System Validation: Weak Behavioral Equivalences

Mohammad Mousavi and Jeroen Keiren

Open
Universiteit

Motivation Verifying two-place buffer

Weak Equivalences Idea

 \triangleright Internal actions should be invisible to the outside world

Weak Equivalences Idea

- \triangleright Internal actions should be invisible to the outside world
- \triangleright τ . The collective name for all invisible actions

Weak Equivalences Idea

- \triangleright Internal actions should be invisible to the outside world
- \triangleright τ . The collective name for all invisible actions
- Adapt behavioral equivalence to neglect τ

Trace Equivalence

Traces of a State For state $t \in S$, Traces(t) is the minimal set satisfying: 1. $\epsilon \in \text{Traces}(t)$ 2. $\sqrt{\epsilon}$ Traces(t) when $t \in T$ 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$, and $\sigma \in \mathsf{Traces}(t')$

Trace Equivalence

For states t, t', t is trace equivalent to t' iff $Traces(t) = Traces(t').$

Weak Trace Equivalence

Weak Traces of a State For state $t \in S$, WTraces(t) is the minimal set satisfying:

- 1. $\epsilon \in W$ Traces(t)
- 2. $\sqrt{\epsilon}$ WTraces(t) when $t \in T$
- 3. $a\sigma \in WT$ races (t) when $t\stackrel{a}{\rightarrow}t'$, $(a\neq \tau)$ and $\sigma \in \textit{WTraces}(t')$
- 4. $\sigma \in W^{T}$ races (t) when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in W^{T}$ races (t')

Weak Trace Equivalence

For states t, t', t is trace equivalent to t' iff $WTraces(t) = WTraces(t') Traces(t) = Traces(t').$

- 1. $\epsilon \in W$ Traces(t),
- 2. $\sqrt{\epsilon}$ WTraces(*t*) when $t \in \mathcal{T}$,
- 3. $a\sigma \in WT$ races (t) when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t'),$
- 4. $\sigma \in W^{T}$ races (t) when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t').$

- 1. $\epsilon \in W$ Traces(t),
- 2. $\sqrt{\epsilon}$ WTraces (t) when $t \in \mathcal{T}$,
- 3. $a\sigma \in WT$ races (t) when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t'),$
- 4. $\sigma \in \textit{WTraces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t').$

What are $WTraces(s_0)$ and $WTraces(t_0)$?

► WTraces $(t_4) = W$ Traces $(t_5) = \{ \epsilon, \sqrt{\}},$

- 1. $\epsilon \in W$ Traces(t),
- 2. $\sqrt{\epsilon}$ WTraces(*t*) when $t \in \mathcal{T}$,
- 3. $a\sigma \in WT$ races (t) when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t'),$
- 4. $\sigma \in W^{T}$ races (t) when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t').$

- $■$ WTraces(t₄) = WTraces(t₅) = { ϵ , $\sqrt{}$ },
- ^I WTraces(t2) = {, coffee, coffee[√] }, W races(t₂) = { ϵ , conee, come
WTraces(t₃) = { ϵ , tea, tea $\sqrt{}$ },

- 1. $\epsilon \in W$ Traces(t),
- 2. $\sqrt{\epsilon}$ WTraces(*t*) when $t \in \mathcal{T}$,
- 3. $a\sigma \in WT$ races (t) when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t'),$
- 4. $\sigma \in W^{T}$ races (t) when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t').$

- $■$ WTraces(t₄) = WTraces(t₅) = { ϵ , $\sqrt{}$ },
- ^I WTraces(t2) = {, coffee, coffee[√] }, W races(t₂) = { ϵ , conee, come
WTraces(t₃) = { ϵ , tea, tea $\sqrt{}$ },
- $W \text{ traces}(t_3) = \{ \epsilon, \text{tea}, \text{tea}\}$, coffee, tea, coffee $\sqrt{\ }$, tea $\sqrt{\ }$,

- 1. $\epsilon \in W$ Traces(t),
- 2. $\sqrt{\epsilon}$ WTraces (t) when $t \in \mathcal{T}$,
- 3. $a\sigma \in WT$ races (t) when $t \stackrel{a}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t'),$
- 4. $\sigma \in \textit{WTraces}(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in \textit{WTraces}(t').$

- ► WTraces $(t_1) = \{ \epsilon, \text{cofree}, \text{tea}, \text{cofree} \sqrt{\}, \text{tea} \sqrt{\}$
- \blacktriangleright WTraces(t₀) = $\{ \epsilon, coin, coin \; coffee, coin \;tea, coin \; coffee\sqrt{}, coin \;tea\sqrt{}.$

Weak Trace Equivalence **Observation**

 $WTraces(s_0) = WTraces(t_0) =$ ${V}$ rraces(s₀) = ${V}$ rraces(t0) =
{ ϵ , coin, coin coffee, coin tea, coin coffee√, coin tea√} Moral of the Story: Weak Trace equivalence is too coarse

Weak Bisimulations Idea

- 1. Mimic a-transition by same transition possibly with (stuttering) τ -transitions before and/or after
- 2. τ -transition can be mimicked by remaining in same state (making no transition)

Strong Bisimulation $R \subseteq S \times S$ is strong bisimulation iff for $s, t \in S$ s.t. $s R t$, and $a \in Act$: If $s \stackrel{a}{\rightarrow} s'$ then ► \exists $t' \in S$ s.t. $t \stackrel{a}{\rightarrow} t'$ and $s' R t'$, If $s \in T$ then $t \in T$.

Weak Bisimulation $R \subset S \times S$ is weak bisimulation iff for s, $t \in S$ s, t, s R t, and $a \in Act$: If $s \stackrel{a}{\rightarrow} s'$ then \blacktriangleright $a = \tau$ and s' R t, or

- ► $\exists_{t'_1, t'_2, t' \in S}$ s.t. $t \stackrel{\tau}{\rightarrow} {}^*t'_1 \stackrel{a}{\rightarrow} t'_2 \stackrel{\tau}{\rightarrow} {}^*t'$ and s' R t',
- ► if $s \in \mathcal{T}$ then $\exists_{t' \in S} t \stackrel{\tau}{\rightarrow} {}^*t'$ and $t' \in \mathcal{T}$.

Strong Bisimulation $R \subseteq S \times S$ is strong bisimulation iff for $s, t \in S$ s.t. $s R t$, and $a \in Act$: If $s \stackrel{a}{\rightarrow} s'$ then \rightarrow ∃ _{t'∈S} s.t. t \rightarrow t' and s' R t' , If $s \in T$ then $t \in T$.

Branching Bisimulation $R \subseteq S \times S$ is branching bisimulation iff for $s, t \in S$ s.t. $s R t$, and $a \in Act$: if $s \stackrel{a}{\rightarrow} s'$ then \blacktriangleright $a = \tau$ and s' R t, or ► $\exists_{t'_1, t' \in S}$ s.t. $t \stackrel{\tau}{\rightarrow} {}^*t'_1 \stackrel{a}{\rightarrow} t'$, s R t'_1 and s' R t' , ► if $s \in \mathcal{T}$ then $\exists_{t' \in S} t \stackrel{\tau}{\rightarrow} {}^*t'$ and $t' \in \mathcal{T}$.

Weak vs. Branching Bisimulation

Weak Bisimulation

Weak vs. Branching Bisimulation

Weak Bisimulation

Branching Bisimulation

Observation

Weak- and branching bisimulation are not preserved under choice

Root Condition

Basic Idea

For a branching (or weak) bisimulation to be a congruence with respect to choice, the first τ -transition should be mimicked by a τ transition.

Rootedness

Two state s, t are rooted branching bisimilar if

- \triangleright there exists a branching bisimulation relation R such that $s R t$ and
- ► if $s \stackrel{a}{\rightarrow} s'$ then there is $t' \in S$ s.t. $t \stackrel{a}{\rightarrow} t'$ and $s' \leftrightarrow_b t'$, and
- ► if $t \stackrel{a}{\rightarrow} t'$ then there is $s' \in S$ s.t. $s \stackrel{a}{\rightarrow} s'$ and $s' \leftrightarrow_b t'$, and

Van Glabbeek's Spectrum The Treated Part

Van Glabbeek's Spectrum

17 / 19

General Overview

Thank you very much.

