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What kind of examples?

In the context of synthesizing reactive
systems:

= The examples are words / strings
describing computations / interfaces

= The learned concept is a set of such
examples, presumably a regular language.

= For regular languages [Angluin, 1987]
suggested L™ algorithm.

= L* learns in polynomial time an unknown
regular language using membership and
equivalence queries.
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L* - Active Learning with MQ and EQ

IswinlL ?

Yes / No

Is [H] same as L ?

Yes / No, c.e: W

Teacher




Usages of L*

L* is an extremely popular algorithm.
It has applications in many areas including A1, neural
networks, , , verification and synthesis.

Usages of L™ in verification and synthesis include:
Black-box checking
Assume-guarantee reasoning
Specification mining
Error localization
Learning interfaces
Regular Model Checking



Challenge 1

= L* learns a reqular
language of finite words.
Interesting properties of
reactive systems e.g.
(liveness and fairness) are
not expressible by finite
words.

= Can we extend L™ to LY, an
alg. that learns reqular
languages of infinite
words (w-words)?
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Challenge 2

= L* produces DFAs
(deterministic finite
automata), a well behaved
representation, yet not a
compact one.

= Can we learn more succinct
representations, such as
non-deterministic finite
automata (NFA) or
alternating automata
(AFA)?
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Learning alternating automata
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What are alternating automata?

Transition Type | from |upon | to state(s)
state | read-
ing
Y

Deterministic sl C
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Alternating Automaton - Ex.

> = {a,b}

Accepts the language Z*aa>* n Z*bbz*



What are they good for?

AFAs are a succinct representation

The PSL formula

always (print-to-both ->

([*], print-a-start, busy[*3..], print-a-end) &
([*], print-b-start, busy[*3..], print-b-end))

can be stated by a 12 state AFA but the
minimal DFA requires 115 states.

Natural means to model conjunctions and disjunctions as
well as existential and universal quantification

1-to-1 ftranslations from temporal logics

Working at the alternating level enables better structured
algorithms, and is the common practice in industry
verification tools.



Foundation of L* - Residuality

The residual of language L with respect to word u

is the set of all such that uvinL
ull={v|uvel}
l

Example | =

L = aba* ablL =

abaaall =
b-lL =

If ull = viL we say that u ~ v. ab ~ ; abaaa

The residuality index is the number %
of equivalence classes of ~ 2



Myhill-Nerode THM

Every regular language L has a finite number of
residual languages.

The minimal DFA has one state
for every residual language of L !l




Challenge

NFAs and AFAs don't have the residually
property, in general.



Residual NFAs

= Dennis et al. [sTAcs 01] defined residual NFAs (NRFA)

= These are NFAs where each state corresponds to a
residual language

Suppose Ly, L,, ..., L, are all the
residual languages of L
If for some L, we have

Li = LJ N\ Lk
then we can remove the
and use non-determinism to
capture if.




Residual NFAs

= Dennis et al. showed/provided

Every regular language is recognized by a unigue (canonical)
NRFA which has a minimal number of states and a maximal
number of ftransitions.

There may be exponential gaps between the minimal DFA, the
canonical NRFA and the minimal NFA.

= Bollig et al. [t17cAT09] extended L™ o NL* (learns NRFA)



= Can we extend the notion of residually o AFAs?
= Will exponential gaps remain?
= Can we define a ?

= Can we learn ARFAs?



Succinctness

e SI\Z8
SaMe == n

Well known:
[Meyer & Fischer, 1971]

[Chandra & Stockmeyer, 1976]
[Kozen, 1976]

iV

DFA
%)

doubly exponentially



The learning algorithm

= L* uses a data structure termed an

= AL* generalizes NL* and L™ and the notion of
a complete/minimal observation table.

= As shown next...
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able of residual languages
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L* Data Structure

An Observation

Table:
M :

‘s.|1 0 0 1 1
Strings: s,/0 1 0 0 1
candidate
state %0 1 0 11
represent-| S, 11 1 1 0 O
atives 3-5 1 0 0 1 1

%

{1 if s;e.€L

otherwise



Closed Table

B

An observation table T = (S,EM)

is closed w.r.t asubset Bc< S
S If it satisfies
et 0 0 1 1 1eeB
»a/0 1 0 0 1 A 2) Consecution: BZ < S
bjt 0 0 1 1 °°"w:0\ 3) Coverage: all rows not
»abll 0 0 1 1oV in B are covered by
;ZZ i é (1) ? (1) co\,ev@‘* some row in B
aablo 1 0 0 ore?

The definition of covers
differs for L™, NL* and AL*.



According to L*
i.e. when
using DF As
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N-Covered

According to NL*
i.e. when
using NFAs
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A-Covered

According to AL*

i.e. when
using AFAs
S
/1 0 0 1 1 ]_
n
a0 1 0 0 1 o 05 in? 0
b0 0 0 0 1 e e 0 g
eﬂ) ov\o‘to \NS‘V\
abl1 1 1 0 1 o W e VO
¢ 5o
aal1 1 1 o o - © b =
acal1 O O 1 1 :(EAG'>
aadh oni\0 O 1 ab= (e na) vaa



From Tables to Automata

Closed and S
Minimal
E
a

= (e A a)
(e A a) v aa

bllo| o
ab

aa 1/1
aaa | 1 0
aab|| 5| 1

€

o - O O O O =
el il @ R N R
I




Need to solve

= How to

Is row s a union of rows in B? Poly time

Is s a monofone combination of rows in B> Poly time [k

= Given a set of Boolean vectors S, a minimal

AN . : .
w4 union basis Poly time o ~

. - 3
Not monotone basis  NP-complete [ >=104
R\ Then both
u . B, = {001,010,101}
No 09V vep- | B, = {110,101,011)
cw,\o\"‘ are minimal
monotone bases.




The Learning Alg.

Algorithm 1: XL* for X € {D,N, U, A} O

oracles :MQ, EQ O
members: Observation table 7 = (5, E, M),

Candidate states set P

. methods : IsxClosed, IsxMinimal, x{ ~ VHM: Every
Start with InByx, XExtractAut
to'” S =€), E = {€), P = (¢) and M, ields at least one
If the table is repeat 4 new colum
not closed, e.g. o olan .
s, ismissing. ‘ it“ o, Start with basis:
t If the table is else {E}
not minimal, =3 /)
U e.q. s, is ‘ if a3 — “no” then
IS indant +hen e\lseP.RemoveStrjng(sg)
Ask an equivalence query. ‘ A = T XExtractAut(P)
,83) = EQ(A
If true, return. 1(1(‘1 Z;i) “no’9t(he21
Otherwise, use the given | 7 .XFind&AddCols(ss)

counterexample to find some
to , and add = “yes”
them. A




Back to finite words

Theorem

The algorithm AL* returns an AFA for the
unknown language after at most

m equivalence queries
O(|Z|mnc) membership queries

poly(m, n, c, |=]) time

where
n = row index
L INL (ALY
= column index
EM. om n -
C = leng‘rh of longest c.e.

el o(l51cn?) O(l=]en®) O(lZ|cnm)



Finite words - Empirical results
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Finite words - Empirical results

Rough Summary:
= In terms of #states generated,
AL* is always preferable
= In terms of
outperforms the others when targets are s
= In terms of #EQ,

L* is always preferable



Open questions & further directions

= Generalization to Boolean Automata (Av—)
. combining S
= Understanding of Residual AFAs

Properties of ARFAs

. Theorem: The algorithm AL* returns an AFA for
the unknown language

. Conjecture: The algorithm AL* returns an ARFA
for the unknown language



Learning reqular w-languages

o™

vﬁ"“w
{e; = abcdbcaadcacbbcc
e, = bbbcdcaaacbccccct

v

[Aneato E Fosman ALT14]




Coping with w-words

Is
abcccccabdebbbaaaabedaa...
in L?

Learner



Coping with w-words

Is
laviosaY in L?

Learner



Coping with w-words

Is
[ ] w [ ]
X laviosa Y in L?
e

laviosa laviosa laviosa laviosa laviosa ...

Learner



Coping with w-words

Is
laviosaY in L?

they agree on the set of lasso words

ely
@ >o”' ds
op-ds)
THM
Two regular w-languages are equivalent
iff



w-automaton (Z,S,SO,E,G)

Acceptance
Condition

= There are many ways to define acceptance condition
for w-Automata

Bichi Muller Rabin
co-Bdchi Parity Streett

= Roughly speaking, all are defined using the notion of
the states visited infinitely of ten during a run.



w-automata - Expressiveness

= Some acceptance criteria are equally expressive,
some are strictly less expressive than others.

= QOverall picture looks like this:

- =
-

DB
)V
“



Previous work on learning w-langs.

(
all 904 \

regular
w-languages
DWC
strictly less J
expressive

[Maler & Pnueli, 1995]} rrom

Janodet, 2004] Prefixes
[Jayasrirani et

al, 2012]

[Saoudi & From
Yokomori, 1993] J Lesses

[de la Higuera &}me



Challenges

= L* works due to the Myhill-Nerode thm.

= The major difficulty in learning w-languages
is a lack of a corresponding Myhill-Nerode
theorem for w-automata (of all types)

1987

1962

2014

L*

aut.



Challenges

= It turns out that an w-reqgular language can
be represented by a regular language L of
finite words

= And thus one can use L* to learn this
representation

= However, this representation is quite big:
Blichi with n states => DFA for L with 2" + 22n%+n

1987

1962

2014

L*

aut.



The way out

A new representation: Family of DFAs and a new

canonical rep Recurrent FDFAs based on families of
and the

which has a Myhill-Nerode theorem



Family of Right Congruences mss7:

~1 . a ~=3
Leading Right
Congruence
™~

Plus some restriction



Family of DFAs (FDFA)

i SR L WL
I3 h
P ‘” ’
Leadigg DFA
o S

P

That restriction is removed



FDFA Acceptance

?
(UIU)E[[M P]I PZI P3l IPS]]




FDFA Normalized Acceptance

? Normalization seeks for
(uv)E[M, P, P, Py P P thsf the that
loops back
Cos
¢ < 0
P1
— P3

We term Recurrent FDFA the FDFA where progress
DFA recognize only periods that loop back.



Results (1)

May be
exp. bigger At most
than poly bigger

Recurrent
FDFA




Results (2)

goal—~
A learning algorithm L“ that learns the full R
class of regular w-languages using recurrent
7 B
c o =

' Worst-case time complexity polynomial in L4

Y

) Preforms very well on random targets
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FDFAs as Acceptors of w-Langs

[Quous, Boxen E Fhammn FMCS16]
= Have a Myhill-Nerode characterization
= Boolean operations are in LOGSPACE
. are in

= Succinctness-wise , o\
N COV\/\

/
Ll

FOFA [piand

-

Polgl " EXP
COVV\\O\'
EXP



Some open questions

= Polytime learning of a class of w-Langs more
expressive than DWP

- of is in ; currently
no

= Find smaller canonical representations



Further Directions

On going work with
Dana Anedd &
Cimes QNrm)@puws



Further Directions

/T ewnl
oy i { f(abb) =7, \
@ed f(bbb) = 80,

f(aaaaaa) = 12

On going work with
Refeev Ruur
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