of a JAVA

fragment in Isabelle [vO01] and in the Krakatoa tool [MPMU04]. In the latter
JAVA programs and their JML specifications are translated into an intermedi-
ate, mostly functional, language, then proof obligations are generated, which in
turn are proved with the Coq proof assistant. The Jive system [MMPH00] is
based on an extended Hoare style calculus, Jack [BRL03] on weakest precondi-
tion calculus, and KIV [Ste01] on Dynamic Logic. The last three systems are
closely related to the KeY Prover in that they all axiomatise JAVA with logical
rules that can be seen as a small step operational semantics and proofs can
be interpreted as symbolic execution with induction. The differences lie in the
details and scope of the axiomatisation as well as support for automation. As
far as we know, KeY is the only system that supports strong (object) invariants
and, in particular, the semantics of JAVA CARD transactions.

6 Conclusions

In this paper, we presented and analysed a case study concerned with formal
specification and verification of JAVA CARD programs. Our results show that
largely automated formal verification of realistic JAVA CARD applications with-
out abstraction is possible in the near future. It is possible already now provided
that applications are designed with verification in mind from the start. We gave
a number of simple design guidelines that drastically simplify proofs while cre-
ating only a moderate performance overhead. We believe this to be acceptable,
because even in the smart card world, performance restrictions become less of an
issue. Besides, a small memory overhead seems an acceptable price for provably
correct programs.

We concentrated in this case study on safety (data consistency) properties in
the presence of transactions and possible arithmetic overflow. Information flow,
memory allocation, well-formedness of transactions, and error analysis would
be possible to formulate, but we cannot say anything about feasibility at this
time. Temporal relationships between the execution of different code fragments
as needed to enforce an order on method calls are a topic for future research.

Acknowledgements

We would like to thank Renaud Marlet of Trusted Logic S.A. for providing the
Demoney case study. We also thank the organisers of CASSIS’04 for the oppor-
tunity to present this work. We thank the following people for reading drafts of
this paper and providing valuable feedback: Renaud Marlet, Steffen Schlager,
and Martin Giese. The anonymous reviewers helped with their constructive
criticism and pointers to relevant literature to improve the paper.

122 R. Hähnle and W. Mostowski

References

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and Systems Modeling, April 2004. Online
First issue, to appear in print.

[BCW+02] Pierre Bieber, Jacques Cazin, Virginie Wiels, Guy Zanon, Pierre Gi-
rard, and Jean-Louis Lanet. Checking secure interactions of Smart
Card applets. Journal of Computer Security, 10(4):369–398, 2002.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of
JAVA CARD programs. In I. Attali and T. Jensen, editors, JAVA

on Smart Cards: Programming and Security. Revised Papers, JAVA

CARD 2000, International Workshop, Cannes, France, volume 2041
of LNCS, pages 6–24. Springer, 2001.

[BGH+04] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle,
Andreas Roth, Philipp Rümmer, and Steffen Schlager. Taclets: a
new paradigm for constructing interactive theorem provers. Revista
de la Real Academia de Ciencias Exactas, F́ısicas y Naturales, Serie
A: Matemáticas, 98(1), 2004. Special Issue on Symbolic Computa-
tion in Logic and Artificial Intelligence.

[BM03] Bernhard Beckert and Wojciech Mostowski. A program logic for
handling JAVA CARD’s transaction mechanism. In Mauro Pezzè, ed-
itor, Proceedings, Fundamental Approaches to Software Engineering
(FASE) Conference 2003, Warsaw, Poland, volume 2621 of LNCS,
pages 246–260. Springer, April 2003.

[BMGL01] Eric Bretagne, Abdellah El Marouani, Pierre Girard, and Jean-
Louis Lanet. PACAP purse and loyalty specification v0.4. Technical
report, Gemplus, January 2001.

[Boy03] Robert Boyer. Proving theorems about JAVA and the JVM with
ACL2. In M. Broy and M. Pizka, editors, Models, Algebras and
Logic of Engineering Software, pages 227–290. IOS Press, Amster-
dam, 2003.

[BRL03] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. JAVA applet
correctness: A developer-oriented approach. In Proceedings, For-
mal Methods Europe 2003, volume 2805 of LNCS, pages 422–439.
Springer, 2003.

[BS01] Bernhard Beckert and Steffen Schlager. A sequent calculus for first-
order dynamic logic with trace modalities. In R. Gorè, A. Leitsch,
and T. Nipkow, editors, Proceedings, International Joint Conference

IV. Verification of Safety Properties in the Presence of Transactions 123

on Automated Reasoning, Siena, Italy, LNCS 2083, pages 626–641.
Springer, 2001.

[BS03] Bernhard Beckert and Peter H. Schmitt. Program verification us-
ing change information. In Proceedings, Software Engineering and
Formal Methods (SEFM), Brisbane, Australia, pages 91–99. IEEE
Press, 2003.

[BS04] Bernhard Beckert and Steffen Schlager. Software verification with
integrated data type refinement for integer arithmetic. In Eerke A.
Boiten, John Derrick, and Graeme Smith, editors, Proceedings, In-
ternational Conference on Integrated Formal Methods, Canterbury,
UK, volume 2999 of LNCS, pages 207–226. Springer, April 2004.

[CDHR00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. A
language framework for expressing checkable properties of dynamic
software. In Proceedings, SPIN Software Model Checking Workshop,
LNCS, pages 205–223. Springer, 2000.

[Che00] Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architec-
ture and Programmer’s Guide. JAVA Series. Addison-Wesley, 2000.

[DHS04] Ádám Darvas, Reiner Hähnle, and Dave Sands. A theorem proving
approach to analysis of secure information flow. Technical Report
2004–01, Department of Computing Science, Chalmers University
of Technology and Göteborg University, 2004.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static check-
ing for JAVA. In Proceedings, ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, pages
234–245. ACM Press, 2002.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic.
MIT Press, 2000.

[HP04] Engelbert Hubbers and Erik Poll. Reasoning about card tears and
transactions in JAVA CARD. In Fundamental Approaches to Software
Engineering (FASE’2004), Barcelona, Spain, volume 2984 of LNCS,
pages 114–128. Springer, 2004.

[HW03] Reiner Hähnle and Angela Wallenburg. Using a software test-
ing technique to improve theorem proving. In Alex Petrenko and
Andreas Ulrich, editors, Post Conference Proceedings, 3rd Inter-
national Workshop on Formal Approaches to Testing of Software
(FATES), Montréal, Canada, volume 2931 of LNCS, pages 30–41.
Springer, 2003.

124 R. Hähnle and W. Mostowski

[JMR04] Bart Jacobs, Claude Marché, and Nicole Rauch. Formal verification
of a commercial smart card applet with multiple tools. In Proceed-
ings, Algebraic Methodology And Software Technology, Stirling, UK,
volume 3116 of LNCS, pages 241–256. Springer, July 2004.

[JP03] Bart Jacobs and Erik Poll. JAVA program verification at Nijmegen:
Developments and perspective. In Software Security – Theories and
Systems: Second Mext-NSF-JSPS International Symposium, ISSS
2003, Tokyo, Japan, November 4–6, 2003. Revised Papers, volume
3233 of LNCS, pages 134–153. Springer, 2003.

[LS97] K. Rustan M. Leino and Raymie Stata. Checking object
invariants. Technical Note #1997-007, Digital Systems Re-
search Center, Palo Alto, USA, January 1997. Available
from ftp://ftp.digital.com/pub/DEC/SRC/technical-notes/
SRC-1997-007.ps.gz.

[Mey92] Bertrand Meyer. Applying “Design by Contract”. IEEE Computer,
25(10):40–51, October 1992.

[MM01] Renaud Marlet and Daniel Le Métayer. Security properties and
JAVA CARD specificities to be studied in the SecSafe project. Tech-
nical Report SECSAFE-TL-006, Trusted Logic S.A., August 2001.

[MM02] Renaud Marlet and Cédric Mesnil. Demoney: A demonstrative
electronic purse – Card specification. Technical Report SECSAFE-
TL-007, Trusted Logic S.A., November 2002.

[MMPH00] Jörg Meyer, Peter Müller, and Arnd Poetzsch-Heffter. The
Jive system – Implementation description. Available from
http://softech.informatik.uni-kl.de/downloads/publica-
tions/jive.pdf, 2000.

[Mos02] Wojciech Mostowski. Rigorous development of JAVA CARD applica-
tions. In T. Clarke, A. Evans, and K. Lano, editors, Proceedings,
Fourth Workshop on Rigorous Object-Oriented Methods, London,
U.K., March 2002. Available from http://www.cs.chalmers.se/
~woj/papers/room2002.ps.gz.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The
Krakatoa tool for certification of JAVA/JAVA CARD programs an-
notated in JML. Journal of Logic and Algebraic Programming,
58(1–2):89–106, 2004. http://krakatoa.lri.fr.

[Pra77] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic.
In Proceedings, 18th Annual IEEE Symposium on Foundation of
Computer Science, 1977.

http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#
http://krakatoa.lri.fr#

IV. Verification of Safety Properties in the Presence of Transactions 125

[RCK03] Enric Rodŕıguez-Carbonell and Deepak Kapur. Automatic gen-
eration of polynomial loop invariants for imperative programs.
Available from http://www.lsi.upc.es/~erodri/ijcar04ex.ps,
November 2003.

[Ste01] Kurt Stenzel. Verification of JAVA CARD programs. Technical Re-
port 2001–5, Institut für Informatik, Universität Augsburg, Ger-
many, 2001. Available from http://www.Informatik.Uni-Augs-
burg.DE/swt/fmg/papers/.

[Sun03] Sun Microsystems, Inc., Santa Clara/CA, USA. JAVA CARD 2.2.1
Platform Specification, October 2003.

[TH02] Kerry Trentelman and Marieke Huisman. Extending JML specifica-
tions with temporal logic. In Algebraic Methodology And Software
Technology (AMAST ’02), volume 2422 of LNCS, pages 334–348.
Springer-Verlag, 2002.

[vO01] David von Oheimb. Analyzing JAVA in Isabelle/HOL. PhD thesis,
Institut für Informatik, Technische Universität München, January
2001.

[ZG03] Paul Ziemann and Martin Gogolla. An OCL extension for formu-
lating temporal constraints. Technical Report 1/03, Universität
Bremen, Fachbereich für Mathematik und Informatik, 2003.

http://www.lsi.upc.es/~erodri/ijcar04ex.ps#
http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/#
http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/#

126 R. Hähnle and W. Mostowski

Paper V Formalisation and Verification of
JAVA CARD Security Properties
in Dynamic Logic

Fundamental Approaches to Software Engineering
Conference 2005, Edinburgh, Scotland, April 2005

Formalisation and Verification of JAVA CARD

Security Properties in Dynamic Logic

Wojciech Mostowski

Abstract

We present how common JAVA CARD security properties can be for-
malised in Dynamic Logic and verified, mostly automatically, with the
KeY system. The properties we consider, are a large subset of properties
that are of importance to the smart card industry. We discuss the proper-
ties one by one, illustrate them with examples of real-life, industrial size,
JAVA CARD applications, and show how the properties are verified with the
KeY Prover – an interactive theorem prover for JAVA CARD source code
based on a version of Dynamic Logic that models the full JAVA CARD stan-
dard. We report on the experience related to formal verification of JAVA

CARD programs we gained during the course of this work. Thereafter,
we present the current state of the art of formal verification techniques
offered by the KeY system and give an assessment of interactive theorem
proving as an alternative to static analysis.

1 Introduction

JAVA CARD [Che00] is a technology designed to enable and incorporate JAVA in
smart card programming. The main ingredient of this technology is the JAVA

CARD language specification, which is a stripped down version of JAVA. In recent
years JAVA CARD technology gained interest in the formal verification commu-
nity. There are two main reasons for this: (1) JAVA CARD applications are safety
and security critical, and thus a perfect target for formal verification, (2) due to
the relative language simplicity JAVA CARD is also a feasible target for formal
verification.

In this paper we show how common JAVA CARD security properties can be
formalised in the Dynamic Logic used in the KeY system and proved with the
KeY interactive theorem prover. The properties in question are a rather large
subset of properties that are of interest to the smart card industry [MM01].
We demonstrate the formalisation and verification of the properties on two
real-life JAVA CARD applets. After giving the detailed description of the prop-
erties we formalised and proved, we report on the experience we gained dur-
ing the course of this work and analyse the main difficulties we encountered.
In an earlier paper [HM05] we reported on the verification of transactions re-
lated safety properties based on a somewhat simplified example of a JAVA CARD

129

130 W. Mostowski

purse applet. We proposed the approach of design for verification, where we
argue that certain precautions have to be taken into account during the de-
sign and coding phase to make verification feasible. In this work however,
we concentrate on source code verification of already existing JAVA CARD ap-
plications without any simplifications whatsoever, and we discuss wider range
of security properties than before. In particular, one of the assumptions we
made, is that we should be able to specify properties and perform verifica-
tion without modifying the source code of the verified program. Thus, this
work presents the current state of the art of automated formal verification tech-
niques offered by the KeY system for industrial size JAVA CARD applications
with respect to meaningful, industry related security properties. The main
conclusion is that full source code verification of JAVA CARD applications is ab-
solutely possible and in most part can indeed be achieved automatically, how-
ever, such verification requires deep understanding of the specification issues,
including full understanding of the application being verified and the specifici-
ties of the JAVA CARD environment. Therefore, we consider the KeY system,
assuming the approach we present in this work, mostly suitable for experienced
users.

The properties that we consider here, originate from the area of static anal-
ysis [MM01], however, to the best of our knowledge, no static analysis technique
for thorough treatment of those properties has been developed. We managed
to formalise and verify almost all of the properties using the KeY interactive
theorem prover. For the remaining properties we give concrete suggestions on
how to treat them with the KeY system. We give arguments why we think that
interactive theorem proving is a reasonable, and in fact in some ways better,
alternative to static analysis.

In the following Section we give the background information about the KeY
project, its objectives, the Dynamic Logic used in the KeY interactive prover,
and a brief overview of related work. Section 3 describes shortly the JAVA

CARD applications (case studies) used to demonstrate our results. In Section 4
we present the formalisation of security properties one by one illustrated with
numerous examples and also discuss briefly properties not covered in this paper.
In Section 5 we discuss the difficulties we encountered during the course of this
work, the experience we gained, and we asses interactive theorem proving as an
alternative to static analysis. Finally, Section 6 concludes the paper.

2 Background

2.1 The KeY Project

The work presented in this paper is part of the KeY project1 [ABB+04]. The
main goals of KeY are to (1) provide deductive verification for a real world pro-
gramming language and to (2) integrate formal methods into industrial software
development processes.

1 http://www.key-project.org

http://www.key-project.org#

V. Formalisation and Verification of JAVA CARD Security Properties. . . 131

For the first goal a deductive verification tool for JAVA source programs, the
KeY Prover, has been developed. The main target of the KeY system is the JAVA

CARD language. The verification is based on a specifically tailored version of
Dynamic Logic – JAVA CARD Dynamic Logic (JAVA CARD DL), which supports
most of sequential JAVA, in particular the full JAVA CARD language specification
including the JAVA CARD transaction mechanism. JAVA CARD DL and the KeY
Prover are designed in a way to make the verification process as automated as
possible.

For the second goal we enhance a commercial CASE tool with functionality
for formal specification and deductive verification. The design and specification
languages of our choice are respectively UML (Unified Modelling Language) and
OCL (Object Constraint Language), which is part of the UML standard [Obj03].
The KeY system translates OCL specifications into JAVA CARD DL formulae,
whose validity can then be proved with the KeY Prover. All this is tightly in-
tegrated into a CASE tool, which makes formal verification as transparent as
possible to the untrained user.

Of course, the use of OCL is not mandatory: logically savvy users of the
KeY system can write their proof obligations directly in JAVA CARD DL and
use its full expressive power. Due to specificities of the security properties in
question and the necessity to operate on relatively low level of the specification
this is actually the approach we have taken in the present work.

2.2 JAVA CARD

JAVA CARD technology [Che00] provides means of programming smart cards
with (a subset of) the JAVA programming language. Smart cards are nothing
more (and nothing less) than small computers, providing limited power CPU
and three types of memory: ROM (read only), EEPROM (writable, persis-
tent), and RAM memory (writable, non-persistent). The card’s ROM con-
tains a JAVA CARD Virtual Machine and the implementation of the JAVA CARD

API, together they allow running JAVA CARD applets on the card. The EEP-
ROM memory is used to store applet’s persistent data that is kept from ses-
sion to session, while RAM is used for local run-time computations. Smart
cards communicate with the rest of the world through application protocol
data units (APDUs, ISO 7816–4 standard). The communication is done in
master-slave mode – it is always the master/terminal application that initialises
the communication by sending the command APDU to the card and then the
card replies by sending a response APDU. Certain JAVA language features are
not supported by the JAVA CARD language: large primitive data types (int,
long, double, float), characters and strings, multidimensional arrays, dy-
namic class loading, threads and garbage collection. Most of the remaining
JAVA features, in particular object oriented ones like interfaces, inheritance,
virtual methods, overloading, dynamic object creation, are supported by the
JAVA CARD language. Also, the JAVA CARD API is a very small subset of
the JAVA API designed to handle smart card specific routines and resources:
Application IDentifiers (AIDs), APDUs, and JAVA CARD applets among oth-

132 W. Mostowski

ers. Schematically, JAVA CARD applet implements the install method re-
sponsible for the initialisation of the applet and a process method for han-
dling incoming command APDUs and sending the response APDUs back to the
host.

2.3 JAVA CARD Dynamic Logic

We give a very brief introduction to JAVA CARD DL. We are not going to present
or explain any of its sequent calculus rules. Dynamic Logic [Pra77, HKT00] can
be seen as an extension of Hoare logic. It is a first-order modal logic with
parametric modalities [p] and 〈p〉 for every program p (we allow p to be any
sequence of legal JAVA CARD statements). In the Kripke semantics of Dynamic
Logic the worlds are identified with execution states of programs. A state s′ is
accessible from state s via p, if p terminates with final state s′ when started in
state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ
expresses that φ holds in some final state of p. In versions of DL with a non-
deterministic programming language there can be several final states, but JAVA

CARD programs are deterministic, so there is exactly one final state (when p ter-
minates) or no final state (when p does not terminate). In JAVA CARD DL termi-
nation forbids exceptions to be thrown, i.e., a program that throws an uncaught
exception is considered to be non terminating (or, terminating abruptly) [BS01].
The formula φ→ 〈p〉ψ is valid if, for every state s satisfying precondition φ, a
run of the program p starting in s terminates, and in the terminating state
the postcondition ψ holds. The formula φ→ [p]ψ expresses the same, except
that termination of p is not required, that is ψ needs only to hold if p termi-
nates.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive
verification of JAVA CARD programs. The detailed description of the calculus
can be found in [Bec01]. The calculus covers all features of JAVA CARD, such as
exceptions, complex method calls, atomic transactions (see below), JAVA arith-
metic. The full JAVA CARD DL sequent calculus is implemented in the KeY
Prover. The prover itself is implemented in JAVA. The calculus is implemented
by means of so-called taclets [BGH+04], that avoid rules being hard coded into
the prover. Instead, rules can be dynamically added to the prover. As a con-
sequence, one can, for example, use different versions of arithmetic during a
proof: idealised arithmetic, where all integer types are infinite and do not over-
flow, or JAVA arithmetic, where integer types are bounded and exhibit overflow
behaviour [BS04].

Strong Invariants. The most common semantics of an invariant is based
on the initial and final states of a program, i.e., if an invariant holds before
the program is executed then it should hold after the execution has completed.
This however is not enough to treat certain atomicity properties, for example
to specify that a certain property should hold in case of an unexpected/abrupt

V. Formalisation and Verification of JAVA CARD Security Properties. . . 133

termination (for example, when the smart card is ripped out from the termi-
nal). Thus, we introduced the notion of a strong invariant to JAVA CARD DL.
Such an invariant on the objects’ data is maintained at any time during applet
execution and, in particular, in case of abrupt termination. This resulted in
extending the JAVA CARD DL with a new modal operator [[·]] (“throughout”),
which closely corresponds to Temporal Logic’s 2 operator. In the extended
logic, the semantics of a program is a sequence of all states the execution passes
through when started in the current state (its trace). Using [[·]], it is possible
to specify properties of intermediate states in traces of terminating and non-
terminating programs. To fully treat strong invariant related properties one
also needs formalisation of JAVA CARD transactions in the logic. The transac-
tion mechanism [Che00] ensures that a piece of JAVA CARD program is executed
to completion or not at all. The theoretical aspects of integration of the through-
out modality and transactions into JAVA CARD DL are discussed in [BM03] and
the practical experiences in [HM05]. We refer the reader to those two papers for
more in-depth discussion about transaction related issues, here we should only
say that transactions (specifically, the possibility of an programmatic transac-
tion abort) make the technical details of JAVA CARD DL quite involved. Strong
invariants and transactions are central part of one of the discussed security
properties.

2.4 Related Work

Formal approaches to JAVA CARD application development cover a wide spec-
trum of techniques and we discuss only some of them here. One of the most
common low-level ones are byte code level verification [Boy03] and model check-
ing [CDHR00]. For us, the most interesting approaches are those considered
with source code level verification, based on static checking and various pro-
gram calculi. The work of Jacobs et al. [JMR04] is most closely related to
our work and can partly serve as an overview of verification techniques tar-
geted at source code. It reports on successful verification attempts of a com-
mercial JAVA CARD applet with different verification tools: ESC/JAVA2 (suc-
cessor of ESC/JAVA [FLL+02]), Krakatoa [MPMU04], Jive [MMPH00], and
LOOP [JP03]. The security property under consideration, one of the properties
we discuss in this paper, is that only ISOExceptions are thrown at the top
level of the applet. The analysed applet is a commercial one, sold to customers.
There are no technical details revealed about the applet, so it is difficult to com-
pare its complexity to our case studies. Jacobs et al. detected subtle bugs in the
applet with respect to a possible uncaught ArrayIndexOutOfBoundsException
(with LOOP and Jive tools), as well as full verification (no exceptions other
than ISOException, satisfied postcondition, and preserved class invariant) of
single methods with the Krakatoa tool. The paper admits that expertise
and considerable user interaction with the back-end theorem provers (PVS and
Coq) were required. It is also noted that the provers are the performance and
scalability bottlenecks in the verification process. We will relate to those issues
while we present our results.

134 W. Mostowski

3 Case Studies

In the remainder of this paper we will use two JAVA CARD case studies. The
first one is a JAVA CARD electronic purse application Demoney2 [MM02]. While
Demoney does not have all of the features of a purse application actually used
in production, it is provided by Trusted Logic S.A. as a realistic demonstration
application that includes all major complexities of a commercial program, in
particular it is optimised for memory consumption, which, as noted in [HM05],
is one of the major obstacles in verification. The Demoney source code is at
present not publicly available, so there are certain limits to the level of the
technical detail in the presented examples.

The second case study is an RSA based authentication applet for logging into
a Linux system (SafeApplet). It was initially developed by Dierk Bolten for
JAVA Powered iButtons3 and was one of the motivating case studies to introduce
strong invariants into JAVA CARD DL. Here, we use a fully refactored version of
SafeApplet, which is described in [Mos02].

4 Security Properties

The security properties that we discuss here are directly based on the ones
described in [MM01], which we will refer to as the SecSafe document in the rest
of the paper. We considered all of the properties listed there, but few of them
we did not yet analyse in full detail. However, we still discuss those remaining
properties and the possibilities of handling them in the KeY system at the end
of this Section. Let us start with a brief overview of the five properties that we
do discuss in detail.

Only ISOExceptions at Top Level (Section 3.4 of the SecSafe docu-
ment). The exceptions of type ISOException are used in JAVA CARD to signal
error conditions to the outside environment (the smart card terminal). Such an
exception results with a specific APDU (Application Protocol Data Unit) car-
rying an error code being sent back to the card terminal. To avoid leaking out
the information about error conditions inside the applet, a well written JAVA

CARD applet should only throw exceptions of type ISOException at top level.

No X Exceptions at Top Level. Due to its complexity, the first property is
proposed to be decomposed into simpler subproperties. Such properties say that
certain exceptions are not thrown, including most common NullPointerExcep-
tion, ArrayIndexOutOfBoundsException, or NegativeArraySizeException.
A special case of this property is the next one.

2 We thank Renaud Marlet of Trusted Logic S.A. for providing the Demoney code.
3 http://www.ibutton.com

http://www.ibutton.com#

V. Formalisation and Verification of JAVA CARD Security Properties. . . 135

Well Formed Transactions. This property consists of three parts, which
say, respectively: do not start a transaction before committing or aborting the
previous one, do not commit or abort a transaction without having started any,
and do not let the JAVA CARD Runtime Environment close an open transaction.
The JAVA CARD specification allows only one level of transactions, i.e., there is
no nesting of transactions in JAVA CARD. As we show later, this property can
be expressed in terms of disallowing JAVA CARD’s TransactionException.

Atomic Updates (Section 3.5 of the SecSafe document). In general,
this property requires related persistent data in the applet to be updated atom-
ically. In the context of our work this property is directly connected to the
“rip-out” properties and strong invariants, which we will use to deal with this
property.

No Unwanted Overflow (Section 3.6 of the SecSafe document). This
property simply says that common integer operations should not overflow.

In the following we will go through these security properties one by one. For
each of the properties we will give a general guideline on how to formalise it in
JAVA CARD DL, give an example based on one or both of the case studies, give
comments about the verification of a given property and possibly discuss some
more issues related to the property.

4.1 Only ISOExceptions at Top Level

The KeY system provides a uniform framework for allowing and disallowing
exceptions of any kind in JAVA CARD programs. We explain this with a general
example. Given some applet MyApplet one can forbid aMethod to throw any
exception other than ISOException in the following way (this is the actual
syntax used by the KeY Prover, we will explain it shortly):

java {"source/"}

program variables {

MyApplet self;

}

problem {

preconditions ->

<{ method-frame(MyApplet()): {

try {

self.aMethod();

}catch(javacard.framework.ISOException ie) {}

} }> true

}

This is a proof obligation that is an input to the KeY Prover. The first sec-
tion in the file tagged with java tells the prover where the source code of the

136 W. Mostowski

program to be verified is. The program variables section defines all the pro-
gram/JAVA variables that are going to be used in the proof obligation. The
problem section defines the actual proof obligation. The string preconditions
is a place holder for the preconditions necessary to establish the correct execu-
tion of aMethod. One of the obvious conditions to put there, is that the self
reference is not null: !self = null. With this proof obligation we want to
prove that a call to aMethod either terminates normally or with an exception of
type ISOException. The actual call to the method, self.aMethod(), appears
inside the diamond modality (<{}>) and is wrapped with some additional state-
ments. The diamond requires the program to terminate normally, without any
exceptions – any program p throwing an uncaught exception does not satisfy the
formula 〈p〉true. So, to specify that a program throws a certain kind of excep-
tion only, one wraps the actual program with a try-catch statement catching
the particular kind of exception. This way, if our method terminates normally
or throws an ISOException (only), the program inside the diamond still ter-
minates normally, making the proof obligation valid. In case any other kind of
exception is thrown the proof obligation becomes invalid. The method-frame
statement tells the prover that our program is executed in the context of the
MyApplet class. Such information is necessary, for example, when the method
in question is private. The method-frame statements is one of the extensions
to JAVA syntax used in JAVA CARD DL to deal with scopes of methods, method
return values, etc. We want to stress here, that this extension is a superset of
JAVA, not a subset – any valid JAVA/JAVA CARD program can be used inside the
modality. What follows, and what cannot be seen in this schematic example, is
that method calls can have arguments and return values of arbitrary JAVA type.

Let us now demonstrate this property with real examples. First we give
a specification of Demoney ’s method verifyPIN. This method is common to
almost every JAVA CARD applet, it is responsible for verifying the correctness
of the PIN passed in the APDU. When the PIN is correct the method sets
a global flag indicating successful PIN verification and returns. If the PIN is
not correct or the maximum number of PIN entry trials has been reached an
ISOException with a proper status code (including the number of tries left to
enter the correct PIN) is thrown. The following is the proof obligation for the
KeY Prover specifying that the verifyPIN method is only allowed to throw
ISOException. For the simplicity of reading we diverge slightly from the actual
KeY Prover syntax, however no important issues are omitted:4

java {"demoney/"}

program variables {

fr.trustedlogic.demo.demoney.Demoney self;

javacard.framework.APDU apdu;

byte length;

short offset;

}

4 For example, accessing private object attributes requires extra syntax, integer operations
are not expressed with infix operators, etc.

V. Formalisation and Verification of JAVA CARD Security Properties. . . 137

problem {

// General preconditions for verifyPIN

!self = null & !apdu = null

& length = Demoney.VERIFY_PIN_LC & offset = ISO7816.OFFSET_CDATA

& !apdu.buffer = null

& apdu.buffer.length = length + ISO7816.OFFSET_CDATA

& apdu.buffer[ISO7816.OFFSET_LC] = length

// PIN well-formed

& !self.pin = null

& !self.pin.isValidated = null & self.pin.isValidated.length = 1

...

// ISOException well-formed

& !ISOException.systemInstance = null

& !ISOException.systemInstance.theSw = null

& ISOException.systemInstance.theSw.length = 1

-> <{ method-frame(fr.trustedlogic.demo.demoney.Demoney()): {

try {

self.verifyPIN (apdu, offset, length);

}catch(javacard.framework.ISOException ie) {}

} }> true

}

There are numerous preconditions to guard the execution of verifyPIN. The
first set of preconditions defines, among other things, the proper values for the
arguments passed to verifyPIN. The second set specifies that the pin attribute
of the applet is a properly allocated OwnerPIN object. Finally, the third set of
preconditions specifies well formedness of the singleton class ISOException. In
general, JAVA CARD does not support garbage collection, so, to avoid dynamic
object allocation and discarding, the JAVA CARD environment keeps single in-
stances of each exception type and reuses them.

It took some trial and error steps to get all the preconditions right (we dis-
cuss this issue in detail in Section 5). Missing even the smallest one renders the
program not terminating normally. This proof obligation is proven automati-
cally by the KeY Prover in slightly more than 3 minutes5 with less that 10 000
proof steps. This proves that the verifyPIN method, given the preconditions,
indeed can only throw ISOException.

The SecSafe document requires that exceptions other than ISOException
are not thrown as a result of invoking the entry point of the applet. For us, it
means that we would have to prove our property for the applet entry method
process. At the current stage of our experiments we found it technically difficult
to perform a proof of this kind for the applet of the size of Demoney. We know
however, that such a proof can be modularised (see next example).

Let us show one more example of this property based on the SafeApplet.
Among other things, SafeApplet keeps a table of registered users that can be
authenticated with the applet. For each user a unique user ID and a set of RSA
5 All the benchmarks presented here were run on a Pentium IV 2.6GHz Linux system with

1.5 GB of memory. The version of the KeY system used is available on request.

138 W. Mostowski

encryption keys are stored. One of the methods in the applet is responsible for
unregistering a given user ID. The method is called dispatchDeleteKeyPair.
It takes an APDU, which stores the user ID to be unregistered. In case no user
with such an ID is registered an ISOException with a proper code (SW USER UN-
REGISTERED) is thrown, otherwise the proper entry in the user table is marked
as empty for future reuse. The actual proof obligation reads as follows (some
things that have been shown already are marked with comments):

program variables {

SafeApplet self;

javacard.framework.APDU apdu;

short expLen;

boolean finishedWithISOEx;

boolean finishedOK;

}

problem {

// APDUException well-formed

// ISOException well-formed

& !self = null

& !self.temp = null & self.temp.length = 200

& expLen = 1 & !apdu = null

& !apdu.buffer = null

& apdu.buffer.length = expLen + ISO7816.OFFSET_CDATA

& apdu.buffer[ISO7816.OFFSET_LC] = castToByte(expLen)

// User PIN well-formed and positively verified

& !self.users = null & self.users.length = SafeApplet.MAX_USERS

& all i:int. ((i >= 0 & i < SafeApplet.MAX_USERS) ->

!self.users[i] = null)

-> <{ method-frame(SafeApplet()):{

finishedWithISOEx = false; finishedOK=false;

try {

self.dispatchDeleteKeyPair(apdu);

finishedOK = true;

}catch(javacard.framework.ISOException e1){

finishedWithISOEx = true;

}

} }> (finishedOK = TRUE |

(finishedWithISOEx = TRUE &

javacard.framework.ISOException.systemInstance.theSw[0]

= SafeApplet.SW_USER_UNREGISTERED))

}

Among other things, the precondition says that the APDU that is a parame-
ter to our method contains proper data (1 byte containing the user ID to be
unregistered), and that the entries in the user table are not null. In the post-
condition we also want to specify that the ISOException that might be thrown
contains the right status code. Because of this, we need to distinguish between
two cases in the postcondition: either the method terminates normally or an
ISOException is thrown with a proper status code. That is why we had to use

V. Formalisation and Verification of JAVA CARD Security Properties. . . 139

two local boolean variables: finishedOK and finishedWithISOEx. The way
the program in the modality is constructed ensures that those two variables
cannot be true at the same time (this can also be verified).

Proof Modularisation

This proof obligation is proved automatically with the KeY Prover in about 15
minutes and takes less than 40 000 proof steps. This may seem to be a lot. The
reason for such performance is threefold. First of all, there is a loop involved,
which goes through the table of users. This loop is symbolically unwound step
by step and the proof size depends on the actual (constant) value of MAX USERS,
which in this case is 5. Secondly, the method performs a lot of preliminary work
before the actual modification of the users table. Finally, for this particular
benchmark result, there was no proof modularisation used whatsoever – when
a method call is made in a program the prover replaces the call with the ac-
tual method body and executes it symbolically. Instead, one can use the pre-
and postcondition of the called method. In that case it is enough to establish
that the precondition of the called method is satisfied, and then the call can
be replaced with the postcondition of the called method. Obviously, one also
has to prove that the called method satisfies its specification. One limitation of
this technique is that the method specification have to include so called mod-
ification conditions [Mül01, BS03], i.e., a complete set of attributes that the
method possibly modifies. Factoring out method calls this way shortens the
total proof effort even in the simplest cases, for example, a call to a relatively
small method may appear only once in a program, but, due to proof branching,
it may appear multiple times in the proof. Thus, using method specification in
the proof potentially avoids multiple symbolic execution of the same method.
For comparison, we applied such modularisation to our last example – we used
specification just for one method that contains a loop. The resulting proof took
less that one minute with 5 000 proof steps, the side proof establishing that the
method containing the loop satisfies its specification took less than 2 minutes
with less than 12 000 rule applications – the time performance increased 5 times.

4.2 No X Exceptions at Top Level

As already mentioned, the KeY system provides a uniform framework for deal-
ing with exceptions. The JAVA CARD DL calculus rules and the semantics of
the diamond modality require that no exceptions are thrown whatsoever. In
particular, the calculus is carefully designed to establish that each object that
is dereferenced is not null, that the indices used to access array elements are
within array bounds, etc. So, as long as the total correctness semantics is used,
the KeY Prover establishes absence of all possible exceptions.

Still, for the sake of consistency, we may want to say that we disallow one
type of exception in our program, while allowing all other kinds of exceptions.
Following the same schema as before, the general property of this kind can be
formalised as follows:

140 W. Mostowski

program variables {

MyApplet self;

boolean unwantedException;

}

problem {

preconditions & unwantedException = FALSE ->

<{ method-frame(MyApplet()): {

try {

self.aMethod();

}catch(java.lang.Exception e) {

unwantedException = (e instanceof UnwantedException);

}

} }> (unwantedException = FALSE)

}

Here, the boolean variable unwantedException will become true only when the
undesired exception is thrown in aMethod, thus the above proof obligation states
that no UnwantedException is thrown by aMethod. Since it seems obvious how
to reuse previous examples to show that, for example, no NullPointerExcep-
tion is thrown, we are not going to show any more examples of this property.

4.3 Well Formed Transactions

The first two parts of this property say that a transaction should not be started
before committing or aborting the previous one, and that no transaction should
be committed or aborted if none was started. This boils down to saying that no
TransactionException related to well-formedness is thrown in the program.
Since in our model of JAVA CARD environment TransactionExceptions are
only thrown when transactions are badly formed (i.e., so far we do not model
transaction capacity), we can simplify this part of the property to “No Trans-
actionException is thrown in the program.” We have already shown how such
a property is formalised and proved in previous sections.

The last part of the property says that no transactions should be left open to
be closed by JCRE. The information about open transactions is kept track of by
JCRE and can be accessed through the JAVA CARD API. In our model, the static
attribute transactionDepth of the JCSystem class stores this information. It
is quite straightforward to specify that a given method does not leave an open
transaction:

problem {

preconditions & JCSystem.transactionDepth = 0 ->

<{ method-frame(MyApplet()): {

self.aMethod();

}

}> (JCSystem.transactionDepth = 0)

}

V. Formalisation and Verification of JAVA CARD Security Properties. . . 141

The precondition says that there is no open transaction before aMethod is called.
Such a precondition is necessary in case aMethod is considered to be top-level and
does not check for an open transaction before it starts its own. After aMethod is
finished we require the transactionDepth to be equal to 0 again, this ensures
that there is no open transaction. Also, what is implicit, is that no Trans-
actionException is thrown. Alternatively, one can show that the transaction
depth after executing the method is the same as before the execution. We will
incorporate illustrating this property with a real example into the next Section,
as it integrates nicely with the next property.

4.4 Atomic Updates

This property requires related persistent data in the applet to be updated atom-
ically. As we stated already at the beginning of the paper, strong invariants are
used to specify consistency of data at all times, so that in case an abrupt ter-
mination occurs, the data (in particular, related data) stay consistent. Hence,
strong invariants seem to be the right technique to deal with consistency prop-
erties related to atomic updates.

We will illustrate this property briefly with the same example that is dis-
cussed in full in [HM05], for this work however we were able to use the real
Demoney applet instead of the simplified one used in [HM05]. One of the rou-
tines of the electronic purse is responsible for recording information about the
purchase in the log file. Among other things, the current balance after the
purchase is recorded in a new log entry. As the SecSafe document points out
accurately, when atomic consistency properties are considered, one has to be
able to say what it means for the data to be related. In our example we want
to state that the current balance of the purse is always the same as the one
recorded in the most recent log entry. The method that is responsible for deb-
iting the purse balance and updating the log file is called performTransaction
and uses JAVA CARD transaction mechanism to ensure atomic update of the
involved data. In JAVA CARD DL, to specify that a property holds at all times,
the throughout modality is used. Thus, the resulting proof obligation reads:

problem {

JCSystem.transactionDepth = 0

& !self = null & !apduBuffer = null

& apduBuffer.length = 45

& apduBuffer[ISO7816.OFFSET_LC] = DemoneyIO.COMPLETE_TRANSACTION_LC

& offsetTransCtx = DemoneyIO.COMPLETE_TRANSACTION_OFF_TRANS_CTX

& !self.logFile = null

& !self.logFile.records = null

...

& ex currentRecordPre:ArrayOfint.(

currentRecordPre = self.logFile.records[

(self.logFile.nextRecordIndex - 1) % self.logFile.records.length]

& short_compose(

currentRecordPre[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE],

142 W. Mostowski

currentRecordPre[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE + 1]) =

self.balance

)

-> [[{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {

self.performTransaction (amount, apduBuffer, offsetTransCtx);

}

}]] all currentRecordPost:ArrayOfint.(

currentRecordPost = self.logFile.records[

(self.logFile.nextRecordIndex - 1) % self.logFile.records.length]

->

short_compose(

currentRecordPost[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE],

currentRecordPost[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE+1]) =

self.balance

)

}

The preconditions basically state that all the applet’s data is properly formed
and initialised. The main part of the specification is the strong invariant, which
state that the current balance of the purse (self.balance) is equal to the one
recorded in the most recent log entry (short compose...). Our strong invariant
occurs in two places, in the precondition and in the postcondition. The through-
out modality requires the postcondition to hold in every intermediate state of
execution of the program in the modality, including the initial state, thus, we
need to assume that our strong invariant holds before the program is executed,
and that is why the strong invariant is included in the precondition. The pur-
chase log data structure in Demoney is basically two-dimensional byte array,
where the first index points to a given log entry, and the second index points
to the actual entry data. Since JAVA CARD only allows only one-dimensional
arrays, a workaround in the Demoney code has been introduced, namely, first
a one-dimensional array of objects is allocated:

Object[] records = new Object[...];

and then each entry in this array is associated with a byte array:

records[i] = new byte[...];

Because of this, the records array lacks static type information. This results
in (1) type casts in the Demoney code, and (2) necessity to express this hidden
type information in our JAVA CARD DL formulae. The way to do this is to use
existential quantifiers in the preconditions and universal quantifiers in the post-
conditions, as in our example above. Those quantifier constructs are basically
equivalents of type casts in JAVA CARD DL.

Log records are stored in a cyclic file, i.e., the new entry overwrites the oldest
one, thus, the need for cyclic indexing, using the modulo operator, of the array
elements in the strong invariant.

The last element of the strong invariant to explain is the short compose
function symbol. It is an abstracted way to say that two byte values are com-
posed to form a short value. This way one abstracts away from the actual JAVA

V. Formalisation and Verification of JAVA CARD Security Properties. . . 143

CARD Virtual Machine implementation of short data type (for example, big or
small endian) and avoids unnecessarily complicated JAVA integer expressions.
Obviously, a small set of proof rules to deal with this abstracted representation
is needed.

This proof obligation is proved automatically in 12 minutes with less than
12 000 proof steps. This particular method uses two loops to copy array data,
which are not factored out by modularisation, so we consider this a relatively
good result. Some modularisation using JAVA CARD API specification has been
used in the proof (for example, a method specification for JAVA CARD’s setShort
method, which makes use of the short compose function symbol), however we
have to point out here, that in case of proof obligations involving the throughout
modality using method specifications is not possible in general, and in cases
where it is possible it has to be used with caution.

This proves that the related data stays consistent throughout the execution
of the performTransaction method. Since a JAVA CARD transaction is involved
in this method it would be desirable to also show that no TransactionExcep-
tion is thrown and that no open transaction is left after this method is executed
as stipulated in the previous Section. We intend to make this property even
stronger and say that there is no exception thrown whatsoever. The proof
obligation reads:

problem {

// Mostly the same preconditions as before

-> <{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {

self.performTransaction (amount, apduBuffer, offsetTransCtx);

}

}> (JCSystem.transactionDepth = 0)

This is proved automatically in 11 minutes with less than 12 000 proof steps.
We have also proved a similar consistency property about one of the methods

in SafeApplet. There we specified that all the registered users have a prop-
erly defined set of private and public encryption keys at all times. The proof
obligation is the following:

problem {

// General preconditions

!self = null & !apdu = null & !self.SafeApplet::temp = null

& expLen = 1

// APDUException, ISOException well formed

// userPIN well formed

& !self.userPIN = null & ...

// General assumptions about the users table

& !self.users = null

& self.users.length = SafeApplet.MAX_USERS

& all i:int.all j:int. (

(i >= 0 & i < SafeApplet.MAX_USERS &

j >= 0 & j < SafeApplet.MAX_USERS) ->

(!self.users[i] = null & !self.users[i].keydata = null &

(!i=j -> (!self.users[i] = self.users[j] &

144 W. Mostowski

!self.users[i].keydata = self.users[j].keydata &

((self.users[i].empty = FALSE &

self.users[j].empty = FALSE) ->

!self.users[i].userID = self.users[j].userID)))))

// Strong Invariant

& all i:int.(i >= 0 & i < SafeApplet.MAX_USERS &

self.users[i].empty = FALSE ->

rsa_proper_key(self.users[i].keydata.privateExponent,

self.users[i].keydata.publicExponent, self.users[i].keydata.modulus

) = TRUE)

-> [[{ method-frame(SafeApplet()):{

self.dispatchGenerateKeyPair(apdu); }

}]] // Strong Invariant

all i:int.(i >= 0 & i < SafeApplet.MAX_USERS &

self.users[i].empty = FALSE ->

rsa_proper_key(self.users[i].keydata.privateExponent,

self.users[i].keydata.publicExponent, self.users[i].keydata.modulus

) = TRUE)

The preconditions in the front are mostly the same as in the previous examples.
The preconditions about the users table require more explanations. Due to
lack of garbage collection the entries in the users table are reused, thus, each
object of type User contains a boolean attribute empty to indicate if a given
object is in use. Furthermore, we have to say that (1) each element in the
users table contains a distinct User object, (2) users do not share key data
objects, and (3) user IDs of non empty users are unique, i.e., a user with a
given ID is registered only once. The strong invariant specifies that all non
empty users contain a set of matching private and public keys at all times.
The rsa proper key function symbol is used to specify that a key set contains
matching keys. This function symbol has the same role as the short compose
function symbol in the previous example and is handled in a very similar way.

The actual implementation of the dispatchGenerateKeyPair does not use
JAVA CARD transactions to ensure data consistency. Instead, the method makes
use of the empty attribute of each User object. When a new user is introduced,
first the User object is initialised and then it is marked to be in use. When a
user is deleted, the object is simply marked as empty. This way, the consistency
property that applies to non empty objects only, holds at all times. However,
such coding results in a more complex proof. Also, because of the numerous
occurrences of quantifiers in the proof obligation, some small amount of manual
interaction with the prover was necessary, namely 8 manual quantifier instanti-
ations were required. Otherwise the proof proceeded automatically and took 3
minutes to finish.

4.5 No Unwanted Overflow

Finally, we deal with a property purely related to integer arithmetic. It says that
additions, subtractions, multiplications and negations must not overflow. To
deal with all possible issues related to integer arithmetic, in particular overflow,

V. Formalisation and Verification of JAVA CARD Security Properties. . . 145

the KeY Prover uses three different semantics of arithmetic operations. The first
semantics treats the integer numbers in the idealised way, i.e., the integer types
are assumed to be infinite and, thus, not overflowing. The second semantics
bounds all the integer types and prohibits any kind of overflow. The third
semantics is that of JAVA, that is, all the arithmetic operations are performed as
in the JVM, in particular they are allowed to overflow and the effects of overflow
are accurately modelled. Thus, to deal with overflow properties, it is enough
for the user to choose appropriate integer semantics in the KeY Prover.

Let us illustrate this with an example taken from the SecSafe document.
First let us look at a proof obligation with a badly formed program with respect
to overflow:

problem {

inShort(balance) & inShort(maxBalance) & inShort(credit) &

balance > 0 & maxBalance > 0 & credit > 0 ->

<{ try {

if (balance + credit > maxBalance)

throw ie;

else

balance += credit;

}catch(javacard.framework.ISOException e){}

}> balance > 0

}

The problem in this program is that the balance + credit operation can over-
flow making the condition inside the if statement false resulting in a balance
being less than 0 after this program is executed. When processed by the KeY
Prover with the idealised integer semantics switched on, this proof obligation
gets proved quickly. When the arithmetic semantics with overflow control is
used this proof obligation is not provable. The fix to the program to avoid
overflow is to change the if condition in the following way:

...

if (balance > maxBalance - credit)

...

This proof obligation is provable with both kinds of integer semantics. Further
discussion about handling integer arithmetic in the KeY system can be found
in [BS04].

4.6 Other Properties

We have just shown how to formalise and prove five kinds of security properties
from the SecSafe document. Here we briefly discuss the remaining ones.

Memory Allocation. Due to restricted resources of a smart card, one of
the requirements on a properly designed JAVA CARD applet is the constrained
memory usage. This includes bounded dynamic memory allocation and no

146 W. Mostowski

memory allocation in certain life stages of the applet. This seems like a problem
strictly related to static analysis, because in general there is no need for precise
analysis of the control flow, although in some cases such precise analysis would
be required. For example, if memory allocation is performed inside a loop,
the precise loop bound has to be known. Either way, we believe that this
property in general can be formalised and proved with the KeY system as well.
The main idea is the following. The KeY Prover maintains a set of implicit
attributes for every object to model certain aspects of the JAVA virtual machine,
in particular object creation. For example, each type of object contains an
implicit reference <next>, which points to the object of the same type that was
created next after this one – the JAVA CARD DL rules that handle object creation
are responsible for updating the state of the <next> reference in the proof. There
is no obstacle to introduce a new static implicit attribute to our JAVA model
that would keep track of the amount of allocated memory or the possibility
to allocate memory. However, due to optimisation of inheritance and interface
representation in JVM, the actual memory consumption may differ for each
JVM implementation. Thus, keeping precise record of the allocated memory
seems to be a non trivial task and thorough treatment of this problem requires
further research. For the moment, we would be only able to give approximate
figures for memory consumption.

Conditional Execution Points. This property says that certain program
points must only be executed if a given condition holds. Again, this is a subject
to static analysis (for example, ESC/JAVA2 provides means to annotate and
check conditions at any program point), but it can also be done with theorem
proving by introducing a generalised version of the throughout modality. The
throughout modality requires that a property holds after every program state-
ment. For the generalised case, such a property would have to hold only in
certain parts of the program. So there are no theoretical obstacles here, but
due to less priority this has not yet been implemented in KeY.

Information Privacy and Manipulation of Plain Text Secret. Those
two properties fall into the category of data security properties. As it has
been shown in [DHS04], formalising and proving data security properties can in
general be integrated into interactive theorem proving, however no experiments
on real JAVA CARD examples were performed so far.

5 Discussion

5.1 Lessons Learned

Here we sum up the practical experience we gained during the course of this
work. The main lesson is that the current state of software verification tech-
nology that at least the KeY system offers makes the verification tasks feasible.
Schematic formalisation of the security properties from the SecSafe document

V. Formalisation and Verification of JAVA CARD Security Properties. . . 147

was easy, however, applying it to concrete examples was much more tricky.
We found getting right all the preconditions to guard the execution of a given
method very difficult. This particularly holds when normal termination is re-
quired. Getting the preconditions right requires deep understanding of the pro-
gram in question and the workings of the JCRE. However, calculation of the
preconditions can be tool supported as well:

In [JMR04] ESC/JAVA2 is used to construct preconditions. In short, the tool
is run interactively on an unspecified applet, which results in warnings about
possible exceptions. Such warnings are removed step by step by adding appro-
priate expressions to the precondition. Alternatively, as [JMR04] suggests, the
weakest precondition calculus of the Jive system could be used by running the
proof “backwards”, i.e., by starting with a postcondition and calculating the
necessary preconditions. This however, has not been presented in the paper
and to our understanding the approach has certain limitations.

The KeY system itself provides a functionality to compute specifications for
methods to ensure normal termination [Pla04]. The basic idea behind comput-
ing the specification is to try to prove a total correctness proof obligation. In case
it fails, all the open proof goals are collected and the necessary preconditions that
would be needed to close those goals are calculated. There are two disadvantages
to this technique: (1) for the proof to terminate the preconditions that guard
the loop bounds cannot be omitted, so there is no way to calculate preconditions
for loops, they have to be given beforehand, (2) proofs have to be performed the
same way for computing the specification as it is done when one simply tries
to prove the obligation, so computing the specification is in fact a front-end for
analysing failed proof attempts in an organised fashion. Moreover, the specifi-
cations produced can be equally hard to read as is analysing the failed proof at-
tempt manually. Despite all this, we still find the specification computation facil-
ity of the KeY system quite helpful for proof obligations that produce failed proof
obligations that are either small or at least contain only few open proof goals.

Proving partial correctness also requires caution. A wrong or unintended
precondition can render the program to be always terminating abruptly. This
makes any partial correctness proof obligation trivially true. Thus, in cases
where a partial correctness proof is necessary, like the atomicity related prop-
erties (the throughout modality is partial), one should accompany such a proof
with an additional termination property, like we did in Section 4.4.

To enable automation, the KeY Prover and the JAVA CARD DL are designed
in a way not to bother the user with the workings of the calculus and the proof
system. However, we have realised that proper formulation of the DL expres-
sions can further support automation. We have also introduced a small number
of additional simplification rules for arithmetic expressions. Such rules consid-
erably simplify the proof, but introducing them, although being relatively easy,
requires a little bit more than the basic understanding of JAVA CARD DL. More-
over, each introduced rule has to be proven sound. The rules are very simple
and we have means to do it automatically with the KeY system [BGH+04], but
due to constantly changing set of those rules, we decided to leave the correctness
proofs out for the time being.

148 W. Mostowski

Our experimental results show that proof modularisation greatly reduces
the verification effort. The problem of modularising proofs using method spec-
ifications has been well researched [Mül01, BS03], but has been implemented
in the KeY system only recently, thus, we gained relatively little experience
here. So far we have learnt that using method specification in the context of
the throughout modality is not always possible and has to be done with care.

Finally, one of the goals of formal verification is to find and eliminate bugs.
So far, we have not found any in our case studies. We believe the reason for
this is twofold. First, the properties we considered so far were relatively simple
and the methods were expected not to contain bugs related to those properties.
Second, neither of the applications we analysed as a whole, only parts of them.
In particular, the bugs often occur at the points where the methods are invoked,
due to an unsatisfied method precondition.

5.2 Static Analysis vs. Interactive Theorem Proving

The results of this paper show that we are able to formalise and prove all of
the security properties defined in the SecSafe document. Many of the prop-
erties would require quite advanced static analysis and, as far as we know, no
such static analysis technique has been developed so far. Moreover, we believe
that some properties go beyond static analysis, for example, certain aspects of
memory allocation (Section 4.6) require accurate analysis of the control flow.
Furthermore, each single property would probably require a different approach
in static analysis, while the KeY Prover provides a uniform framework. For
example, all properties related to exceptions are formalised in the same, general
way, and in fact can be treated as one property. Also, dealing with integer num-
ber overflow is done within the uniform framework of different integer semantics,
that cover all possible overflow scenarios.

Therefore, we consider interactive theorem proving as a feasible alternative
to static analysis. More generally, deep integration of static analysis with our
prover is a subject of an ongoing research [Ged04]. One argument that speaks
for static analysis is full automation. However, our experiments show that the
KeY system requires almost no manual interaction to prove the properties we
discussed. Also, the time performance of the KeY prover seems to be reason-
able, although the work on improving it continues. On the other hand, as we
noticed earlier, constructing proof obligations require some user expertise. In
our opinion however, this is something that is difficult to factor out when seri-
ous formal verification attempts are considered, no matter if theorem proving
or static analysis is used as the basis.

6 Summary and Future Work

We have shown how most of the security properties of the industrial origin for
JAVA CARD applications can be formalised in JAVA CARD DL and proved, for
the most part automatically, with the KeY Prover. Most of the properties were

V. Formalisation and Verification of JAVA CARD Security Properties. . . 149

illustrated by real-life JAVA CARD applets. Considerable experience related to
formal verification has been gained during the course of this work. This experi-
ence indicates that JAVA CARD source code verification, at least using the KeY
system, has recently become a manageable and relatively easy task, however,
for scenarios like the one presented in this work, user expertise is required. Two
main areas for improvement are clearly the modularisation of the proofs and
tool support for calculating specifications (more precisely, preconditions). Our
future work will concentrate on those two aspects, to reach full, truly meaning-
ful verification of JAVA CARD applications with as much automation as possible.
We feel that the performance results should already be acceptable by software
engineers, however, the work on improving the speed of the prover will continue.
Finally, our experience clearly shows that interactive theorem proving is a rea-
sonable alternative to static analysis – we plan to further explore this area by
concentrating on the few properties we only discussed briefly here.

References

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and Systems Modeling, April 2004. Online
First issue, to appear in print.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of
JAVA CARD programs. In I. Attali and T. Jensen, editors, JAVA

on Smart Cards: Programming and Security. Revised Papers, JAVA

CARD 2000, International Workshop, Cannes, France, volume 2041
of LNCS, pages 6–24. Springer, 2001.

[BGH+04] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle,
Andreas Roth, Philipp Rümmer, and Steffen Schlager. Taclets: a
new paradigm for constructing interactive theorem provers. Revista
de la Real Academia de Ciencias Exactas, F́ısicas y Naturales, Serie
A: Matemáticas, 98(1), 2004. Special Issue on Symbolic Computa-
tion in Logic and Artificial Intelligence.

[BM03] Bernhard Beckert and Wojciech Mostowski. A program logic for
handling JAVA CARD’s transaction mechanism. In Mauro Pezzè, ed-
itor, Proceedings, Fundamental Approaches to Software Engineering
(FASE) Conference 2003, Warsaw, Poland, volume 2621 of LNCS,
pages 246–260. Springer, April 2003.

[Boy03] Robert Boyer. Proving theorems about JAVA and the JVM with
ACL2. In M. Broy and M. Pizka, editors, Models, Algebras and
Logic of Engineering Software, pages 227–290. IOS Press, Amster-
dam, 2003.

150 W. Mostowski

[BS01] Bernhard Beckert and Bettina Sasse. Handling JAVA’s abrupt ter-
mination in a sequent calculus for Dynamic Logic. In B. Beckert,
R. France, R. Hähnle, and B. Jacobs, editors, Proceedings, IJCAR
Workshop on Precise Modelling and Deduction for Object-oriented
Software Development, Siena, Italy, pages 5–14. Technical Report
DII 07/01, Dipartimento di Ingegneria dell’Informazione, Univer-
sità degli Studi di Siena, 2001.

[BS03] Bernhard Beckert and Peter H. Schmitt. Program verification us-
ing change information. In Proceedings, Software Engineering and
Formal Methods (SEFM), Brisbane, Australia, pages 91–99. IEEE
Press, 2003.

[BS04] Bernhard Beckert and Steffen Schlager. Software verification with
integrated data type refinement for integer arithmetic. In Eerke A.
Boiten, John Derrick, and Graeme Smith, editors, Proceedings, In-
ternational Conference on Integrated Formal Methods, Canterbury,
UK, volume 2999 of LNCS, pages 207–226. Springer, April 2004.

[CDHR00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. A
language framework for expressing checkable properties of dynamic
software. In Proceedings, SPIN Software Model Checking Workshop,
LNCS, pages 205–223. Springer, 2000.

[Che00] Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architec-
ture and Programmer’s Guide. JAVA Series. Addison-Wesley, 2000.

[DHS04] Ádám Darvas, Reiner Hähnle, and Dave Sands. A theorem proving
approach to analysis of secure information flow. Technical Report
2004–01, Department of Computing Science, Chalmers University
of Technology and Göteborg University, 2004.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static check-
ing for JAVA. In Proceedings, ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, pages
234–245. ACM Press, 2002.

[Ged04] Tobias Gedell. Integrating static analysis into theorem proving,
2004. Available from http://www.cs.chalmers.se/~gedell/pub-
lications/satp.ps.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic.
MIT Press, 2000.

[HM05] Reiner Hähnle and Wojciech Mostowski. Verification of safety prop-
erties in the presence of transactions. In Gilles Barthe and Marieke
Huisman, editors, Proceedings, Construction and Analysis of Safe,
Secure and Interoperable Smart devices (CASSIS’04) Workshop,
volume 3362 of LNCS, pages 151–171. Springer, 2005.

http://www.cs.chalmers.se/~gedell/publications/satp.ps#
http://www.cs.chalmers.se/~gedell/publications/satp.ps#

V. Formalisation and Verification of JAVA CARD Security Properties. . . 151

[JMR04] Bart Jacobs, Claude Marché, and Nicole Rauch. Formal verification
of a commercial smart card applet with multiple tools. In Proceed-
ings, Algebraic Methodology And Software Technology, Stirling, UK,
volume 3116 of LNCS, pages 241–256. Springer, July 2004.

[JP03] Bart Jacobs and Erik Poll. JAVA program verification at Nijmegen:
Developments and perspective. In Software Security – Theories and
Systems: Second Mext-NSF-JSPS International Symposium, ISSS
2003, Tokyo, Japan, November 4–6, 2003. Revised Papers, volume
3233 of LNCS, pages 134–153. Springer, 2003.

[MM01] Renaud Marlet and Daniel Le Métayer. Security properties and
JAVA CARD specificities to be studied in the SecSafe project. Tech-
nical Report SECSAFE-TL-006, Trusted Logic S.A., August 2001.

[MM02] Renaud Marlet and Cédric Mesnil. Demoney: A demonstrative
electronic purse – Card specification. Technical Report SECSAFE-
TL-007, Trusted Logic S.A., November 2002.

[MMPH00] Jörg Meyer, Peter Müller, and Arnd Poetzsch-Heffter. The
Jive system – Implementation description. Available from
http://softech.informatik.uni-kl.de/downloads/publica-
tions/jive.pdf, 2000.

[Mos02] Wojciech Mostowski. Rigorous development of JAVA CARD applica-
tions. In T. Clarke, A. Evans, and K. Lano, editors, Proceedings,
Fourth Workshop on Rigorous Object-Oriented Methods, London,
U.K., March 2002. Available from http://www.cs.chalmers.se/
~woj/papers/room2002.ps.gz.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The
Krakatoa tool for certification of JAVA/JAVA CARD programs an-
notated in JML. Journal of Logic and Algebraic Programming,
58(1–2):89–106, 2004. http://krakatoa.lri.fr.

[Mül01] Peter Müller. Modular Specification and Verification of Object-
Oriented Programs. PhD thesis, FernUniversität Hagen, 2001.

[Obj03] Object Modeling Group. Unified Modelling Language Specification,
version 1.5, March 2003.

[Pla04] André Platzer. Using a program verification calculus for construct-
ing specifications from implementations. Minor thesis, Karlsruhe
University, Computer Science Department, Karlsruhe, Germany,
February 2004.

[Pra77] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic.
In Proceedings, 18th Annual IEEE Symposium on Foundation of
Computer Science, 1977.

http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz#
http://krakatoa.lri.fr#

	Acknowledgements
	Introduction
	Overview
	Java Card
	The KeY System
	Architecture of the KeY Tool
	Dynamic Logic
	Syntax of Java Card DL
	Proof Obligations
	Deductive Calculus for Proving Obligations
	Taclets
	Implementation

	Description of the Papers
	Contributions
	Related Work
	Future Work

	Paper I: Rigorous Development of Java Card Applications
	Introduction
	Java Card
	Analysis of the Current Situation
	Related Work
	Our Approach

	Case Study: pam_iButton
	Design Issues for Java Card Applications
	Developing Java Card Applications
	Applet Life States
	Applet Commands
	Command Invocation Protocol
	Command Processing

	The Framework
	Support from the CASE Tool
	Formal Specification and Verification
	Employing the KeY System

	Conclusions

	Paper II: A Program Logic for Handling Java Card's Transaction Mechanism
	Introduction
	Background
	Java Card Dynamic Logic
	Syntax of Java Card DL
	Semantics of Java Card DL
	State Updates
	Rules of the Sequent Calculus

	Extension for Handling ``Throughout'' and Transactions
	Additional Sequent Calculus Rules for the Throughout Modality
	Additional Sequent Calculus Rules for Transactions

	Examples
	Conclusions and Future Work

	Paper III: Specifying Java Card API in OCL
	Introduction
	Background
	The KeY Project
	Java Card and Java Card API
	Use Cases for OCL Specification of the Java Card API
	Related Work

	The Development of OCL Specification
	JML vs. OCL
	Exceptions
	The null value
	Integer Arithmetics
	JML @assignable clause

	The Specification
	Formal Verification

	Short Evaluation of OCL
	Conclusions

	Paper IV: Verification of Safety Properties in the Presence of Transactions
	Introduction
	Background
	The KeY Project
	Java Card Dynamic Logic
	Strong Invariants
	Java Card Atomic Transactions

	Case Study: Java Card Electronic Purse
	The LogRecord Class
	Specification and Verification of setRecord
	The Purse Class
	Specification and Verification of processSale
	Post Hoc Verification of Unaltered Code
	Performance

	Results
	Verification Technology
	Design for Specification and Verification

	Related Work
	Conclusions

	Paper V: Formalisation and Verification of Java Card Security Properties in Dynamic Logic
	Introduction
	Background
	The KeY Project
	Java Card
	Java Card Dynamic Logic
	Related Work

	Case Studies
	Security Properties
	Only ISOExceptions at Top Level
	No X Exceptions at Top Level
	Well Formed Transactions
	Atomic Updates
	No Unwanted Overflow
	Other Properties

	Discussion
	Lessons Learned
	Static Analysis vs. Interactive Theorem Proving

	Summary and Future Work

