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Algebraic Specifications

•  Abstract Data Types
•  Description of required properties, 

independent of implementation
•  Signature: sorts of values, opérations with 

profile
•  + Axioms: equations, conditional equations 

( 1st order formulas)
•  (+ Constraints: hierarchy, finite generation)
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A  VERY basic example

spec BOOL
free generated type Bool ::= true │ false 
 op not : Bool → Bool
 ●  not(true) = false
● not(false) = true

end



A more sophisticated one
spec CONTAINER = NAT, BOOL
then

generated type Container ::= [] │ _::_(Nat ; Container)
op isin : Nat × Container → Bool
op remove: Nat × Container → Container
∀ x, y:Nat; c:Container
● isin(x, []) = false
● eq(x, y) = true ⇒ isin(x, y::c) = true
● eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c)
● remove(x, []) = []
● eq(x, y) = true ⇒ remove(x, y::c) = c
● eq(x, y) = false ⇒ remove(x, y::c) = y::remove(x,c)

end
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Formalities

•  Semantics
–  Many-sorted algebras: sets of values and functions

Container

Bool

Nat

isin

labelled set of entities opérations
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Specificities of testing 
based on Axioms

•  It is not natural to test the operations with couples 
<input, output>
–  Note that several outputs may be acceptable…

•  What must be verified is that the constructs which 
implement the operations satisfy the axioms

•  Exercises :
x + y = y + x
eq(x, y) = true ⇒ isin(x, y::c) = true
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Link between the 
specification and the SUT

•  The SUT  provides some procedures, functions, 
methods,  for executing the operations of the 
signature
–   (example : Java class, Ada package, ML 

structure…)
•  Let note opSUT the implementation of op 
•  Let t an expression without variable written with 

some operations and constants of the signature, 
•  we note tSUT  the result of its computation by the 

SUT,
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What is a test?

•  Let ε some equation written with the operations of the 
signature (and, may be, some variables) 
– Test of ε  : any close instantiation t = t' of ε 
– Test experiment  of SUT  against t = t': evaluations 

of tSUT  and t’SUT  and comparison of the resulting 
values 

– NB : oracle ⇔  test of equality 
•   Straightforward generalisation to conditional 

equations; less straightforward for some 1st order 
formulas (∀, ∃) (cf. Machado 1998, Aiguier et al. 2016, 
etc). 
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Examples of tests (simplified for 
conditional axioms)

● isin(x, []) = false
–  isin (0, []) = false 

● eq(x, y) = true ⇒ isin(x, y::c) = true 
–  isin(1, 1::2:: []) = true 

● eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c) 
–  isin(1, 0::3:: []) = false 

● remove(x, []) = [] 
–  remove(5, []) = [] 

● eq(x, y) = true ⇒ remove(x, y::c) = c 
–  remove(0, 0::3::4:: []) = 3::4::[] 

● eq(x, y) = false ⇒ remove(x, y::c) = y::remove(x,c) 
–  remove(1, 7::5::3:: []) = 7::5::3:: [] 



Exhaustive test set
•  Let SP = (∑, Ax)
•  The exhaustive test set of SP, noted ExhaustSP  

is the set of all the closed  well-sorted instances 
of all the axioms of SP:

ExhaustSP  = {Φσ | 
Φ ∈ Ax, σ = {σs : var(Φ)s → (T∑)s |s∈S} } 

–  NB1 : definition derived from the classical notion of axiom 
satisfaction

–  NB2 : some tests are inconclusive and can be removed
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Testability Hypotheses

•  Unavoidable : when testing a system, it is impossible 
not to make assumptions on its behaviour and its 
environment

•  Remark : ExhaustSP  is exhaustive w.r.t. the 
specification, not always w.r.t. the implementation L

•  Here : a SUT  is ∑-testable  if:
–  The operations of Σ are implemented in a deterministic way
–  All the values are specified by Σ (no junks, Σ-generation)
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Another exhaustivity

•  Based on a different (operational) semantics
–  {t = t↓ | TΣ}

–  TΣ  is the (sorted) set of ground Σ-terms
–  t↓ is the normal form of t, when using the axioms as 

conditional rewriting rules
•  Restriction on the class of specifications

–  The axioms must define a convergent term rewriting 
system

•  Weakening of the testability hypothesis
–  Finite generation is no more required
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Selection Hypotheses

•  Uniformity Hypothesis
–   Φ(X)  formula, SUT system, D  sub-domain 
–   (∀ t0 ∈ D)( SUT  |= Φ(t0) ⇒ (∀ t ∈ D) ( SUT   |= Φ(t)))
–  Determination of sub-domains ? guided by the axioms, see 

later…
•  Regularity Hypothesis

–  ((∀ t ∈ T∑) (⎮t⎮≤ k ⇒ SUT   |= Φ(t) )) ⇒  (∀ t ∈ 
T∑) ( SUT   |= Φ(t))

–  Determination of |t|? guided by the axioms or… by necessity 😕
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A Method
•  Starting point : axioms coverage (one test by axiom)
•  => Strong uniformity hypotheses on the sorts of the variables 

or on the validity domain of the premisses
•  Example : 6 tests for CONTAINER

–  isin (0, []) = false 
–  isin(1, 1::2:: []) = true 
–  isin(1, 0::3:: []) = false 
–  remove(1, []) = [],  
–  remove(0, 0::3:: []) = 3:: [] 
–  remove(1, 3:: []) = 3:: [] 

•  Uniformity on Nat, on pairs of Nat such that eq(x,y) = true, on 
pairs of Nat such as eq(x, y) = false

•  Uniformity on Container
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Weakening of hypotheses

•  Successive weakening using the axioms of the 
specification

•  A natural way for discovering sub-domains is to 
perform some case analysis of the specification 

•  Example : the isin function is defined by 3 axioms
 ● isin(x, []) = false
● eq(x, y) = true ⇒ isin(x, y::c) = true
● eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c)  

•  => 3 tests. But one may want to go further
–  The occurrences of isin(  ,   ) can be decomposed into these 

3 subcases
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2 main techniques for weakening 
uniformity hypotheses

•  Axioms Composition
– For instance, given the axioms:

eq(x,y) = true ⇒ le (x, y) = true 
lt(x,y) = true ⇒ le (x, y) = true 
lt(x,y) = false ∧ eq(x, y) = false ⇒ le (x, y) = false 

–  any occurrence of le(  ,  ) in an axiom can be 
decomposed into 3 sub-cases (or 2, or 1…
depending on its context)

•  Unfolding of recursive occurrences, 
–  see next slide
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Unfolding isin

The definition of isin is:
● isin(x, []) = false
● eq(x, y) = true ⇒ isin(x, y::c) = true
● eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c)

•  Thus any term isin(t1,t2) may correspond to three 
subcases
–  t2=[]: isin(t1,t2) can be replaced by false
–  t2= y::c, and eq(t1, y)=true: it can be replaced by true
–  t2= y::c, and eq(t1, y)=false: it can be replaced by 

y::isin(t1,c)
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Infolding the 3rd (red) axiom

•  c=[]:
–  eq(x, y) = false ∧ c=[] ⇒ isin(x, y::c) = isin(x,c)
–  eq(x, y) = false ⇒ isin(x, y::[]) = false

•  c= y’::c’, and eq(x, y’)=true
–  eq(x, y) = false ∧ c= y’::c’ ∧ eq(x, y’)=true ⇒ isin(x, 

y::y’::c’) = isin(x, y’::c’)
–  eq(x, y) = false ∧ eq(x, y’)=true ⇒ isin(x, y::y’::c’) =true

•  c= y’::c’, and eq(x, y’)=false:
–  eq(x, y) = false ∧ c= y’::c’ ∧ eq(x, y’)=false ⇒ isin(x, 

y::y’::c’) = isin(x, y’::c’)
–  eq(x, y) = false ∧ eq(x, y’)=true ⇒ isin(x, y::y’::c’) =false

eq(x, y) = false ⇒ isin(x, y::c) = isin(x,c)
3 new test

cases
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When and how to stop

•  Depending on the context (risk, cost, schedule, …), 
one chooses for each specification:
–  What boolean functions or predicates to decompose (le, or, 

and, …)
–  What operations to unfold and how many times (rarely 

more than once, but there are counter examples)
•  Some good standard strategy : composition of all 

pairs of sub-cases
–  NB : There may be unfeasible compositions
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The oracle problem

•  Decision that tSUT  and t’SUT  are “equal” 
•  The simple case :

–  the sort s of t and t’ corresponds to some type of 
the programming language with a built-in equality 
(observable sort)

•  “Weak oracle hypothese”: the built-in equality 
on the types of the programming language, and 
the booleans, are correctly implemented
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The other cases

•  How to test that 
  eq(x, y) = false ⇒ remove(x, y::c) = y::remove(x,c) ?

•  Suppose that containers are represented by hash-
tables, or ordered trees, or … 

•  Solution: observable contexts
–  Test that all the possible “observations” on the two results 

are equal
–  Observation : (minimal) composition of operations of the 

signature that yields an observable results
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Observable contexts

•  The CONTAINER example
–  isin(n, _), for all n: Nat

eq(x, y) = false ⇒ isin(n,remove(x, y::c)) = 
isin(n,y::remove(x,c) )

As in this case, there is often an infinity of observable 
contexts L

•  Need for selection strategies
–  Either among the observable contexts => partial oracle
–  Either among a new observable exhaustive test set (see 

Gaudel Le Gall 2007)



Juin 2017 HSST, Halmstad 68

Some applications of testing 
based on axioms

•  Onboard part of the driving system of an automatic 
subway (line D, Lyon)

•  pieces of software written in C, parts of a nuclear 
safety shutdown system.

•  EPFL library of Ada components
•  Validation of a transit node specification
•  test of an implementation of the Two-Phase-Commit 

protocol
•  JML, SPEC#, are derived from algebraic 

specifications
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Back in history: FSM-based 
testing

•  Originally invented in the sixties for testing 
circuits, thus there is a finite number of states

•  First applied to software by Chow in 78
•  Big corpus of knowledge, with a lot of variants 

on the kind of considered FSM
•  The “Bible” on the subject: [Lee & 

Yannakakis 1996]
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What is an FSM?

•  S: finite set of states, I: input alphabet, O: output 
alphabet

•  T: finite set of transitions: 
–  s –x:y-> s'  ∈ T, s, s'∈S, x ∈I, y ∈O
–  Notations: λ(s,x)=y,    λ*(s,w)=w',    w ∈I*, w' ∈O*

•  Equivalent states : ∀w, λ*(s,w) = λ*(s',w)
•  Here, the considered FSM are: deterministic, 

complete (∀ s∈S, ∀x∈I, ∃ s –x:y-> s' ∈T), minimal 
(no equivalent states), and all states are reachable.  
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The same example

1 2 3 4

*,φ: _
/: _

/: _

*: _

φ: φ
*: _

/: _

*: *

φ: _ /: / φ: * φ

φ   is any character but * and /
This is not a comment /* all that / *  is ** a comment */ this is no more a comment.

This FSM removes from the input text all that is not a comment
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Formalities

•  A FSM is a “regular transducer”
•  It defines a function from I* into O*
•  There is no memory: given an input, the output 

depends only on the current state and not on 
the way it has been reached. 
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Revising history

•  System under test
–  unknown, but…

•  Testability Hypothesis: 
–  the SUT behaves like some (unknown) FSM with the 

same* number of states as the description
–  Whatever the trace leading to some state s, the execution of 

transition s –x:y-> s’ has the same effect (output, change of 
state)

FSM
(known)

SUT

output

input

equivalence?

*or more but this number is known
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Back in history: control and 
observation

•  test strategy: transition coverage
s –x:y-> s’

•  Questions
–  control: how to put the SUT into a state equivalent to s?

•  solution 1: if there is an initial state,  perform a “reliable reset”, 
and then some adequate input sequence

•  solution 2: “homing sequence”, and then some adequate input 
sequence

–  observation: how to check that after receiving x and 
issuing y, the SUT is in a state equivalent to s’?

•   “separating family ” : collection {Zi}i=1,..,n of sets of input 
sequences whose  output sequences make it possible to distinguish 
si from any other state
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One of the tests for �
s -x/y-> s’

homing sequence
h∈I* => answ ∈O*
(then the SUT state
should be equivalent
to ss)
Or 
reset: ss = s0

h/answ

ss

w/λ*(ss,w)

s

w ∈I*: in the formal
description, w leads
from ss to s.

preamble

x/y
?

transition
execution

z/λ*(s’, z)

z belongs to the
separating set of s’

observation

?
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One of the tests of the preamble 
of s -x/y-> s’

Homing sequence
h∈I* => answ ∈O*
or 
reset

h/answ

ss

w/λ*(ss,w)

?

w ∈I*: in the formal
description, w leads
from ss to s.
.preamble

z/λ*(s, z)

z belongs to the
separating set of s

observation:
the state is the right one

?
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Back in history [Chow 78]
•  Preliminary theorem: every such FSM has a 

characterizing set W= {w1, …, wm} ⊆ I+, which 
allows to distinguish the states
–  s≠s' ⇒ ∃wi ∈ W such that λ*(s,wi)≠ λ*(s',wi)

•  Test sequences: p.z, where p ∈ P, z ∈ Z
–  P: for every transition s –x:y-> s’, there are two sequences 

in P, p and p.x, such that p leads from the initial state to s
–  Z = W  (or Wk if there are k more states)
–  i.e., coverage of transitions, with observation of the origin 

and destination states
•  The FSM has an initial state, and the SUT provides a 

reliable reset
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“W” for the example

1 2 3 4

*,φ: _
/: _

/: _

*: _

φ: φ
*: _

/: _

*: *

φ: _ /: / φ: * φ

Characterizing set : W ={*φ}
Note: it is a destructive observation

state *φ
1 _
2 φ

3 *φ
4 **φ
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Construction of some P 
(covering tree)

•  the root is the initial state
•  the sons of a node are those
states reachable by some
transition
•  if a state is already in the tree
it is terminal

1

1 1 2

*
φ

/

3 1 2

* φ

/

4 3 3

     *
φ

/

4 3 1



Tests and expected results

*φ nothing

**φ nothing

φ*φ nothing

/*φ φ

//*φ φ

/φ*φ nothing

/**φ *φ

/*/*φ /*φ

/*φ*φ φ*φ

/***φ **φ

/****φ ***φ

/**φ*φ *φ*φ

/**/*φ nothing

state *φ
1 _
2 φ

3 *φ
4 **φ

1

1 1 2

*
φ

/

3 1 2

* φ

/

4 3 3

     *
φ

/

4 3 1
P 

W
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Exhaustivity of P.Z

•  Let A, B, two FSM with the same I and O ;
–   Let V ⊆ I*; 
–  sA is a state of A, sB is a state of B; 
–  sA and sB are V-equivalent iff
–   ∀w ∈ V, λ*(sA,w) = λ*(sB,w)

•  A and B are V-equivalent <=> their initial states are 
V-equivalent

•  Chow’s theorem: 
A and B are equivalent ⇔ A and B are P.Z-equivalent
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I like it!
It was the first “extrapolation” 
theorem applicable to software 
testing
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Application to testing
•  A is a description/specification/model
•  B is a system under test (SUT) that behaves like some 

FSM
–  One knows that I and O are the same sets for A and B.
–  One knows that B has the same number of states as A, or a 

known number of additional states
–  There is a reliable reset of B
–  It is all that is known about B

•  From A one builds P.Z
–  One tests B against the sequences of P.Z
–  If all the output results are the same as for A, B is 

equivalent to A
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Testability Hypotheses and 
all that…

•  Hypotheses: 
–  the SUT behaves like some FSM with the same*  number of 

states as the specification
–  the SUT provides a reliable reset

•  Under these testability hypotheses, the success of a 
test set P.Z ensures equivalence of the SUT and the  
specification FSM

•  Here the satisfaction relation is equivalence
•  P.Z is exhaustive given these hypotheses and this 

relation, i.e.:
–  SUT behaves like some FSM with a known nb of states 

and it provides a reliable reset 
=> (SUT passes P.Z <=> SUT equiv SP)
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Before or after Chow
•  Checking sequence: 

–  covers every transition and its separating set; distinguishes 
the description FSM from any other FSM with the same 
number of states, no need of reset

–  Finite, but may be exponential/nb of states… in length, in 
construction

•  Exhaustivity
–  Transition (+ separating set) coverage

•  Control
–  homing sequence, or reliable reset
–  Non-determinism => adaptive test sequences

•  Observation
–  distinguishing sets, UIO, or variants (plenty of them!)
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