SOFTWARE TESTING BASED
ON AXIOMS

Juin 2017 HSST, Halmstad 46

Algebraic Specifications

e Abstract Data Types

e Description of required properties,
independent of implementation

e Signature: sorts of values, opérations with
profile

* + Axioms: equations, conditional equations
(1st order formulas)
* (+ Constraints: hierarchy, finite generation)

Juin 2017 HSST, Halmstad 47

A VERY basic example

spec BOOL
free generated type Bool ::=true | false
op not : Bool — Bool
@ not(true) = false
@ not(false) = true
end

Juin 2017 HSST, Halmstad 48

A more sophisticated one

spec CONTAINER = NAT, BOOL

then

generated type Conrainer .= || | _::_(Nat ; Container)
op isin : Nat x Container — Bool

op remove: Nat x Container — Container

V x, y:Nat; c:Container

® isin(x, []) = false

@ cq(x, y) = true = isin(x, y::c) = true

® cq(x, y) = false = isin(x, y::c) = isin(x,c)

@ remove(x, []) =[]

® cq(x, y) = true = remove(x, y::c) = c

® c¢q(x, y) = false = remove(x, y::c) = y::remove(x,c)

end
Juin 2017 HSST, Halmstad 49

Formalities

e Semantics
— Many-sorted algebras: sets of values and functions

Container J

O labelled set of entities —— Opcrations

Juin 2017 HSST, Halmstad 50

Specificities of testing
based on Axioms

e It1s not natural to test the operations with couples
<input, output>
— Note that several outputs may be acceptable...

 What must be verified 1s that the constructs which
implement the operations satisfy the axioms

e EXxercises :
X+y=y+x
eq(x,y) = true = isin(x, y::c) = true

Juin 2017 HSST, Halmstad 51

Link between the
specification and the SUT

e The SUT provides some procedures, functions,
methods, for executing the operations of the
signature

— (example : Java class, Ada package, ML
structure...)

* Let note opg;; the implementation of op

e Let ¢ an expression without variable written with
some operations and constants of the signature,

* we note Zy;, the result of its computation by the
SUT,

Juin 2017 HSST, Halmstad 52

What 1s a test?

* Let £ some equation written with the operations of the
signature (and, may be, some variables)

— Test of € : any close instantiation # = ¢' of ¢

— Test experiment of SUT against ¢ = ¢ evaluations
of tq,r and ¢’ and comparison of the resulting
values

— NB : oracle < test of equality

» Straightforward generalisation to conditional
equations; less straightforward for some 15 order

formulas (V, 3) (cf. Machado 1998, Aiguier et al. 2016,

etc).
Juin 2017 HSST, Halmstad 53

Examples of tests (simplified for }
conditional axioms) :
® isin(x, []) = false
— isin (0, []) = false
® cq(x, y) = true = isin(x, y::c) = true
— isin(1, 1::2:: []) = true
® ¢q(x, y) = false = isin(x, y::c) = isin(x,c)
— isin(1, 0::3:: []) = false
@ remove(x, []) =[]
— remove(d, []) =]
® cq(x,y) = true = remove(x, y::c) = c
— remove(0, 0::3::4:: []) = 3::4:[]
® ¢q(x, y) = false = remove(x, y::c) = y::remove(x,c)
— remove(1, 7::5:3:: []) = 7::5::3: []

Juin 2017 HSST, Halmstad 54

Exhaustive test set

LLet SP = (3, Ax)

* The exhaustive test set of SP, noted Exhaustp
1s the set of all the closed well-sorted instances
of all the axioms of SP:

Exhaust,, ={ Dol
@ EAx, o={0,:var(D), = (Ty), IsES} }

— NBJ1 : definition derived from the classical notion of axiom
satisfaction

— NB2 : some tests are inconclusive and can be removed

Testability Hypotheses

e Unavoidable : when testing a system, 1t 1s impossible
not to make assumptions on its behaviour and its
environment

 Remark : Exhaustg, 1s exhaustive w.r.t. the
specification, not always w.r.t. the implementation ©®

e Here:aSUT 1s) -restable if:

— The operations of X are implemented in a deterministic way
— All the values are specified by X (no junks, X-generation)

Juin 2017 HSST, Halmstad 56

Another exhaustivity

e Based on a different (operational) semantics

— {t=t) [Ty}
— T 1s the (sorted) set of ground X-terms

— tJ is the normal form of ¢, when using the axioms as
conditional rewriting rules

* Restriction on the class of specifications

— The axioms must define a convergent term rewriting
system

* Weakening of the testability hypothesis
— Finite generation 1s no more required

Juin 2017 HSST, Halmstad 57

Selection Hypotheses

e Uniformity Hypothesis
— d&(X) formula, SUT system, D sub-domain
- (Vt, D) [SUT]I=d(t)) = (Vi ED) ([SUT] |= d(t)))
— Determination of sub-domains ? guided by the axioms, see
later...
* Regularity Hypothesis
—((V't ETZ) (/t/sk = [SUT] I=d(t)) = (Vi &E
TZ) ([SUTJ = d(t))
— Determination of ItI? guided by the axioms or... by necessity =

Juin 2017 HSST, Halmstad 58

A Method

e “Starting point : axioms coverage (one test by axiom)

e => Strong uniformity hypotheses on the sorts of the variables
or on the validity domain of the premisses

e Example : 6 tests for CONTAINER
— isin (0, []) = false
— isin(1, 1::2::]]) = true
— isin(1, 0::3:: []) = false
- remove(1, []) =],
— remove(0, 0::3::[]) = 3::]
— remove(1, 3::[]) = 3::]
e Uniformity on Nat, on pairs of Nat such that eg(x,y) = true, on
pairs of Nat such as eq(x, y) = false

e Uniformity on Container
Juin 2017 HSST, Halmstad 59

Weakening of hypotheses

* Successive weakening using the axioms of the
specification

* A natural way for discovering sub-domains is to
perform some case analysis of the specification

 Example : the isin function 1s defined by 3 axioms
® isin(x, []) = false
® cq(x, y) = true = isin(x, y::c) = true
® ¢q(x, y) = false = isin(x, y::c) = isin(x,c)

e => 3 tests. But one may want to go further

— The occurrences of isin(,) can be decomposed into these
3 subcases

Juin 2017 HSST, Halmstad 60

2 main techniques for weakening |
uniformity hypotheses

e Axioms Composition
— For 1nstance, given the axioms:
eq(x,y) = true = le (x, y) = true
It(x,y) = true = le (x, y) = true
It(x,y) = false A eq(x, y) = false = le (x, y) = false

— any occurrence of le(,) 1n an axiom can be
decomposed into 3 sub-cases (or 2, or 1...
depending on its context)

* Unfolding of recursive occurrences,

— see next shide
Juin 2017 HSST, Halmstad 61

Unfolding isin

The definition of isin is:
® isin(x, []) = false
® cq(x, y) = true = isin(x, y::c) = true
® cq(x, y) = false = isin(x, y::c) = isin(x,c)
e Thus any term isin(tl,t2) may correspond to three
subcases
— t2=[]: isin(t1,t2) can be replaced by false
— t2=y::c,and eq(tl, y)=true: it can be replaced by true

— t2=y::c,and eq(tl, y)=false: 1t can be replaced by
y::sin(tl,c)

Juin 2017 HSST, Halmstad

62

Infolding the 3 (red) axiom

eq(x,y) = false = isin(x, y::c) = isin(x,c)

3 new test
cases

_——

e c=[]:
— eq(x,y) = false A c=[] = isin(x, y::c) = isin(x,c
— eq(x,y) = false = isin(x, y::[]) = false
e c=y’::c’yand eq(x, y’)=true
— eq(x,y) = false A c=Yy’::¢’ A eq(x,y’)=true = isin(x,
yy'e’) =isin(x, y’::c’) |
— eq(x,y) = false A eq(x,y’)=true = isin(x, y::y’::c’) =true
e c=y’::c’,and eq(x, y’)=false:
— eq(x,y) = false A c=y’::c’ req(x,y’)=false = isin(x,
yiy'se’) =isin(x, y’::c’)
— eq(x,y) = false A eq(x,y’)=true = isin(x, y::y’::c’) :falsev

Juin 2017 HSST, Halmstad 63

When and how to stop

* Depending on the context (risk, cost, schedule, ...),
one chooses for each specification:

— What boolean functions or predicates to decompose (le, or,
and, ...)

— What operations to unfold and how many times (rarely
more than once, but there are counter examples)

 Some good standard strategy : composition of all
pairs of sub-cases

— NB : There may be unfeasible compositions

Juin 2017 HSST, Halmstad 64

V4
The oracle problem %

e Decision that zg,,~ and t’¢,,, are “equal”

* The simple case :

— the sort s of zand ¢’ corresponds to some type of
the programming language with a built-in equality
(observable sort)

e “Weak oracle hypothese”: the built-in equality
on the types of the programming language, and
the booleans, are correctly implemented

Juin 2017 HSST, Halmstad 65

The other cases

e How to test that
eq(x,y) = false = remove(x, y::c) = y::remove(x,c) ?
* Suppose that containers are represented by hash-
tables, or ordered trees, or ...

e Solution: observable contexts

— Test that all the possible “observations™ on the two results
are equal

— Observation : (minimal) composition of operations of the
signature that yields an observable results

Juin 2017 HSST, Halmstad 66

Observable contexts

e The CONTAINER example

— isin(n, _), for all n: Nat
eq(x,y) = false = isin(n,remove(x, y::c)) =
isin(n,y::remove(x,c))
As 1n this case, there is often an infinity of observable
contexts @

* Need for selection strategies
— Either among the observable contexts => partial oracle

— Either among a new observable exhaustive test set (see
Gaudel Le Gall 2007)

Juin 2017 HSST, Halmstad 67

L
Some applications of testing %
based on axioms

* Onboard part of the driving system of an automatic
subway (line D, Lyon)

e pieces of software written in C, parts of a nuclear
safety shutdown system.

 EPFL library of Ada components
* Validation of a transit node specification

e test of an implementation of the Two-Phase-Commit
protocol

 JML, SPEC#, are derived from algebraic
specifications

Juin 2017 HSST, Halmstad 68

SOFTWARE TESTING BASED
ON FINITE STATE MACHINES

June 2017 Halmstad 69

UL
Back 1n history: FSM-based %
testing

e Originally invented in the sixties for testing
circuits, thus there is a finite number of states

* First applied to software by Chow 1n 78

* Big corpus of knowledge, with a lot of variants
on the kind of considered FSM

 The “Bible” on the subject: [Lee &
Y annakakis 1996]

June 2017 Halmstad 70

What 1s an FSM?

e S: finite set of states, I: input alphabet, O: output

alphabet
e T: finite set of transitions:
- s—x:y->s' €T, s, s'ES,x €l y €0

— Notations: A(s,x)=y, A*(s,w)=w', w E&l* w' €0*
o Egquivalent states : Vw, N*(s,w) = A*(s',w)

e Here, the considered FSM are: deterministic,
complete (V' s&S, Wx&l, s —x:y-> s' €T'), minimal
(no equivalent states), and all states are reachable.

June 2017 Halmstad 71

This FSM removes from the input text all that is not a comment

¢ is any character but * and /
This is not a comment /* all that / * 1s ** a comment */ this 1S no more a comment.

June 2017 Halmstad 72

Formalities

e A FSM i1s a “regular transducer”
e It defines a function from I'* into O*

* There is no memory: given an input, the output
depends only on the current state and not on
the way 1t has been reached.

June 2017 Halmstad 73

Revising history

3 >
FSM .
e System under test <eguivalence? SUT

(known)

— unknown, but... @) ﬁTiji t
outpu

 Testability Hypothesis: input

— the SUT behaves like some (unknown) FSM with the
same* number of states as the description

— Whatever the trace leading to some state s, the execution of
transition s —x.y-> s’ has the same effect (output, change of

state) , ,
*or more but this number 1s known

June 2017 Halmstad 74

Back 1n history: control and
observation

* test strategy: transition coverage
s —X:y-> 8’
e (Questions

— control: how to put the SUT into a state equivalent to s?

e solution 1: if there is an initial state, perform a “reliable reset”,
and then some adequate input sequence

e solution 2: “homing sequence”, and then some adequate input
sequence
— observation: how to check that after receiving x and
issuing y, the SUT i1s in a state equivalent to s°?

* “separating family ” : collection {Z;},_, , of sets of input
sequences whose output sequences make it possible to distinguish

s; from any other state
June 2017 Halmstad 75

One of the tests for
S -X/y->§’

lansw
@/\K/ W/NE (S, W) ZINE(S”, 7)
x/
homing sequence @ z ’®/\/\

h&el* => answ €0*

z belongs to the

(then the SUT state separating set of §’
should be equivalent
to's,) w EI*: in the formal
Or description, w leads
reset: s, =S, from s. 10 s.
< > < > < >
preamble transition observation

execution
June 2017 Halmstad 76

One of the tests of the preamble
of s -x/y->§’

W/NF(S,W) Z/N*(s, z)

o

z belongs to the
separating set of s

Homing sequence
h&l* => answ €0*
or

reset

<

w €I*: in the formal
description, w leads
from s tos.

A

»
» N

preamble observation:

the state 1s the right one
June 2017 Halmstad 77

Back 1n history [Chow 78]

* Preliminary theorem: every such FSM has a
characterizing set W= {w, ..., w_1} C I*, which
allows to distinguish the states

— s#s' = dw, € W such that A*(s,w,)# A*(s' ,w,)
 Test sequences: p.z, wherep EP,z €EZ

— P: for every transition s —x:y-> s’, there are two sequences
in P, p and p.x, such that p leads from the initial state to s

— Z. = W (or Wk if there are k more states)
— 1.e., coverage of transitions, with observation of the origin
and destination states
e The FSM has an 1nitial state, and the SUT provides a

reliable reset
June 2017 Halmstad 78

“W” for the example

state Ql0)
Characterizing set : W ={*¢} 1 _
Note: it 1s a destructive observation i 1’(1)

4 >x<>x<q)

June 2017 Halmstad

79

June 2017

Construction of some P
(covering tree)

Jgj N

Halmstad

e the root is the initial state

e the sons of a node are those
states reachable by some
transition

e if a state 1s already in the tree

1t 1S terminal
80

Tests and expected results

state

“¢

1

2
3
4

*¢ nothing
el nothing
R0 nothing
] ¢

II%¢ ¢

10*P nothing
|

g | g
x| 4%
prekg | wg
iy | #irg
PR | *0%
/#%/%¢ | nothing

Exhaustivity of P.Z

e Let A, B, two FSM with the same I and O ;
— Let V CI%;
— S, 18 a state of A, sy 1s a state of B;
— s, and sy are V-equivalent iff
— Vw E V,A*(s,,W) = A¥(Sg,W)
A and B are V-equivalent <=> their initial states are
V-equivalent
 Chow’s theorem:
A and B are equivalent < A and B are P.Z-equivalent

June 2017 Halmstad 82

June 2017

/I like it!
It was the first “extrapolation”
theorem applicable to software
testing

/

o

Halmstad

83

Application to testing

o= A 1s a description/specification/model

e Bis a system under test (SUT) that behaves like some
FSM

— One knows that I and O are the same sets for A and B.

— One knows that B has the same number of states as A, or a
known number of additional states

— There 1s a reliable reset of B
— It 1s all that 1s known about B

e From A one builds P.Z

— One tests B against the sequences of P.Z

— If all the output results are the same as for A, B is
equivalent to A

June 2017 Halmstad 84

Testability Hypotheses and
all that...

 Hypotheses:

— the SUT behaves like some FSM with the same* number of
states as the specification

— the SUT provides a reliable reset

* Under these testability hypotheses, the success of a
test set P.Z ensures equivalence of the SUT and the
specification FSM

* Here the satisfaction relation is equivalence

 P.Z 1s exhaustive given these hypotheses and this
relation, 1.e.:
— SUT behaves like some FSM with a known nb of states
and it provides a reliable reset

=> (SUT passes P.Z <=> SUT equiv SP)

Before or after Chow

Checking sequence:

— covers every transition and its separating set; distinguishes
the description FSM from any other FSM with the same
number of states, no need of reset

— Finite, but may be exponential/nb of states... in length, in
construction

e Exhaustivity
— Transition (+ separating set) coverage
e Control

— homing sequence, or reliable reset
— Non-determinism => adaptive test sequences

e (Observation
— distinguishing sets, UIQO, or variants (plenty of them!)

June 2017 Halmstad 86

BIBLIOGRAPHY

Juin 2017 HSST, Halmstad 87

Historical Monuments

. B. Goodenough and S. L. Gerhart, 1975. “Toward a theory
of test data selection”, IEEE Transactions on Software
Engineering, SE-1(2): 156-173.

e T.Chow, 1978. “Testing software design modeled by finite-

state machines”, IEEE Transactions on Software Engineering,
SE-4(3):178-187.
e @G. Bernot, M.-C. Gaudel, and B. Marre, 1991. “Software

testing based on formal specifications: a theory and a tool”,
Software Engineering Journal, 6(6):387-4035.

 DickJ., Faivre A., 1993. “Automating the generation and

sequencing of test cases from model-based specifications”,
LNCS 670, pp. 268-284.

Juin 2017 HSST, Halmstad 88

XA
Recommended Surveys %

 D.Lee and M. Yannakakis, 1996. “Principles
and methods of testing finite state machines-a
survey”’, Proceedings of the IEEE, 84(8):

1090-1123.

e R. M. Hierons, K. Bogdanov, J. P. Bowen, et
al., 2009. “Using formal specifications to
support testing”, ACM Comput. Surv. 41(2),
76 pages.

Juin 2017 HSST, Halmstad 89

Publications + directly
related to this tutorial

e C(Cavalcanti and M.-C. Gaudel, 2007. “Testing for refinement in
CSP”, LNCS 4789, pp 151-170.

e M.-C. Gaudel and P. Le Gall, 2007. “Testing data types

implementations from algebraic specifications”, LNCS 4949,
209-239.

e C(Cavalcanti and M.-C. Gaudel, 2011. “Testing for refinement in
Circus”, Act. Inf., 48(2):97-147.

e M.-C. Gaudel, 2011. “Checking models, proving programs,
and testing systems”, LNCS 6706, pp 1-13.

e (Cavalcanti, M.-C. Gaudel, 2015. “Test selection for traces
refinement”, 7CS 563:1-42.

Juin 2017 HSST, Halmstad 90

