

SOFTWARE TESTING BASED ON AXIOMS

Juin 2017 **HSST, Halmstad** 46

Algebraic Specifications

- Abstract Data Types
- Description of required properties, independent of implementation
- Signature: sorts of values, opérations with profile
- + Axioms: equations, conditional equations (1st order formulas)
- Juin 2017 **HSST, Halmstad** 47 • (+ Constraints: hierarchy, finite generation)

A VERY basic example

spec BOOL **free generated type** *Bool* ::= true │ false **op** *not* : $Bool \rightarrow Bool$ \bullet not(true) = false \bullet not(false) = true **end**

A more sophisticated one

spec CONTAINER = NAT, BOOL **then generated type** *Container* ::= [] │ _::_*(Nat ; Container)* **op** *isin : Nat × Container* → *Bool* **op** *remove: Nat × Container* → *Container* ∀ *x, y:Nat; c:Container* \bullet *isin(x, []) = false* \bullet *eq(x, y) = true* \Rightarrow *isin(x, y::c) = true* ● *eq(x, y) = false* [⇒] *isin(x, y::c) = isin(x,c)* \bullet *remove*(*x*, []) = [] \bullet *eq(x, y) = true* \Rightarrow *remove(x, y::c) = c* ● *eq(x, y) = false* ⇒ *remove(x, y::c) = y::remove(x,c)* **end** HSST, Halmstad 49

Formalities

– Many-sorted algebras: sets of values and functions

Specificities of testing based on Axioms

- It is not natural to test the operations with couples <input, output>
	- Note that several outputs may be acceptable…
- What must be verified is that *the constructs which implement the operations satisfy the axioms*
- Exercises :

x + y = y + x $eq(x, y) = true \Rightarrow isin(x, y::c) = true$

Link between the specification and the SUT

- The SUT provides some procedures, functions, methods, for executing the operations of the signature
	- (example : Java class, Ada package, ML structure…)
- Let note *op*_{SUT} the implementation of *op*
- Let *t* an expression without variable written with some operations and constants of the signature,
- we note t_{SUT} the result of its computation by the SUT,

What is a test?

- Let ε some equation written with the operations of the signature (and, may be, some variables)
	- Test of ε : any close instantiation $t = t'$ of ε
	- $-$ Test experiment of *SUT* against $t = t'$: evaluations of t_{SUT} and t'_{SUT} and comparison of the resulting values
	- $-$ **NB** : oracle \Leftrightarrow test of equality
- Juin 2017 \sim HSST, Halmstad 53 • Straightforward generalisation to conditional equations; less straightforward for some 1st order formulas (\forall, \exists) (cf. Machado 1998, Aiguier et al. 2016, etc).

Exhaustive test set

 $\mathcal{L} \bullet \mathcal{L}$ Let $SP = (\Sigma, Ax)$

• The exhaustive test set of SP , noted $Exhaust_{SP}$ is the set of all the closed well-sorted instances of all the axioms of *SP:*

 $Exhaust_{SP} = \{ \Phi \sigma \}$

 $\Phi \in Ax$, $\sigma = {\sigma_s : var(\Phi)_s \rightarrow (T_{\Sigma})_s}$ |s $\in S}$ }

- **NB1** : definition derived from the classical notion of axiom satisfaction
- **NB2** : some tests are inconclusive and can be removed

Testability Hypotheses

- Unavoidable : when testing a system, it is impossible not to make assumptions on its behaviour and its environment
- **Remark**: *Exhaust_{SP}* is exhaustive w.r.t. the specification, not always w.r.t. the implementation \odot
- Here : a SUT is *∑-testable* if:
	- The operations of Σ are implemented in a deterministic way
	- All the values are specified by Σ (no junks, Σ -generation)

Another exhaustivity

- Based on a different (operational) semantics
	- $-$ {*t* = *t* $\sqrt{T_{\Sigma}}$ }
	- $-T_Σ$ is the (sorted) set of ground Σ-terms
	- *t*↓ is the normal form of *t*, when using the axioms as conditional rewriting rules
- Restriction on the class of specifications
	- The axioms must define a convergent term rewriting system
- Weakening of the testability hypothesis
	- Finite generation is no more required

Selection Hypotheses

- *Uniformity Hypothesis*
	- ^Φ*(X)* formula, *SUT* system, *D* sub-domain
	- $-$ ($∀t₀ ∈ D)$ ([SUT] $= ∅(t₀) ⇒ (∀t ∈ D)$ ([SUT] $= ∅(t)$))
	- Determination of sub-domains ? *guided by the axioms, see later…*
- *Regularity Hypothesis*
	- $-(\left(\forall t \in T_{\Sigma}\right) \left(\sqrt{t} \leq k \Rightarrow \llbracket \text{SUT} \rrbracket \right) = \Phi(t)$) $\Rightarrow (\forall t \in T_{\Sigma})$ T_{Σ}) ([SUT] $I = \Phi(t)$)
	- Determination of |t|? *guided by the axioms or… by necessity*

A Method

• Starting point : axioms coverage (one test by axiom)

- \Rightarrow Strong uniformity hypotheses on the sorts of the variables or on the validity domain of the premisses
- Example : 6 tests for CONTAINER
	- $-$ isin $(0, []$ = false
	- $-$ isin(1, 1::2:: []) = true
	- $-$ isin(1, 0::3:: []) = false
	- remove(1, $[$]) = $[$],
	- $-$ remove(0, 0::3:: []) = 3:: []
	- $-$ remove(1, 3:: []) = 3:: []
- Uniformity on *Nat*, on pairs of *Nat* such that $eq(x,y) = true$, on pairs of *Nat* such as *eq(x, y) = false*
- Juin 2017 **HSST, Halmstad** 59 • Uniformity on *Container*

Weakening of hypotheses

- Successive weakening using the axioms of the specification
- A natural way for discovering sub-domains is to perform *some case analysis of the specification*
- Example : the *isin* function is defined by 3 axioms
	- \bigcirc *isin(x, [])* = *false*
	- \bullet *eq(x, y) = true* \Rightarrow *isin(x, y::c) = true*
	- \bullet *eq(x, y) = false* \Rightarrow *isin(x, y::c) = isin(x,c)*
- \Rightarrow 3 tests. But one may want to go further
	- The occurrences of *isin(,)* can be decomposed into these 3 subcases

2 main techniques for weakening uniformity hypotheses

- Axioms Composition
	- For instance, given the axioms:
		- $eq(x,y) = true \implies le(x, y) = true$
		- $lt(x,y) = true \implies le(x, y) = true$
		- It(x,y) = false ∧ eq(x, y) = false \Rightarrow le (x, y) = false
	- any occurrence of $le($, $)$ in an axiom can be decomposed into 3 sub-cases (or 2, or 1… depending on its context)
- Unfolding of recursive occurrences,
	- see next slide

Unfolding *isin*

The definition of *isin* is:

- \bullet *isin(x, [])* = *false*
- \bullet *eq(x, y) = true* \Rightarrow *isin(x, y::c) = true*
- $eq(x, y) = false \Rightarrow isin(x, y::c) = isin(x, c)$
- Thus any term $isin(t1,t2)$ may correspond to three subcases
	- *t2=[]: isin(t1,t2)* can be replaced by *false*
	- *t2= y::c*, and *eq(t1, y)=true*: it can be replaced by *true*
	- *t2= y::c*, and *eq(t1, y)=false*: it can be replaced by *y::isin(t1,c)*

Juin 2017 **HSST, Halmstad** 62

Juin 2017 63

When and how to stop

- Depending on the context (risk, cost, schedule, ...), one chooses for each specification:
	- What boolean functions or predicates to decompose (le, or, and, …)
	- What operations to unfold and how many times (rarely more than once, but there are counter examples)
- Some good standard strategy : composition of all pairs of sub-cases
	- NB : There may be unfeasible compositions

The oracle problem

- Decision that t_{SUT} and t'_{SUT} are "equal"
- The simple case :
	- the sort *s* of *t* and *t'* corresponds to some type of the programming language with a built-in equality (observable sort)
- "Weak oracle hypothese": the built-in equality on the types of the programming language, and the booleans, are correctly implemented

The other cases

• How to test that

 $eq(x, y) = false \Rightarrow remove(x, y::c) = y::remove(x, c)$?

- Suppose that containers are represented by hashtables, or ordered trees, or …
- Solution: *observable contexts*
	- Test that all the possible "observations" on the two results are equal
	- **Observation** : (minimal) composition of operations of the signature that yields an observable results

Observable contexts

• The CONTAINER example

 $-$ *isin(n, _),* for all n: Nat $eq(x, y) = false \Rightarrow isin(n, remove(x, y::c)) =$ $isin(n,y::remove(x,c))$

As in this case, there is often an infinity of observable contexts \odot

- Need for selection strategies
	- Either among the observable contexts => partial oracle
	- Either among a new observable exhaustive test set (see Gaudel Le Gall 2007)

Some applications of testing based on axioms

- Onboard part of the driving system of an automatic subway (line D, Lyon)
- pieces of software written in C, parts of a nuclear safety shutdown system.
- EPFL library of Ada components
- *Validation* of a transit node specification
- test of an implementation of the Two-Phase-Commit protocol
- JML, SPEC#, are derived from algebraic specifications

SOFTWARE TESTING BASED ON FINITE STATE MACHINES

June 2017 **Halmstad** 69

Back in history: FSM-based testing

- Originally invented in the sixties for testing circuits, *thus there is a finite number of states*
- First applied to software by Chow in 78
- Big corpus of knowledge, with a lot of variants on the kind of considered FSM
- The "Bible" on the subject: [Lee & Yannakakis 1996]

What is an FSM?

- S: finite set of states, I: input alphabet, O: output alphabet
- T: finite set of transitions:
	- $-$ **s** –**x:y-> s'** \in **T**, s, s' \in S, x \in I, y \in O
	- **Notations**: $\lambda(s,x)=y$, $\lambda^*(s,w)=w'$, $w \in I^*$, $w' \in O^*$
- *Equivalent states* : $\forall w, \lambda^*(s,w) = \lambda^*(s',w)$
- Here, the considered FSM are: deterministic, complete *(* $\forall s \in S$, $\forall x \in I$, $\exists s - x : y > s' \in T$), minimal *(no equivalent states)*, and all states are reachable.

This FSM removes from the input text all that is not a comment

φ is any character but * and / This is not a comment **/*** all that / * is ** a comment ***/** this is no more a comment.

France 2017 **Halmstad** 72

Formalities

- A FSM is a "regular transducer"
- It defines a function from I^{*} into O^{*}
- *There is no memory*: given an input, the output depends only on the current state and not on the way it has been reached.

Revising history

- Testability Hypothesis:
	- the SUT behaves like some (unknown) FSM with the same* number of states as the description
	- Whatever the trace leading to some state s, the execution of transition $s - x: y \geq s'$ has the same effect (output, change of state)

*or more but this number is known

France 2017 **Halmstad** 74

input

Back in history: control and observation

- test strategy: *transition coverage s –x:y-> s'*
- Questions
	- **control**: how to put the SUT into a state equivalent to *s*?
		- solution 1: if there is an initial state, perform a "**reliable reset"**, and then some adequate input sequence
		- solution 2: "**homing sequence**" , and then some adequate input sequence
	- **observation:** how to check that after receiving *x* and issuing *y*, the SUT is in a state equivalent to *s'*?
		- "**separating family**": collection $\{Z_i\}_{i=1,\dots,n}$ of sets of input sequences whose output sequences make it possible to distinguish s_i from any other state

One of the tests for $s -x/y \rightarrow s'$

One of the tests of the preamble of $s -x/y \rightarrow s'$

Back in history [Chow 78]

Preliminary theorem: every such FSM has a *characterizing set* $W = \{w_1, ..., w_m\} \subseteq I^+$, which allows to distinguish the states

 $-$ **s** \neq **s'** \Rightarrow $\exists w_i \in W$ **such that** $\lambda^*(s, w_i) \neq \lambda^*(s', w_i)$

- **Test sequences:** *p.z*, where $p \in P$, $z \in Z$
	- P: for every transition $s x : y \rightarrow s'$, there are two sequences in P, **p and p.x**, such that p leads from the initial state to s
	- $-Z = W$ (or W^k if there are k more states)
	- i.e., coverage of transitions, with observation of the origin and destination states
- The FSM has an initial state, and the SUT provides a *reliable reset*

"W" for the example

Characterizing set : **W ={***φ**}** Note: it is a destructive observation

France 2017 **Halmstad** 79

June 2017 **Halmstad** 80

Tests and expected results

 $\frac{X}{4} + Y -$

Exhaustivity of P.Z

- Let A, B, two FSM with the same I and O;
	- Let $V \subseteq I^*$;
	- s_A is a state of A, s_B is a state of B;
	- $-$ s_A and s_B are V-equivalent iff
	- $-V_{\rm W} \in V$, $\lambda^*(s_A, w) = \lambda^*(s_B, w)$
- A and B are V-equivalent \le their initial states are V-equivalent
- **Chow's theorem**:

A and B are equivalent ⇔ **A and B are P.Z-equivalent**

I like it! It was the first "extrapolation" theorem applicable to software testing

June 2017 **Halmstad** 83

 $\begin{array}{c} 0 \\ 0 \end{array}$

Application to testing

- *A* is a description/specification/model
- *B* is a system under test (SUT) that behaves like some FSM
	- One knows that *I* and *O* are the same sets for *A* and *B.*
	- One knows that *B* has the same number of states as *A*, or a known number of additional states
	- There is a reliable reset of *B*
	- It is all that is known about *B*
- From *A* one builds *P.Z*
	- One tests *B* against the sequences of *P.Z*
	- If all the output results are the same as for *A*, *B* is equivalent to *A*

Testability Hypotheses and all that…

- Hypotheses:
	- *the SUT behaves like some FSM with the same* number of states as the specification*
	- *the SUT provides a reliable reset*
- Under these testability hypotheses, the success of a test set P.Z ensures equivalence of the SUT and the specification FSM
- Here the satisfaction relation is *equivalence*
- P.Z is exhaustive given these hypotheses and this relation, i.e.:
	- *SUT behaves like some FSM with a known nb of states and it provides a reliable reset*

 \Rightarrow (SUT passes P.Z \le > SUT equiv SP)

Before or after Chow

• Checking sequence:

- covers every transition and its separating set; *distinguishes the description FSM from any other FSM with the same number of states,* no need of reset
- Finite, *but may be exponential/nb of states*… in length, in construction
- Exhaustivity
	- Transition (+ separating set) coverage
- Control
	- homing sequence, or reliable reset
	- Non-determinism => adaptive test sequences
- Observation
	- distinguishing sets, UIO, or variants (plenty of them!)

BIBLIOGRAPHY

Juin 2017 **HSST, Halmstad** 87

Historical Monuments

- . B. Goodenough and S. L. Gerhart, 1975. "Toward a theory of test data selection", *IEEE Transactions on Software Engineering*, SE-1(2): 156-173.
- T. Chow, 1978. "Testing software design modeled by finitestate machines", *IEEE Transactions on Software Engineering*, SE-4(3):178–187.
- G. Bernot, M.-C. Gaudel, and B. Marre, 1991. "Software testing based on formal specifications: a theory and a tool", *Software Engineering Journal*, 6(6):387-405.
- Dick J., Faivre A., 1993. "Automating the generation and sequencing of test cases from model-based specifications", *LNCS* 670, pp. 268-284.

Juin 2017 **HSST, Halmstad** 88

Recommended Surveys

- D. Lee and M. Yannakakis, 1996. "Principles and methods of testing finite state machines-a survey", *Proceedings of the IEEE*, 84(8): 1090-1123.
- R. M. Hierons, K. Bogdanov, J. P. Bowen, et al., 2009. "Using formal specifications to support testing", *ACM Comput. Surv.* 41(2), 76 pages.

Publications ± directly related to this tutorial

- Cavalcanti and M.-C. Gaudel, 2007. "Testing for refinement in CSP", *LNCS* 4789, pp 151-170.
- M.-C. Gaudel and P. Le Gall, 2007. "Testing data types implementations from algebraic specifications", *LNCS* 4949, 209-239.
- Cavalcanti and M.-C. Gaudel, 2011. "Testing for refinement in *Circus*", *Act. Inf.*, 48(2):97-147.
- M.-C. Gaudel, 2011. "Checking models, proving programs, and testing systems", *LNCS* 6706, pp 1-13.
- Cavalcanti, M.-C. Gaudel, 2015. "Test selection for traces refinement", *TCS* 563:1-42.