System Validation: Weak Behavioral Equivalences

Mohammad Mousavi and Jeroen Keiren

<mark>Open</mark> Universiteit

General Overview

Motivation Verifying two-place buffer

Weak Equivalences Idea

Internal actions should be invisible to the outside world

Weak Equivalences Idea

- Internal actions should be invisible to the outside world
- τ : The collective name for all invisible actions

Weak Equivalences Idea

- Internal actions should be invisible to the outside world
- τ : The collective name for all invisible actions
- Adapt behavioral equivalence to neglect au

Trace Equivalence

Traces of a State For state $t \in S$, Traces(t) is the minimal set satisfying: 1. $\epsilon \in Traces(t)$ 2. $\sqrt{\in Traces(t)}$ when $t \in T$ 3. $a\sigma \in Traces(t)$ when $t \stackrel{a}{\rightarrow} t'$, and $\sigma \in Traces(t')$

Trace Equivalence

For states t, t', t is trace equivalent to t' iff Traces(t) = Traces(t').

Weak Trace Equivalence

Weak Traces of a State For state $t \in S$, WTraces(t) is the minimal set satisfying:

- 1. $\epsilon \in WTraces(t)$
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$

3.
$$a\sigma \in WTraces(t)$$
 when $t \xrightarrow{a} t'$, $(a \neq \tau)$ and $\sigma \in WTraces(t')$

4. $\sigma \in WTraces(t)$ when $t \stackrel{\tau}{\rightarrow} t'$ and $\sigma \in WTraces(t')$

Weak Trace Equivalence

For states t, t', t is trace equivalent to t' iff WTraces(t) = WTraces(t')Traces(t) = Traces(t').

Weak Traces Example

- 1. $\epsilon \in WTraces(t)$, 2. $\sqrt{\in WTraces(t)}$ when $t \in T$, 3. $a\sigma \in WTraces(t)$ when $t \xrightarrow{a} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and
 - $\sigma \in WT$ races(t').

- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \xrightarrow{a} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

What are $WTraces(s_0)$ and $WTraces(t_0)$?

• $WTraces(t_4) = WTraces(t_5) = \{\epsilon, \sqrt{\}},\$

- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \xrightarrow{a} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

- $WTraces(t_4) = WTraces(t_5) = \{\epsilon, \sqrt{\}},\$
- WTraces(t₂) = {ε, coffee, coffee√}, WTraces(t₃) = {ε, tea, tea√},

- 1. $\epsilon \in WTraces(t)$,
- 2. $\sqrt{\in WTraces(t)}$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \xrightarrow{a} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

- $WTraces(t_4) = WTraces(t_5) = \{\epsilon, \sqrt{\}},\$
- $WTraces(t_2) = \{\epsilon, coffee, coffee \lor \},\ WTraces(t_3) = \{\epsilon, tea, tea \lor \},\$
- $WTraces(t_1) = \{\epsilon, coffee, tea, coffee \sqrt{tea}\},\$

- 1. $\epsilon \in WTraces(t)$,
- 2. $\checkmark \in WTraces(t)$ when $t \in T$,
- 3. $a\sigma \in WTraces(t)$ when $t \xrightarrow{a} t'$ and $\sigma \in WTraces(t')$,
- 4. $\sigma \in WTraces(t)$ when $t \xrightarrow{\tau} t'$ and $\sigma \in WTraces(t')$.

- $WTraces(t_1) = \{\epsilon, coffee, tea, coffee \sqrt{tea}\},\$
- WTraces(t₀) = {€, coin, coin coffee, coin tea, coin coffee√, coin tea√}.

Weak Trace Equivalence

 $WTraces(s_0) = WTraces(t_0) =$ { ϵ , coin, coin coffee, coin tea, coin coffee $\sqrt{}$, coin tea $\sqrt{}$ } Moral of the Story: Weak Trace equivalence is too coarse

Weak Bisimulations Idea

- 1. Mimic *a*-transition by same transition possibly with (stuttering) τ -transitions before and/or after
- 2. τ -transition can be mimicked by remaining in same state (making no transition)

Strong Bisimulation $R \subseteq S \times S$ is strong bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$: \bullet if $s \xrightarrow{a} s'$ then $\bullet \exists t' \in S$ s.t. $t \xrightarrow{a} t'$ and s' R t', \bullet if $s \in T$ then $t \in T$. and vice versa.

Weak Bisimulation $R \subseteq S \times S$ is weak bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$: • if $s \xrightarrow{a} s'$ then • $a = \tau$ and s' R t, or • $\exists_{t'_1, t'_2, t' \in S}$ s.t. $t \xrightarrow{\tau} * t'_1 \xrightarrow{a} t'_2 \xrightarrow{\tau} * t'$ and s' R t', • if $s \in T$ then $\exists_{t' \in S} t \xrightarrow{\tau} * t'$ and $t' \in T$.

and vice versa.

Strong Bisimulation $R \subseteq S \times S$ is strong bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$: \bullet if $s \xrightarrow{a} s'$ then $\bullet \exists t' \in S$ s.t. $t \xrightarrow{a} t'$ and s' R t', \bullet if $s \in T$ then $t \in T$. and vice versa.

Branching Bisimulation

 $R \subseteq S \times S$ is branching bisimulation iff for $s, t \in S$ s.t. s R t, and $a \in Act$:

- ▶ if $s \xrightarrow{a} s'$ then
 - $a = \tau$ and s' R t, or
 - $\blacktriangleright \exists_{t'_1,t'\in S} \text{ s.t. } t \xrightarrow{\tau} {}^*t'_1 \xrightarrow{a} t', \ s \ R \ t'_1 \text{ and } s' \ R \ t',$
- if $s \in T$ then $\exists_{t' \in S} t \xrightarrow{\tau} * t'$ and $t' \in T$.

and vice versa.

Weak vs. Branching Bisimulation

Weak Bisimulation

Weak vs. Branching Bisimulation

Weak Bisimulation

Branching Bisimulation

Observation

Weak- and branching bisimulation are not preserved under choice

Root Condition

Basic Idea

For a branching (or weak) bisimulation to be a congruence with respect to choice, the first τ -transition should be mimicked by a τ transition.

Rootedness

Two state s, t are rooted branching bisimilar if

- there exists a branching bisimulation relation R such that s R t and
- ▶ if $s \xrightarrow{a} s'$ then there is $t' \in S$ s.t. $t \xrightarrow{a} t'$ and $s' \leftrightarrow_b t'$, and
- ▶ if $t \xrightarrow{a} t'$ then there is $s' \in S$ s.t. $s \xrightarrow{a} s'$ and $s' \leftrightarrow_b t'$, and

Van Glabbeek's Spectrum The Treated Part

Van Glabbeek's Spectrum

General Overview

Thank you very much.

