
Testing and Verification (DIT085)

Solutions to Model Examination - March 2015

Important Notes. It is not allowed to use study material, computers, and calculators during the
examination. The examination comprises 5 question in 2 pages. Please check beforehand whether
your copy is properly printed. In order to obtain a VG you need to obtain 80/100, for a G you
need to obtain 60/100. Give complete explanation and do not confine yourself to giving the final
answer. The answers may be given in Dutch or English. Good luck!

Exercise 1 (20 points) Define the following concepts:

1. Validation and verification,

2. Boehm’s curve,

3. Pairwise Testing,

4. Prime Path.

Solution.

1. Validation refers to checking compliance against intended usage (checking whether this is
the correct product), while verification refer to checking the artifacts of different phases
against each other, e.g., whether implementation is correct with respect to the design or the
requirement specification (whether we have made the product correctly).

2. The following curve shows how the delayed detection of faults results in an increasing cause
of fixing them.

requirement designspecification implementation

development

cost

3. In pairwise testing equivalence class testing is performed by covering all combinations of
representatives values for each two pairs of variables.

4. A prime path is a single path that is not included in any other simple path.

1



2

Exercise 2 (25 points) Consider the following program.

1: Input(x);
2: Input(y);
3: Input(z);
4: if y < 10 then
5: x := 10;
6: else
7: x := y;
8: end if
9: if y <= z then

10: y := y + z;
11: end if
12: y := x
13: x := y
14: write(x);

1. Draw the control-flow graph of the program (5 pts),

2. Calculate all definition-clear paths starting from definitions of x. (10 pts),

3. Define a set with the fewest number of test cases that satisfies DU-path coverage with respect
to x. For each test case indicate the DU path that it covers. (10 pts)

Solution.

1. The control flow of the program is depicted below.

2

3

4,6

8

9

11

12

10

5

13

7

14

1

2. The following paths and all their proper sub-paths are definition clear paths from a definition
of x:

[1, 2, 3, 4, 5]

[1, 2, 3, 6, 7]



3

[5, 8, 9, 11, 12]

[5, 8, 9, 10, 11, 12]

[7, 8, 9, 11, 12]

[7, 8, 9, 10, 11, 12]

[13, 14]

3. The following test cases cover the indicated DU paths:

inputs: x=0, y = 5, z=0, output = 10, DU paths covered: [5, 8, 9, 11, 12] [13, 14]

inputs: x=0, y = 5, z=6, output = 10, DU paths covered: [5, 8, 9, 10, 9, 11, 12] [13, 14]

inputs: x=0, y = 15, z=0, output = 15, DU paths covered: [7, 8, 9, 11, 12] [13, 14]

inputs: x=0, y = 15, z=20, output = 15, DU paths covered: [7, 8, 9, 10, 9, 11, 12] [13, 14]

Exercise 3 (20 points) Specify the following English properties in the TCTL language (input
language for UPPAAL queries / properties):

1. There is no deadlock (5 pts),

2. In some execution of the model, a state can be reached in which automaton m is in state s0
and automaton mp is not in state s1 (5 pts),

3. In all executions, if automaton m is in state s0 then eventually automaton mp will be in
state s2 (10 pts).

Solution.

1. A[] not deadlock,

2. E <> (m.s0 and not mp.s1), and

3. m.s0 −− > mp.s2.

Exercise 4 (25 points) Consider the program given for exercise 2 Calculate Slice(14, {x}) for
it. The final solution is not sufficient; you need to elaborate on the steps towards the final solution
(include the relevant variables and the approximations towards the final slice). (25 pts)

Solution.
m DEF(m) Relevant0(m) Slice0 Cond1 Rel1 Slice1 Slice
1 {x} ∅ × × ∅ × ×
2 {y} ∅

√
× ∅

√ √

3 {z} {y} × × {y} × ×
4 ∅ {y} ×

√
{y}

√ √

5 {x} ∅
√

× ∅
√ √

6 ∅ {y} ×
√

{y}
√ √

7 {x} {y}
√

× {y}
√ √

8 ∅ {x} × × {x} ×
√

9 ∅ {x} × × {x} × ×
10 {y} {x} × × {x} × ×
11 ∅ {x} × × {x} × ×
12 {y} {x}

√
× {x}

√ √

13 {x} {y}
√

× {y}
√ √

14 ∅ {x} × × {x} × ×
{x} {x}



4

Exercise 5 (10 points) Consider the following procedure, which is supposed to take an array
of integers and its size and write the average of the numbers in the array (up to size) on the
screen. It turns out that it outputs ‘8.0’ when input arr= [2, 2, 2, 14, 8], size=5 is given (which
is incorrect). Simplify the test-case using simplification. (Assume that you can manually check
whether the outcome of each test is really correct or not.)

1: const MAX = 100;
2: procedure writeAvg(arr: array of integer; size: integer);
3: var i : integer;
4: avg : real;
5: begin
6: avg := 0;
7: for i := 0 to size - 1 do
8: avg := avg + arr[size - 1];
9: write(avg/size);

10: end;

Solution.
ddmin([2, 2, 2, 14, 8], 2) =
ddmin([14, 8], 2) =
14, 8


