

SOFTWARE TESTING BASED ON AXIOMS

Juin 2017

HSST, Halmstad

Algebraic Specifications

- Abstract Data Types
- Description of required properties, independent of implementation
- Signature: sorts of values, opérations with profile
- + Axioms: equations, conditional equations
 (1st order formulas)
- (+ Constraints: hierarchy, finite generation) Juin 2017 HSST, Halmstad

A VERY basic example

spec BOOL
free generated type Bool ::= true | false
op not : Bool → Bool
0 not(true) = false
0 not(false) = true
end

A more sophisticated one

spec CONTAINER = NAT, BOOL then **generated type** *Container* ::= [] _::_(*Nat* ; *Container*) **op** isin : Nat \times Container \rightarrow Bool **op** remove: Nat \times Container \rightarrow Container $\forall x, y:Nat; c:Container$ • isin(x, []) = false• $eq(x, y) = true \Rightarrow isin(x, y::c) = true$ • $eq(x, y) = false \Rightarrow isin(x, y::c) = isin(x,c)$ • remove(x, []) = []• $eq(x, y) = true \Rightarrow remove(x, y::c) = c$ • $eq(x, y) = false \Rightarrow remove(x, y::c) = y::remove(x, c)$ end Juin 2017 HSST, Halmstad 49

Formalities

- Many-sorted algebras: sets of values and functions

Specificities of testing based on Axioms

- It is not natural to test the operations with couples <input, output>
 - Note that several outputs may be acceptable...
- What must be verified is that *the constructs which implement the operations satisfy the axioms*
- Exercises :

 $\begin{aligned} x + y &= y + x \\ eq(x, y) &= true \Rightarrow isin(x, y::c) = true \end{aligned}$

Link between the specification and the SUT

- The SUT provides some procedures, functions, methods, for executing the operations of the signature
 - (example : Java class, Ada package, ML structure...)
- Let note op_{SUT} the implementation of op
- Let *t* an expression without variable written with some operations and constants of the signature,
- we note t_{SUT} the result of its computation by the SUT,

What is a test?

- Let ε some equation written with the operations of the signature (and, may be, some variables)
 - Test of ε : any close instantiation t = t' of ε
 - Test experiment of *SUT* against t = t': evaluations of t_{SUT} and t'_{SUT} and comparison of the resulting values
 - -NB: oracle \Leftrightarrow test of equality
- Straightforward generalisation to conditional equations; less straightforward for some 1st order formulas (∀, ∃) (cf. Machado 1998, Aiguier et al. 2016, etc).
 Juin 2017 HSST, Halmstad

Juin 2017

Exhaustive test set

Let $SP = (\Sigma, Ax)$

• The exhaustive test set of SP, noted $Exhaust_{SP}$ is the set of all the closed well-sorted instances of all the axioms of SP:

 $Exhaust_{SP} = \{ \Phi \sigma |$

 $\Phi \in Ax, \ \sigma = \{\sigma_s : var(\Phi)_s \to (T_{\Sigma})_s \ | s \in S\} \}$

- NB1 : definition derived from the classical notion of axiom satisfaction
- **NB2** : some tests are inconclusive and can be removed

Testability Hypotheses

- Unavoidable : when testing a system, it is impossible not to make assumptions on its behaviour and its environment
- **Remark** : $Exhaust_{SP}$ is exhaustive w.r.t. the specification, not always w.r.t. the implementation \otimes
- Here : a SUT is Σ -testable if:
 - The operations of Σ are implemented in a deterministic way
 - All the values are specified by Σ (no junks, Σ -generation)

Another exhaustivity

- Based on a different (operational) semantics
 - $\{t = t \not\downarrow / T_{\Sigma}\}$
 - T_{Σ} is the (sorted) set of ground Σ -terms
 - $t \not l$ is the normal form of t, when using the axioms as conditional rewriting rules
- Restriction on the class of specifications
 - The axioms must define a convergent term rewriting system
- Weakening of the testability hypothesis
 - Finite generation is no more required

Selection Hypotheses

- Uniformity Hypothesis
 - $\Phi(X)$ formula, *SUT* system, *D* sub-domain
 - $(\forall t_0 \in D)(\llbracket SUT \rrbracket = \Phi(t_0) \Rightarrow (\forall t \in D) (\llbracket SUT \rrbracket = \Phi(t)))$
 - Determination of sub-domains ? guided by the axioms, see *later...*
- Regularity Hypothesis
 - $\begin{array}{c|c} -\left(\left(\forall t \in T_{\Sigma} \right) \left(\left| t \right| \leq k \Rightarrow \llbracket SUT \rrbracket \right| = \Phi(t) \right) \right) \Rightarrow \left(\forall t \in T_{\Sigma} \right) \left(\llbracket SUT \rrbracket \mid = \Phi(t) \right) \end{array}$
 - Determination of Itl? guided by the axioms or... by necessity 😕

A Method

Starting point : axioms coverage (one test by axiom)

- => Strong uniformity hypotheses on the sorts of the variables or on the validity domain of the premisses
- Example : 6 tests for **CONTAINER** lacksquare
 - isin (0, []) = false
 - isin(1, 1::2:: []) = true
 - isin(1, 0::3:: []) = false
 - remove(1, []) = [],
 - remove(0, 0::3:: []) = 3:: []
 - remove(1, 3:: []) = 3:: []
- Uniformity on *Nat*, on pairs of *Nat* such that eq(x,y) = true, on pairs of *Nat* such as eq(x, y) = false
- Uniformity on *Container*

Weakening of hypotheses

- Successive weakening using the axioms of the specification
- A natural way for discovering sub-domains is to perform *some case analysis of the specification*
- Example : the *isin* function is defined by 3 axioms
 isin(x, []) = false
 - $eq(x, y) = true \Rightarrow isin(x, y::c) = true$
 - $eq(x, y) = false \Rightarrow isin(x, y::c) = isin(x,c)$
- => 3 tests. But one may want to go further
 - The occurrences of *isin(*,) can be decomposed into these 3 subcases

- 2 main techniques for weakening uniformity hypotheses
- Axioms Composition
 - For instance, given the axioms:
 - $eq(x,y) = true \implies le(x, y) = true$
 - $It(x,y) = true \implies Ie(x, y) = true$
 - It(x,y) = false \land eq(x, y) = false \Rightarrow le (x, y) = false
 - any occurrence of le(,) in an axiom can be decomposed into 3 sub-cases (or 2, or 1... depending on its context)
- Unfolding of recursive occurrences,
 - see next slide

Juin 2017

Unfolding isin

The definition of *isin* is:

- isin(x, []) = false
- $eq(x, y) = true \Rightarrow isin(x, y::c) = true$

• $eq(x, y) = false \Rightarrow isin(x, y::c) = isin(x,c)$

- Thus any term *isin(t1,t2)* may correspond to three subcases
 - t2 = []: isin(t1,t2) can be replaced by *false*
 - t2 = y::c, and eq(t1, y) = true: it can be replaced by true
 - t2= y::c, and eq(t1, y)=false: it can be replaced by
 y::isin(t1,c)

Juin 2017

HSST, Halmstad

Juin 2017

When and how to stop

- Depending on the context (risk, cost, schedule, ...), one chooses for each specification:
 - What boolean functions or predicates to decompose (le, or, and, ...)
 - What operations to unfold and how many times (rarely more than once, but there are counter examples)
- Some good standard strategy : composition of all pairs of sub-cases
 - NB : There may be unfeasible compositions

The oracle problem

- Decision that t_{SUT} and t'_{SUT} are "equal"
- The simple case :
 - the sort *s* of *t* and *t*' corresponds to some type of the programming language with a built-in equality (observable sort)
- "Weak oracle hypothese": the built-in equality on the types of the programming language, and the booleans, are correctly implemented

The other cases

• How to test that

 $eq(x, y) = false \Rightarrow remove(x, y::c) = y::remove(x, c) ?$

- Suppose that containers are represented by hashtables, or ordered trees, or ...
- Solution: *observable contexts*
 - Test that all the possible "observations" on the two results are equal
 - Observation : (minimal) composition of operations of the signature that yields an observable results

Observable contexts

• The CONTAINER example

- $isin(n, _)$, for all n: Nat $eq(x, y) = false \Rightarrow isin(n, remove(x, y::c)) =$ isin(n, y::remove(x, c))

As in this case, there is often an infinity of observable contexts ☺

- Need for selection strategies
 - Either among the observable contexts => partial oracle
 - Either among a new observable exhaustive test set (see Gaudel Le Gall 2007)

Some applications of testing based on axioms

- Onboard part of the driving system of an automatic subway (line D, Lyon)
- pieces of software written in C, parts of a nuclear safety shutdown system.
- EPFL library of Ada components
- *Validation* of a transit node specification
- test of an implementation of the Two-Phase-Commit protocol
- JML, SPEC#, are derived from algebraic specifications

SOFTWARE TESTING BASED ON FINITE STATE MACHINES

Halmstad

Back in history: FSM-based testing

- Originally invented in the sixties for testing circuits, *thus there is a finite number of states*
- First applied to software by Chow in 78
- Big corpus of knowledge, with a lot of variants on the kind of considered FSM
- The "Bible" on the subject: [Lee & Yannakakis 1996]

What is an FSM?

- S: finite set of states, I: input alphabet, O: output alphabet
- T: finite set of transitions:
 - $s x: y -> s' \in T, \qquad s, s' \in S, x \in I, y \in O$
 - Notations: $\lambda(s,x)=y$, $\lambda^*(s,w)=w'$, $w \in I^*$, $w' \in O^*$
- *Equivalent states* : $\forall w, \lambda^*(s,w) = \lambda^*(s',w)$
- Here, the considered FSM are: deterministic, complete ($\forall s \in S$, $\forall x \in I$, $\exists s - x: y > s' \in T$), minimal (*no equivalent states*), and all states are reachable.

This FSM removes from the input text all that is not a comment

\$\overline{\phi}\$ is any character but * and /
This is not a comment /* all that / * is ** a comment */ this is no more a comment.

June 2017

Halmstad

Formalities

- A FSM is a "regular transducer"
- It defines a function from I* into O*
- *There is no memory*: given an input, the output depends only on the current state and not on the way it has been reached.

Revising history

- Testability Hypothesis:
 - the SUT behaves like some (unknown) FSM with the same* number of states as the description
 - Whatever the trace leading to some state s, the execution of transition s –x:y-> s' has the same effect (output, change of state)

*or more but this number is known

input

Back in history: control and observation

- test strategy: *transition coverage* s -x:y-> s'
- Questions
 - **control**: how to put the SUT into a state equivalent to *s*?
 - solution 1: if there is an initial state, perform a "reliable reset", and then some adequate input sequence
 - solution 2: "**homing sequence**", and then some adequate input sequence
 - observation: how to check that after receiving x and issuing y, the SUT is in a state equivalent to s'?
 - "separating family": collection $\{Z_i\}_{i=1,..,n}$ of sets of input sequences whose output sequences make it possible to distinguish s_i from any other state

June 2017

One of the tests for s -x/y-> s'

76

One of the tests of the preamble of s - x/y - s'

Back in history [Chow 78]

• Preliminary theorem: every such FSM has a *characterizing set* $W = \{w_1, ..., w_m\} \subseteq I^+$, which allows to distinguish the states

 $- s \neq s' \Rightarrow \exists w_i \in W \text{ such that } \lambda^*(s,w_i) \neq \lambda^*(s',w_i)$

- **Test sequences**: *p.z*, *where* $p \in P$, $z \in Z$
 - P: for every transition s -x:y-> s', there are two sequences in P, p and p.x, such that p leads from the initial state to s
 - Z = W (or W^k if there are k more states)
 - i.e., coverage of transitions, with observation of the origin and destination states
- The FSM has an initial state, and the SUT provides a *reliable reset*

"W" for the example

Characterizing set : **W** ={*φ} Note: it is a destructive observation

June 2017

June 2017

Halmstad

Tests and expected results

× + Y - 4

<u>*</u> \$	nothing	/*/ <u>*</u> \$	/* φ
* <u>*</u> \$	nothing	/*\$ <u>*</u> \$	φ*φ
φ <u>*φ</u>	nothing	/** <u>*</u> \$	** \$
/ <u>*</u> ¢	φ	/****0	*** 0
// <u>*</u>	φ	 /*****	*#*#
/ф <u>*ф</u>	nothing	γ···ψ <u>·ψ</u>	ΨΨ
/* <u>*</u> \$	*ф	/**/ <u>*</u> \$	nothing

Exhaustivity of P.Z

- Let A, B, two FSM with the same I and O;
 - Let $V \subseteq I^*$;
 - s_A is a state of A, s_B is a state of B;
 - s_A and s_B are V-equivalent iff
 - $\forall w \in V, \lambda^*(s_A, w) = \lambda^*(s_B, w)$
- A and B are V-equivalent <=> their initial states are V-equivalent
- Chow's theorem:

A and B are equivalent \Leftrightarrow A and B are P.Z-equivalent

I like it! It was the first "extrapolation" theorem applicable to software testing

June 2017

Halmstad

00

Application to testing

- A is a description/specification/model
- *B* is a system under test (SUT) that behaves like some FSM
 - One knows that *I* and *O* are the same sets for *A* and *B*.
 - One knows that *B* has the same number of states as *A*, or a known number of additional states
 - There is a reliable reset of B
 - It is all that is known about *B*
- From *A* one builds *P*.*Z*
 - One tests B against the sequences of P.Z
 - If all the output results are the same as for *A*, *B* is equivalent to *A*

Testability Hypotheses and all that...

- Hypotheses:
 - the SUT behaves like some FSM with the same* number of states as the specification
 - the SUT provides a reliable reset
- Under these testability hypotheses, the success of a test set P.Z ensures equivalence of the SUT and the specification FSM
- Here the satisfaction relation is *equivalence*
- P.Z is exhaustive given these hypotheses and this relation, i.e.:
 - SUT behaves like some FSM with a known nb of states and it provides a reliable reset

=> (SUT passes P.Z <=> SUT equiv SP)

Before or after Chow

Checking sequence:

- covers every transition and its separating set; *distinguishes the description FSM from any other FSM with the same number of states*, no need of reset
- Finite, *but may be exponential/nb of states*... in length, in construction
- Exhaustivity
 - Transition (+ separating set) coverage
- Control
 - homing sequence, or reliable reset
 - Non-determinism => adaptive test sequences
- Observation
 - distinguishing sets, UIO, or variants (plenty of them!)

BIBLIOGRAPHY

Juin 2017

HSST, Halmstad

Historical Monuments

- J. B. Goodenough and S. L. Gerhart, 1975. "Toward a theory of test data selection", *IEEE Transactions on Software Engineering*, SE-1(2): 156-173.
- T. Chow, 1978. "Testing software design modeled by finitestate machines", *IEEE Transactions on Software Engineering*, SE-4(3):178–187.
- G. Bernot, M.-C. Gaudel, and B. Marre, 1991. "Software testing based on formal specifications: a theory and a tool", *Software Engineering Journal*, 6(6):387-405.
- Dick J., Faivre A., 1993. "Automating the generation and sequencing of test cases from model-based specifications", *LNCS* 670, pp. 268-284.

Juin 2017

HSST, Halmstad

Recommended Surveys

- D. Lee and M. Yannakakis, 1996. "Principles and methods of testing finite state machines-a survey", *Proceedings of the IEEE*, 84(8): 1090-1123.
- R. M. Hierons, K. Bogdanov, J. P. Bowen, et al., 2009. "Using formal specifications to support testing", *ACM Comput. Surv.* 41(2), 76 pages.

Publications ± directly related to this tutorial

- Cavalcanti and M.-C. Gaudel, 2007. "Testing for refinement in CSP", *LNCS* 4789, pp 151-170.
- M.-C. Gaudel and P. Le Gall, 2007. "Testing data types implementations from algebraic specifications", *LNCS* 4949, 209-239.
- Cavalcanti and M.-C. Gaudel, 2011. "Testing for refinement in *Circus*", *Act. Inf.*, 48(2):97-147.
- M.-C. Gaudel, 2011. "Checking models, proving programs, and testing systems", *LNCS* 6706, pp 1-13.
- Cavalcanti, M.-C. Gaudel, 2015. "Test selection for traces refinement", *TCS* 563:1-42.