Click to edit **Languages & w-Languages Inferring Regular**

based on joint works with

DANA ANGLUIN, UDP BOKER & SARAH EISENSTAT

Synthesis

$Challenges:$ $|Spec|$

- Hard to characterize using a logical calculous
- Complete bugless spec, really!?

Specification High Level What? Declarative Ex: temporal logic

Synthesizer

Correct by
construction

Implementation

Low Level How? Procedural/Executable Ex: reactive system

A specification scale

3

What kind of examples?

Click to edit In the context of synthesizing reactive systems:

- $\frac{M}{\frac{M}{\lambda}}$ omputations / interfaces **The examples are words / strings** describing computations / interfaces
- The learned concept is a set of such
examples, presumably a <mark>regular language</mark>. The learned concept is a set of such
- For regular languages [Angluin, 1987] suggested L^* algorithm.
- \blacksquare L* learns in polynomial time an unknown regular language using membership and equivalence queries.

L^{*} - Active Learning with MQ and EQ

Fisman
Fisman

Usages of L*

-
- It has applications in many areas including AI, neural
networks, geometry, data mining, <mark>verification</mark> and <mark>synthesis</mark>. L^{*} is an extremely popular algorithm. It has applications in many areas including AI, neural
- in verification and synthesis include Usages of L* in verification and synthesis include:
	- Black-box checking [Peled et al.]
	- soning [Cobleigh • Assume-guarantee reasoning [Cobleigh et al.]
		- Specification mining [Ammons et al., Gabel et al., ...]
		- Error localization [Chapman et al.]
		- Learning interfaces [Alur et al.]
		- Regular Model Checking [Habermehl & Vonjar]

• …

- $\begin{array}{ccc} \text{reactive systems e.g.} & \text{else} \ \text{(liveness and fairness)} \ \text{are} & & \text{else} \end{array}$ L^{*} learns a regular language of finite words. Interesting properties of reactive systems e.g. not expressible by finite words.
- Can we extend L^* to L^{ω} , an alg. that learns regular languages of infinite words (ω-words)?

- representation, yet not a $\left\{\begin{array}{c} \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\} \end{array}\right.$ L^{*} produces DFAs (deterministic finite automata), a well behaved compact one.
- Can we learn more succinct
representations such as representations, such as non-deterministic finite automata (NFA) or alternating automata (AFA)?

- representation, yet not a $\left\{\begin{array}{c} \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\} \end{array}\right.$ L^{*} produces DFAs (deterministic finite automata), a well behaved compact one.
- Can we learn more succinct
representations such as representations, such as non-deterministic finite automata (NFA) or alternating automata (AFA)?

Learning alternating automata

Finite words $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{if } \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \dots \end{array} \\ \hline \end{array} \end{array}$ $\{$ e₁, e₂, e₃, …}

 AL^{\star} **AL***

[Angluin, Eisenstat & Fisman IJCAI'15]

Alternating Automaton – Ex.

Accepts the language Σ^* aa $\Sigma^* \cap \Sigma^* b b \Sigma^*$

What are they good for?

- AFAs are a succinct representation
- $\mathsf{a} \in \mathbb{R}^n$ The PSL formula

-botn ->
nt-a-start, busy[*3..], print-a-end) &
nt-h-start, busy[*3..], print-h-end)) always (print-to-both -> ([*], print-a-start, busy[*3..], print-a-end) & $([*)$, print-b-start, busy $[*3..]$, print-b-end))

te AFA but th can be stated by a 12 state AFA but the minimal DFA requires 115 states.

- **Natural means to model conjunctions and disjunctions as** well as existential and universal quantification
- 1-to-1 translations from temporal logics
- 17 **Working at the alternating level enables better structured** algorithms, and is the common practice in industry verification tools.

Foundation of L* - Residuality

is the set of all words **v** such that uv in L The residual of language L with respect to word u

 $u^{-1}L = \{ v \mid uv \in L \}$

If $u^{-1}L = v^{-1}L$ we say that $u \sim_L v$.

$$
\mathsf{ab} \thicksim_L \mathsf{abaaa}
$$

The residuality index is the number of equivalence classes of \sim_L

Myhill-Nerode THM

residual languages. Every regular language L has a finite number of

The minimal DFA has one state **for every residual language of L !!!**

general. NFAs and AFAs don't have the residually property, in general.

Residual NFAs

- Dennis et al. [STACS' 01] defined residual NFAs (NRFA)
- These are NFAs where each state corresponds to a where $\frac{1}{2}$ residual language

Suppose $L_1, L_2, ..., L_n$ are all the residual languages of L If for some L_i, we have $L_i = L_i \cup L_k$ then we can remove the ith state, and use non-determinism to capture it.

Residual NFAs

- Dennis et al. showed/provided
	- .
ar language is recognized by a unique (co
hes a minimal number of states and a n ransitions.
In exponential gaps between the minime Every regular language is recognized by a unique (canonical) NRFA which has a minimal number of states and a maximal number of transitions.
	- canonical NRFA and the minimal NFA. • There may be exponential gaps between the minimal DFA, the
- Bollig et al. [IJCAI'09] extended L^* to NL^* (learns NRFA)

Questions

- a memorion of residually to ATA
tial gaps remain? Can we extend the notion of residually to AFAs?
- Will exponential gaps remain?
- a canonical one? **Can we define a canonical one?**
- Can we learn ARFAs?

Succinctness

The learning algorithm

- on table. L^{*} uses a data structure termed an observation table.
- AL* generalizes NL^* and L^* and the notion of
a complete/minimal observation table. a complete/minimal observation table.
- As shown next…

The table of residual languages

Click to edit **ε a b aa ab ab bb aaa aab aba abb baa bab** es of $\begin{array}{c} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}$ 0 1 1 0 1
1 0 0 1 1 31 By Myhill-Nerode the mher of dist Enumeration of all strings **a** all the suffixes of **b aa ab ba aaa aab aba abb baa** $$ 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 (1) 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 \sim 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 $\sqrt{1}$ 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 **ab** that are in **L** i.e. **ab-1L** number of distinct rows is finite.

infinite The table of residual languages

The number of distinct columns is also finite.

Enumeration of all strings

We call it the col index.

> Enumeration of all strings

L* Data Structure

Closed Table

on taple $I = (S, E, M)$
t a subset $B \subseteq S$ An observation table T = (S,E,M) is closed w.r.t a subset $\mathsf{B} \subseteq \mathsf{S}$

D-Covered

N-Covered

A-Covered

From Tables to Automata

 \mathcal{S} [ε] $e_2 e_3 e_4 e_5 e_6$ **Closed and** $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{E} & 1 & 0 & 0 & 1 & 1 \\
\hline\n0 & 1 & 0 & 0 & 1 & 1\n\end{array}$ **Minimal** ε 1 0 0 1 1 \boldsymbol{a} 0 <mark>1 0 0 1</mark> Master title b 0 0 0 0 1 = (ε \wedge a) ab $1 \quad 1 \quad 1 \quad 0 \quad 1 = (\epsilon \wedge a) \vee aa$ aa aa style 1 1 1 0 0 aaa 1 0 0 1 1 $=$ ε aab $= a$ 0 0 1 AND b

b

 \bm{h}

 \overline{a}

 $a \sim a$

Need to solve

- How to decide
	- Tow To decrue
• Is row s a union of rows in B? Poly time **Poly time [Bollig et al.]**
	- one combination of rows in B? Po Is s a monotone combination of rows in B? **Poly time [new]**
- style Given a set of Boolean vectors S, find a **minimal** unique union basis **Poly time [Bollig et al.]** Let $S = \{0,1\}^3$ monotone basis **NP-complete [new]** Then both No obvious
canonical rep.
canonical rep. $B_1 = \{001, 010, 101\}$ $B_2 = \{110, 101, 011\}$ canonical :
for ARFAS are minimal monotone bases.

The Learning Alg.

Back to finite words

Theorem

 M^* returns an AFA for t unknown language after at most The algorithm AL* returns an AFA for the

- m equivalence queries
- \bullet m equivalence queries
 \bullet O(| Σ |mnc) membership queries
- poly(m, n, c, $|\Sigma|$) time

where $n = row index$ $m = column$ index $c =$ length of longest c.e.

Finite words - Empirical results

Finite words - Empirical results

Rough Summary:

■ In terms of #states generated,

Iways preferable AL* is always preferable

In terms of $\#MQ$,

the others u xL^{\star} outperforms the others when targets are $xFAs$

In terms of $\#EQ$,

L^{*} is always preferable

Open questions & further directions

- Generalization to Boolean Automata $(\wedge \vee \neg)$
- Heuristics combining xL* s
- Understanding of Residual AFAs
	- As and the state of \sim Properties of ARFAs
	- **Theorem**: The algorithm AL^* returns an AFA for the unknown language
	- **Conjecture**: The algorithm AL* returns an ARFA for the unknown language

Learning regular ω-languages

Onfinite Words $\begin{bmatrix} \mathbf{e}_2 \end{bmatrix}$ = bbbcdcaaacbcccccc<mark>caa</mark>bcdabababababaccabababaha baccababababa baccabababa baccabababa baccabababa baccababa ${e_1}$ = abcdbcaadcacbbccaabcdaaabbbccdddeeaaaabab

}

 $[$ Angluin & Fisman ALT'14 $]$

ω-automata

- s to define a There are many ways to define acceptance condition for ω-Automata
	- Rabin Muller Büchi
	- Streett • Parity co-Büchi
- Roughly speaking, all are defined using the notion of the states visited infinitely often during a run.

ω-automata - Expressiveness

- some are strictly less expressive than others. Some acceptance criteria are equally expressive,
- **Coverall picture looks like this:**

Previous work on learning ω-langs.

- be represented by a regular language L_{\$} of
finite words [Calbrix, Nivat, Podelski 93] It turns out that an w -regular language can finite words [Calbrix, Nivat, Podelski 93] 2014 2012 2008
- an use L^* to learn this And thus one can use L^* to learn this representation [Farzan et al. 2008]
- However, this representation is quite big: Büchi with n states => DFA for L_5 with $2^n + 2^{2n^2+n}$

L*

ω-

1962

1987

1993 1994

2005

aut.

The way out

canonical rep Recurrent FDFAs based on families of
FORCs [Maler & Staiger, 95] and the syntactic FORC which has a Myhill-Nerode theorem
Notified theorem A new representation: Family of DFAs and a new FORCs [Maler & Staiger, 95] and the syntactic FORC

Family of Right Congruences [MS97]

Plus some restriction (details omitted)

Family of DFAs (FDFA)

That restriction is removed \blacksquare

FDFA Acceptance

 $\left[\begin{array}{c} P_1, P_2, P_3, P_4, P_5 \end{array} \right]$ $(u,v) \in [M, P_1, P_2, P_3, P_4, P_5]$ 天 ?

FDFA Normalized Acceptance

We term **Recurrent FDFA** the FDFA where progress DFA recognize only periods that loop back.

Results (1)

Results (2)

DP

goal

DB DC

DWP

DWB DWC

class of regular w-languages using recurrent A learning algorithm L^{ω} that learns the full FDFAs

ime complexity polynomial in $L_{\$}$
 Worst-case time complexity polynomial in $L_{\$}$

Preforms very well on random targets

FDFAs as Acceptors of w-Langs

- Have a Myhill-Nerode characterization
- Boolean operations are in LOGSPACE
- Decision problems are in NLOGSPACE
- Succinctness-wise

Some open questions

- P than DWP Polytime learning of a class of ω-Langs more expressive than DWP
- Saturation of FDFA is in PSPACE; currently
no lower bound no lower bound
- **Find smaller canonical representations**

Further Directions

Fisman

On going work with DANA ANGLUIN & Timos ANTONOPULOS

Further Directions

Fisman