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Dynamic programming (DP) turns recursion 
into iteration.  It can turn exponential problems 
into polynomial ones.  You have to “rethink the 
problem” to achieve this benefit.

DP can be used when:

• subproblems overlap

• subproblems are slightly smaller than the original

• subproblems have optimal structure

‣ an optimal solution consists of optimal sub-solutions



Today’s Lecture

• Principle of Optimality
• Bellman Equation
• coin change
• discussion of the coin change

problem and its DP solution

• Another Example

• sequence alignment
• Needleman-Wunsch algorithm



Principle of Optimality
this is why dynamic programming works

• formulate the problem as a series of decisions

• ingredients:
• state variables describe all we need to know in

order to make decisions
• actions describe the available choices
• transitions define the next state
• payoffs (or costs) define if we get closer or

farther from optimality
• the value function tracks the best sub-solution



Principle of Optimality
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state
describes the system

action
depends on state (and stage)

transition
captures the effect of actions

value function
accumulates the payoff (or cost)

payoff (or cost)
measures progress 

towards the optimum

stage
which decision are we at?



Principle of Optimality

T (N) = A · T
✓
A

B

◆
+ f(N)

A = 2

B = 2

f(N) 2 O(N)

) T (N) = 2T

✓
N

2

◆
+ cN

T (N) 2 O(N logN)

A � 1

B > 1

f(N) 2 O(Nk
)

T (1) = 1

N = BM )
(

N
B = BM 1

Nk
=

�
BM

�k
=

�
Bk

�M

T (N) = AT

✓
A

B

◆
+O(Nk

)

T (N) 2

8
><

>:

O
�
N logB A

�
( A > Bk

O
�
Nk

logN
�

( A = Bk

O
�
Nk

�
( A < Bk

V (x
0

) = max

a0,a1,··· ,aN

NX

n=0

F (xn, an)

xn 2 X

an 2 A(xn)

xn+1

= T (xn, an)

. . .

V (x
0

) = max

a0

✓
F (x

0

, a
0

) + V (x
1

)

◆

x
1

= T (x
0

, a
0

)

1

intuition: V(x) is the 
best possible 

cumulated payoff at x



Principle of Optimality
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quite a few choices!

can be simplified
into a recursion



Bellman Equation
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if we know
then we just need to maximize a single choice: 
instead of N+1 combinations of choices 
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the tricky part: find a smart way to construct V(x)
➠ that’s the essence of dynamic programming!
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Coin Change

Group Activity

First steps with dynamic programming.



Discussion of the
Coin Change Problem

• Can you identify any subproblem?
1. what are the subproblems?
2. do they overlap?

• are subproblems only slightly smaller
than the original?

• do subproblems have optimal structure?

• is it exponential if we don’t use DP?



Discussion of the
Coin Change Solution

Can you identify the
• state
• action
• transition
• payoff
• value function

in this example?



• minimize the number of edits required to change
one string into another

• used in many real applications
• file comparison
• computational biology
• spellchecking
• ...

Sequence Alignment



• given:
• a table of match scores
• a gap penalty
• two strings A and B

• compute:
• the alignment with maximum score
• (same as “lowest cost”)

• there can be more than one solution

The Needleman–Wunsch Algorithm for

Sequence Alignment



• perfect match: +10
• vowel to vowel: -2
• consonant to consonant: -4
• vowel to consonant: -10
• gap penalty: -5

b e e r _ _

c o f f e e

-4 -2 -10 -4 -5 -5

b e _ _ e r

c o f f e e

-4 -2 -5 -5 10 -10

score: -30 score: -16

The Needleman–Wunsch Algorithm for

Sequence Alignment
for example:



score: -30 score: -16

The Needleman–Wunsch Algorithm for

Sequence Alignment
1. match b with c
2. match e with o
3. match e with f
4. match r with f
5. insert e
6. insert e

1. match b with c
2. match e with o
3. insert f
4. insert f
5. perfect match for e
6. match r with e

b e e r _ _

c o f f e e

-4 -2 -10 -4 -5 -5

b e _ _ e r

c o f f e e

-4 -2 -5 -5 10 -10



_ c o f f e e

_ 0

b

e

e

r

insert c

delete b
match b with c

Condensed representation of 
possible actions and their effects:



_ c o f f e e

_ 0

b

e

e

r

-5

-5 -4

Condensed representation of 
possible actions and their effects:

• perfect match: +10
• vowel to vowel: -2
• consonant to consonant: -4
• vowel to consonant: -10
• gap penalty: -5



_ c o f f e e

_ 0 -5

b -5 -4

e

e

r

insert

delete match

Condensed representation of 
possible actions and their effects:



_ c o f f e e

_ 0 -5

b -5 -4

e

e

r

-5

-5 -2

Condensed representation of 
possible actions and their effects:



_ c o f f e e

_ 0 -5

b -5 -4 -9

e -9 -6

e

r

Condensed representation of 
possible actions and their effects:



_ c o f f e e

_ 0 -5

b -5 -4 -9

e -9 -6

e

r

insert

delete match

Condensed representation of 
possible actions and their effects:



_ c o f f e e

_

b

e ???

e

r

Problem: more than one way to reach a cell!

_ b e

c o f

-5 -10 -10

b e _

c o f

-4 -2 -5

_ _ b e

c o f _

-5 -5 -4 -5



• check optimal subproblem structure
an optimal solution to the overall problem is
composed of optimal solutions to the
subproblems

• formulate terms for the Bellman equation
• state, action, transition
• payoff and value function
• order of computation

Apply Dynamic 
Programming



From tree exploration to local a 
sequence of local optimizations.

_ c o

_

b

insert!

delete! match!

_ c o

_

b
insert?

delete?
match?

problematic
you need some way of keeping 
track of all the different ways 

of combining choices

much better
once a choice is made, it is 
known to be optimal and 

does not need to be revisited



Needleman–Wunsch Algorithm

_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5

e -10

e -15

r -20

insert?

delete?match?



_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5 -4

e -10

e -15

r -20

Needleman–Wunsch Algorithm

-5-5?

-5-5?0-4?



_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5 -4 -9

e

e

r

-5-10?

Needleman–Wunsch Algorithm

-4-5?

-10-5?



Needleman–Wunsch Algorithm

_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5 -4 -9 -14

e -10

e -15

r -20



Needleman–Wunsch Algorithm

_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5 -4 -9 -14 -19

e -10

e -15

r -20



Needleman–Wunsch Algorithm

_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5 -4 -9 -14 -19 -24 -29

e -10 -9 -6 -11 -16 -9 -14

e -15 -14 -11 -16 -21 -6 +1

r -20 -19 -16 -15 -20 -11 -4



Needleman–Wunsch Algorithm

_ c o f f e e

_ 0 -5 -10 -15 -20 -25 -30

b -5 -4 -9 -14 -19 -24 -29

e -10 -9 -6 -11 -16 -9 -14

e -15 -14 -11 -16 -21 -6 +1

r -20 -19 -16 -15 -20 -11 -4

how to extract the solution:
1. compute / maintain backpointers
• (what was the optimal choice at each cell?)

2. trace back one of the optimal paths
3. read off the action sequence



_ c o f f e e

_ 0

b

e

e

r -4

Needleman–Wunsch Algorithm

b _ _ _ e e r

c o f f e e _



• given a table of costs (similarity matrix)
• given a gap cost d
• given two strings A and B
• create table of optimal sub-alignment costs F(i,j)

• init:  F(0,i) = d*i  and  F(j,0) = d*j
• F(i,j) = maximum of

• match:  F(i-1,j-1) + cost(A[i], B[j])
• delete: F(i-1,j) + d
• insert: F(i,j-1) + d

• keep (or compute) backpointers
• trace back the result starting from the last cell
• note: table indices 0...strlen(A) and 0...strlen(B) !

Sequence Alignment



DP: Take-Home Message

1. divide the problem into steps (or stages)

2. store the state (information) required in each step

3. an action (or decision) is taken at each step to
transform the state and accumulate payoff (or pay cost)

4. the value function captures the cumulated best action
sequence to arrive at a given state

5. trace back the solution after you have reached the
goal (or the start, depending on propagation order)



Graphs

• graphs
• graph representations
• graph traversals
• directed acyclic graphs
• topological ordering



http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

• a set of vertices
• a set of edges

(connections)



Why are Graphs Important?
...whenever we model relations between entities...

• computer science:
communication networks,
computation flow, dependency
tracking, ...

• linguistics: semantic
networks (meaning in terms
of related words), ...

• chemistry: molecule
models (atoms and bonds), ...

• physics: particle
interactions, electromagnetic
circuits, ...

• sociology: measure
prestige, diffusion in social
networks, ...

• biology: habitats and
migration paths, breeding
patterns, spread of disease, ...

• robotics: path planning,
dynamical system models,
mapping and localization, ...

• artificial intelligence:
task planning, scene
understanding, ...



Graphs
G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

|P | � 1 \ vi = vN

1

• a set of vertices
often just use natural numbers

• a set of edges
• each edge connects two 

vertices with each other

http://en.wikipedia.org/wiki/File:6n-graf.svg



Edge Variations
• edges can be directed or undirected

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

|P | � 1 \ vi = vN

1

http://en.wikipedia.org/wiki/File:Directed_acyclic_graph_3.svg



Edge Variations
• edges can have extra data, such as cost

• two formalizations are common:

• ...similarly, vertices can have extra info

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

|P | � 1 \ vi = vN

1

cost “inside”

separate mapping



Positive-Weighted Edges

very common, for example:
• roads between cities
• connections between airports
• computer networks
• flow models (information, money, ...)



Paths

• paths are sequences of connected vertices

• path length can be unweighted or weighted

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

|P | � 1 \ vi = vN

1

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N � 1
P

1i<N c(vi, vi+i)

P1 = (2, 0, 3, 6)

P2 = (2, 0, 1, 4, 6)

|P1| = 3

|P2| = 5

|P1| = 4 + 1 + 4 = 9

|P2| = 4 + 2 + 10 + 6 = 22

|P | � 1 \ vi = vN

1

number of edges

sum of costs



Paths

• weighted:

• unweighted:

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

P1 = (2, 0, 3, 6)

P2 = (2, 0, 1, 4, 6)

|P1| = 3

|P2| = 5

|P1| = 4 + 1 + 4 = 9

|P2| = 4 + 2 + 10 + 6 = 22

|P | � 1 \ vi = vN

1

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

P1 = (2, 0, 3, 6)

P2 = (2, 0, 1, 4, 6)

|P1| = 3

|P2| = 5

|P1| = 4 + 1 + 4 = 9

|P2| = 4 + 2 + 10 + 6 = 22

|P | � 1 \ vi = vN

1

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

P1 = (2, 0, 3, 6)

P2 = (2, 0, 1, 4, 6)

|P1| = 3

|P2| = 5

|P1| = 4 + 1 + 4 = 9

|P2| = 4 + 2 + 10 + 6 = 22

|P | � 1 \ vi = vN

1



Simple Paths, Cycles
• paths can be cycles:

• paths can be simple: no duplicate vertices
• exception: start/end of simple cycles

• important type: directed acyclic graphs (DAG)

G = (V,E)

V = {v}
E = {e}
e = (v, w) : v, w 2 V

(v, w) 2 E , (w, v) 2 E

e = (v, w, c) : v, w 2 V, c 2 R
c = c(e) = c(v, w)

P = (v1, v2, · · · vN )

(vi, vi+i) 2 E 8 1  i < N

|P | =
(
N
P

1i<N c(vi, vi+i)

P1 = (2, 0, 3, 6)

P2 = (2, 0, 1, 4, 6)

|P1| = 3

|P2| = 5

|P1| = 4 + 1 + 4 = 9

|P2| = 4 + 2 + 10 + 6 = 22

|P | � 1 \ vi = vN

1

non-simple path non-simple cycle



Implementing Graphs

• adjacency matrix

• simple, immediate, but can waste space

• adjacency list

• more appropriate use of space

• storing extra info

• internally in vertex and edge objects

• externally in separate maps



Graph Representations

Group Activity

a good exam question...



Graph Traversals

• many possibilities

• two fundamental methods:
• depth-first search
• breadth-first search

• another very important method:
• best-first search (Dijkstra)

• many advanced and specialized methods, such
as heuristic search (A*)



Graph Traversals

Group Activity

another good exam question...



Directed Acyclic Graphs

• directed graph, but from any vertex v, there
is no path that goes back to v

• useful for...
• scheduling courses, tasks, computations
• revision control systems
• Bayesian Networks

• machine learning
• probabilistic reasoning



Topological Ordering

Group Activity

yet another good exam question...



Graphs: Take-Home Message

• graphs are extremely versatile

• all the other data structures we’ve seen are
“just” special cases of graphs

• the specialization brings benefits, such
as faster algorithms

• much more can be found on the Web
(which, by the way, can be modeled as a graph)
http://en.wikipedia.org/wiki/Graph_theory

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory

	 
	Dynamic Programming
	Graphs



