Inferring Regular Languages & w-Languages

DANA FISMAN
Ben-Gurion University

based on joint works with

DANA ANGLUÍN, UDÍ BOKER ES SARAH EISENSTAT

Synthesis

Challenges:

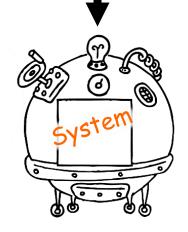
- Hard to characterize using a logical calculous
- Complete bugless spec, really!?

Specification

High Level
What?
Declarative
Ex: temporal logic

Synthesizer

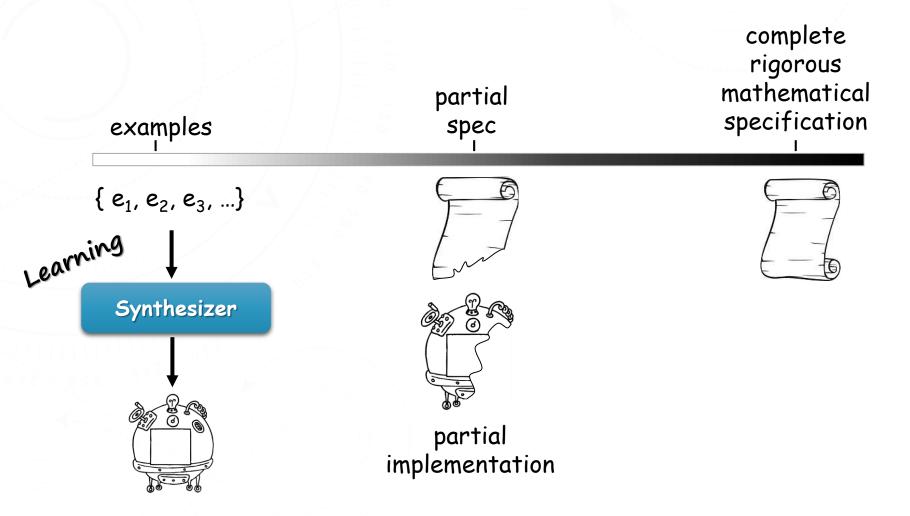
Correct by construction



Implementation

Low Level
How?
Procedural/Executable
Ex: reactive system

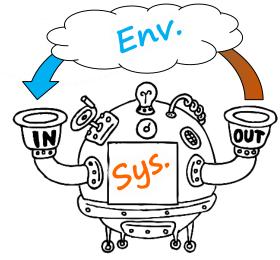
A specification scale



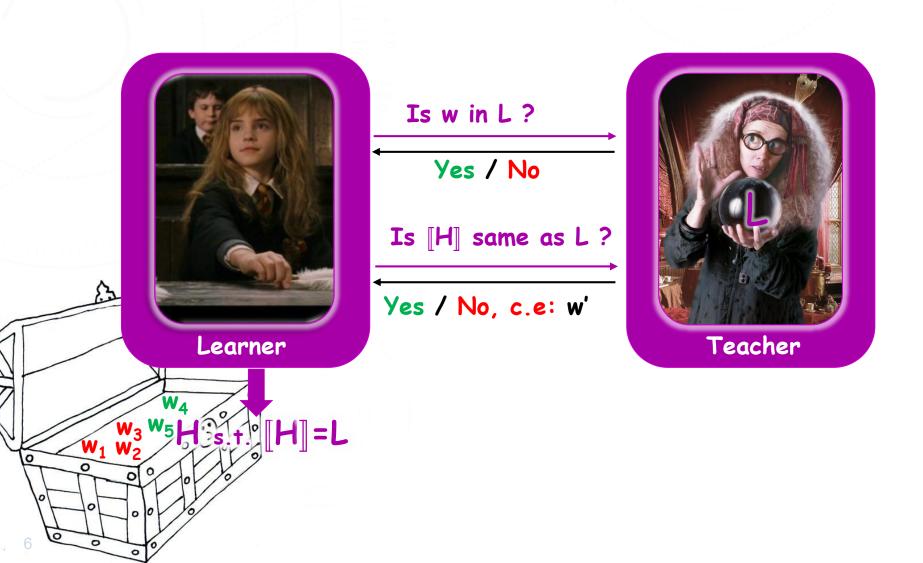
What kind of examples?

In the context of synthesizing reactive systems:

- The examples are words / strings describing computations / interfaces
- The learned concept is a set of such examples, presumably a regular language.
- For regular languages [Angluin, 1987]
 suggested L* algorithm.
- L* learns in polynomial time an unknown regular language using membership and equivalence queries.



_* - Active Learning with MQ and EQ



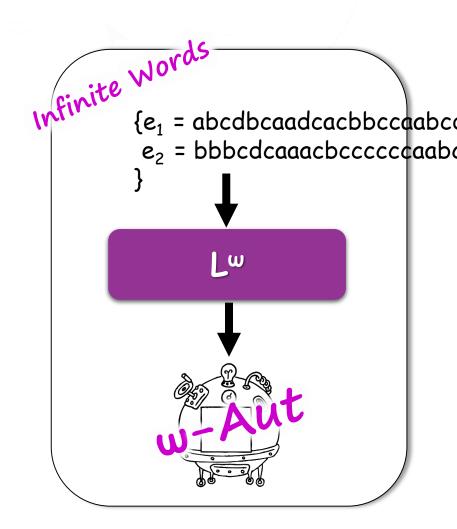
Usages of L*

- FISMA
- L* is an extremely popular algorithm.

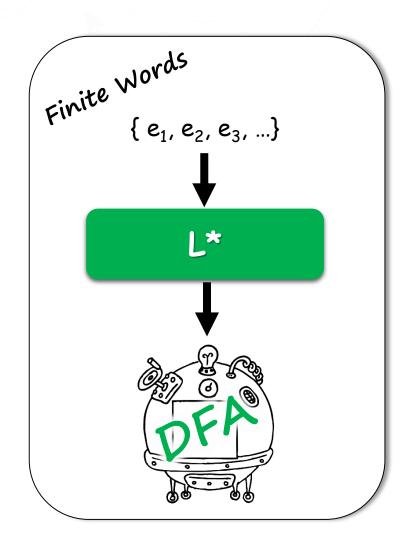
 It has applications in many areas including AI, neural networks, geometry, data mining, verification and synthesis.
- Usages of L* in verification and synthesis include:
 - * Black-box checking [Peled et al.]
 - * Assume-guarantee reasoning [Cobleigh et al.]
 - * Specification mining [Ammons et al., Gabel et al., ...]
 - Error localization [Chapman et al.]
 - Learning interfaces [Alur et al.]
 - * Regular Model Checking [Habermehl & Vonjar]

...

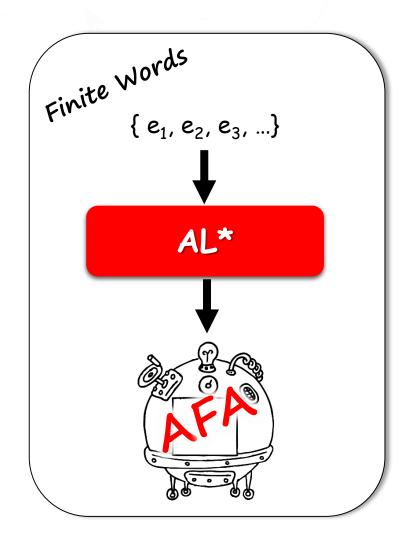
- L* learns a regular language of finite words. Interesting properties of reactive systems e.g. (liveness and fairness) are not expressible by finite words.
- Can we extend L* to Lw, an alg. that learns regular languages of infinite words (w-words)?



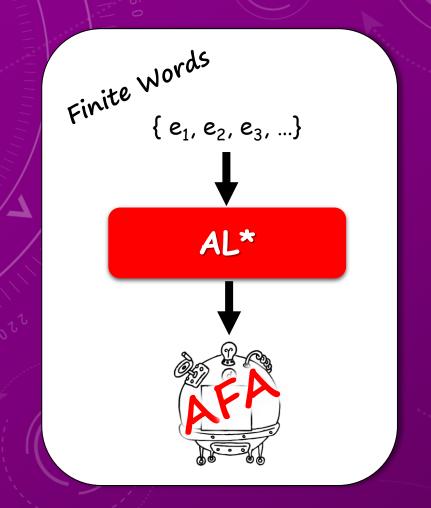
- L* produces DFAs
 (deterministic finite
 automata), a well behaved
 representation, yet not a
 compact one.
- Can we learn more succinct representations, such as non-deterministic finite automata (NFA) or alternating automata (AFA)?



- L* produces DFAs
 (deterministic finite
 automata), a well behaved
 representation, yet not a
 compact one.
- Can we learn more succinct representations, such as non-deterministic finite automata (NFA) or alternating automata (AFA)?



Learning alternating automata



[Angluin, Eisenstat & Fisman IJCA175]

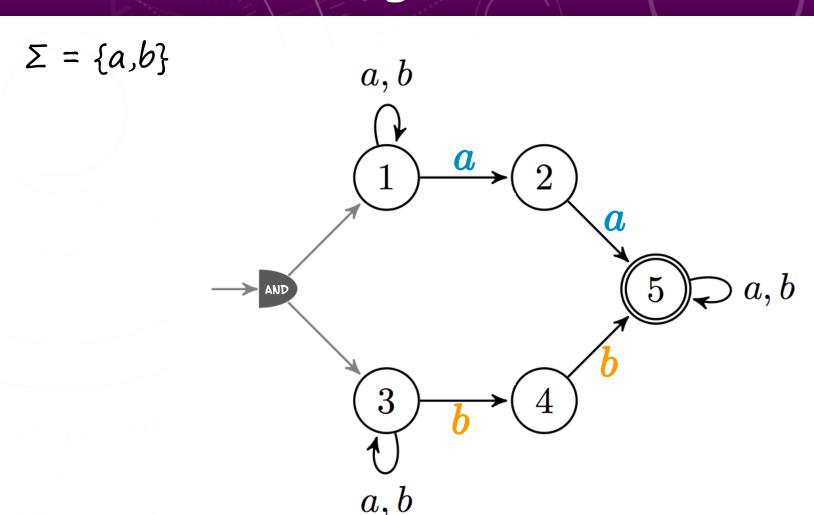
Transition Type		upon read- ing	to state(s)	
Deterministic	s1	С	s2	1 c 2

Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	С	s2	1 c 2
Non- Deterministic	s1	С	s3 or s4	C OR 3

Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	С	s2	1 c 2
Non- Deterministic	s1	С	s3 or s4	C OR 3
Universal	s1	С	s3 and s4	C AND 3

Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	С	s2	1 c 2
Non- Deterministic	s1	С	s3 or s4	C OR 3
Universal	s1	С	s3 and s4	C AND 3
Alternating	s1	C	(s3 or s4) and	S2 C AND OR 3

Alternating Automaton - Ex.

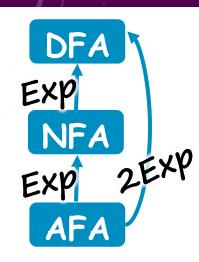


Accepts the language $\Sigma^*aa\Sigma^* \cap \Sigma^*bb\Sigma^*$

What are they good for?

- AFAs are a succinct representation
- The PSL formula

```
always (print-to-both ->
     ([*], print-a-start, busy[*3..], print-a-end) &
     ([*], print-b-start, busy[*3..], print-b-end))
```



can be stated by a 12 state AFA but the minimal DFA requires 115 states.

- Natural means to model conjunctions and disjunctions as well as existential and universal quantification
- 1-to-1 translations from temporal logics
- Working at the alternating level enables better structured algorithms, and is the common practice in industry verification tools.

Foundation of L* - Residuality

The residual of language L with respect to word u is the set of all words v such that uv in L

$$u^{-1}L = \{ v \mid uv \in L \}$$

Example

L = aba*

$$a^{-1}L = ba^*$$
 $ab^{-1}L = a^*$
 $abaaa^{-1}L = a^*$
 $b^{-1}L = \emptyset$

If $u^{-1}L = v^{-1}L$ we say that $u \sim_L v$.

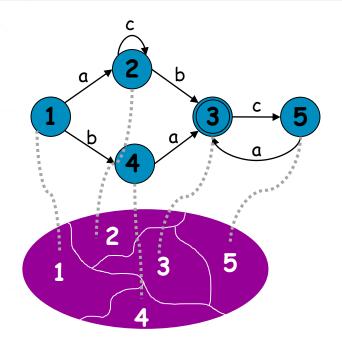
 $ab \sim_L abaaa$

The residuality index is the number of equivalence classes of \sim_L

Myhill-Nerode THM

Every regular language L has a finite number of residual languages.

The minimal DFA has one state for every residual language of L !!!

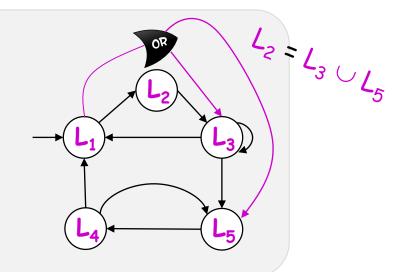


NFAs and AFAs don't have the residually property, in general.

Residual NFAs

- Dennis et al. [STACS' 01] defined residual NFAs (NRFA)
- These are NFAs where each state corresponds to a residual language

Suppose $L_1, L_2, ..., L_n$ are all the residual languages of LIf for some L_i , we have $L_i = L_j \cup L_k$ then we can remove the i^{th} state, and use non-determinism to capture it.



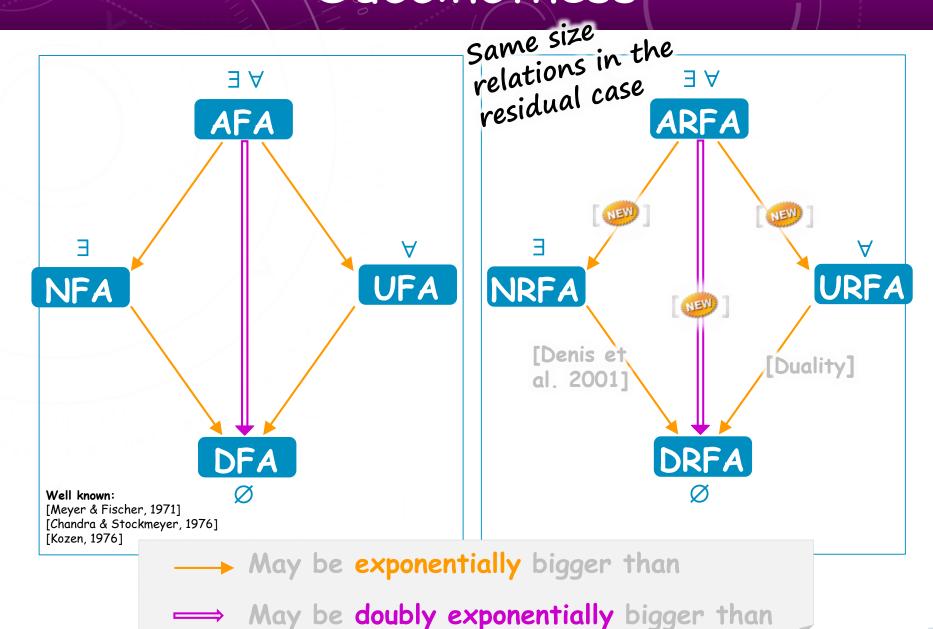
Residual NFAs

- Dennis et al. showed/provided
 - Every regular language is recognized by a unique (canonical)
 NRFA which has a minimal number of states and a maximal number of transitions.
 - There may be exponential gaps between the minimal DFA, the canonical NRFA and the minimal NFA.
- Bollig et al. [IJCAI'09] extended L* to NL* (learns NRFA)

Questions

- Can we extend the notion of residually to AFAs?
- Will exponential gaps remain?
- Can we define a canonical one?
- Can we learn ARFAs?

Succinctness

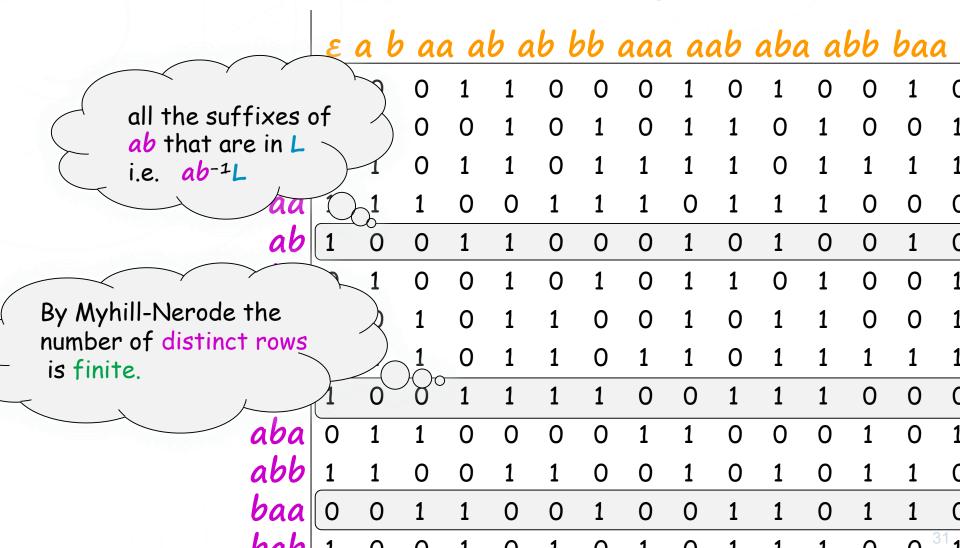


The learning algorithm

- L* uses a data structure termed an observation table.
- AL* generalizes NL* and L* and the notion of a complete/minimal observation table.
- As shown next...

The table of residual languages

Enumeration of all strings



The table of residual languages

The number of distinct columns is also finite.

Enumeration of all strings

We call it the column index.

Enumeration

of all strings

a b aa ab ab bb aaa aab aba abb baa

	1	U	U	1	1	U	U	U	7	U	1	U	U	1	(
	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1
6	9	1	0	1	1	0	1	1	1	1	0	1	1	1	1
aa	1	1	1	0	0	1	1	1	0	1	1	1	0	0	(
ab	1	0	0	1	1	0	0	0	1	0	1	0	0	1	(
ba	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1
bb	0	0	1	0	1	1	0	0	1	0	1	1	0	0	1
aaa	0	1	1	0	1	1	0	1	1	0	1	1	1	1	1
aab	1	0	0	1	1	1	1	0	0	1	1	1	0	0	(
aba	0	1	1	0	0	0	0	1	1	0	0	0	1	0	1
abb	1	1	0	0	1	1	0	0	1	0	1	0	1	1	(

L* Data Structure

An Observation Strings: experiments to Table: distinguish states $e_1 e_2 e_3 e_4 e_5 e_6$ $\boldsymbol{s_1}$ Strings: candidate state representatives

Closed Table

An observation table T = (S,E,M) is closed w.r.t a subset $B \subseteq S$

5	0	0 0		0	0	
	1	0	$\frac{2}{3}$	1	e ₆	
<u>► a</u>	0	1	0	0	1	
b	1	0	0	1	1	CO
ab	1	0	0	1	1	CO
aa	1	1	1	0	0	
aaa	1	0	0	1	1	co
aab	0	1	0	0	1	CO

If it satisfies

- 1) Initialization: $\varepsilon \in B$
- 2) Consecution: $B\Sigma \subseteq S$
- 3) Coverage: all rows not in B are covered by some row in B

The definition of covers differs for L*, NL* and AL*.

D-Covered

According to L*
i.e. when
using DFAs

N-Covered

According to NL*
i.e. when
using NFAs

5	$e_{\scriptscriptstyle 1}$	$e_2^{}$	$e_{3}^{}e_{4}^{}$	$e_5^{}$	e_6	
3	1	0	0	1	1	Expressible as bitwise-or $a = b = b = b$ $b = b = b = b$ $b = b = b = b$
\boldsymbol{a}	0	1	0	0	1	ovessible as in B
b	1	1	0	1	1	Expression $b = (\varepsilon \vee a)$
ab	1	1	1	0	1	
aa	1	1	1	0	0	
aaa	1	0	0	1	1	
aab	0	1	0	0	1	
- E 1						

A-Covered

According to AL*
i.e. when
using AFAs

S	$e_{\scriptscriptstyle 1}$	$e_2^{}$	$e_3^{}e_4^{}$	e_5	e_6	
m	1	0	0	1	1	
\boldsymbol{a}	0	1	0	0	1	
\boldsymbol{b}	0	0	0	0	1	
ab	1	1	1	0	1	
aa	1	1	1	0	0	
aaa	1	0	0	1	1	
aab	0	1	0	0	1	

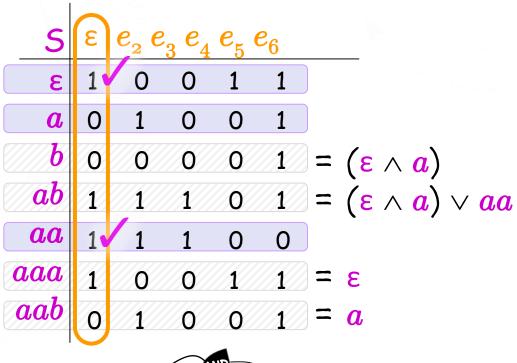
Expressible as combination a monotone rows in Bof some a monotone rows in B $b = (\epsilon \wedge a)$

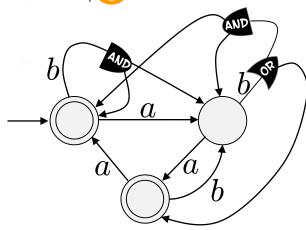
$$b = (\varepsilon \wedge a)$$

$$ab = (\varepsilon \wedge a) \vee aa$$

From Tables to Automata

Closed and Minimal





Need to solve

- How to decide
 - Is row s a union of rows in B?

- Poly time [Bollig et al.]
- Is s a monotone combination of rows in B? Poly time []

unique union basis

Not monotone basis NP-complete [1]

Poly time [Bollig et al.]

No obvious canonical rep.

Let $5 = \{0,1\}^3$

Then both $B_1 = \{001,010,101\}$ $B_2 = \{110,101,011\}$ are minimal monotone bases.

The Learning Alg.

```
Algorithm 1: XL^* for X \in \{D, N, U, A\}
                                 oracles : MQ, EQ
                                 members: Observation table \mathcal{T} = (S, E, M),
                                             Candidate states set P
                                                                                THM: Every
                                 methods: IsxClosed, IsxMinimal, X
   Start with
                                                                               counterexample
                                             In\mathbb{B}_{X}, XExtractAut
   to
                                 S = \langle \epsilon \rangle, E = \langle \epsilon \rangle, P = \langle \epsilon \rangle and M_{\epsilon}.
                                                                            yields at least one
       If the table is
                                 repeat
                                                                                  new column
       not closed, e.g.
                                      (a_1,
                                             Start with basis:
                                     if a_1
       s<sub>1</sub> is missing,
           If the table is
                                     else
           not minimal,
                                         if a_2 = "no" then
           e.g. s_2 is
                                              P.RemoveString(s_2)
           redundant then
                                          else
Ask an equivalence query.
                                             \mathcal{A} = \mathcal{T}.xExtractAut(P)
                                             (a_3,s_3)= \mathrm{EQ}(\mathcal{A})
If true, return.
                                             if a_3 = "no" then
Otherwise, use the given
                                                  \mathcal{T}.xFind&AddCols(s_3)
counterexample to find some
columns to add, and add
                                           = "yes"
```

them.

Back to finite words

Theorem

The algorithm AL* returns an AFA for the unknown language after at most

- m equivalence queries
- $O(|\Sigma| \text{mnc})$ membership queries
- poly(m, n, c, $|\Sigma|$) time

	L*	NL*	AL*
EQ	n	O(n ²)	m
MQ	$O(\Sigma cn^2)$	$O(\Sigma cn^3)$	$O(\Sigma cnm)$

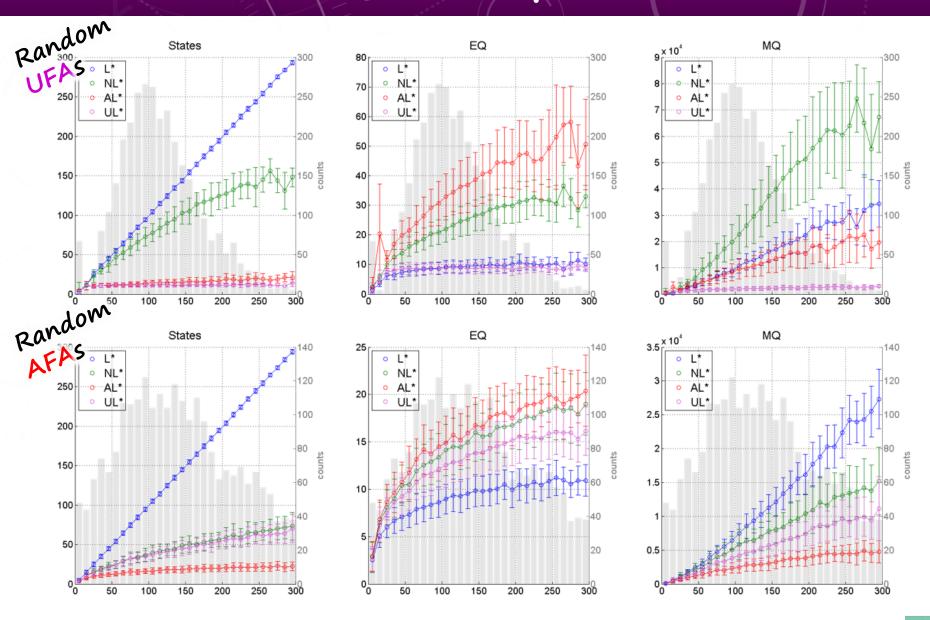
where

n = row index

m = column index

c = length of longest c.e.

Finite words - Empirical results



Finite words - Empirical results

Rough Summary:

- In terms of #states generated,
 AL* is always preferable
- In terms of #MQ,
 - \times L* outperforms the others when targets are \times FAs
- In terms of #EQ,
 - L* is always preferable

Open questions & further directions

- Generalization to Boolean Automata (^\\¬)
- Heuristics combining xL* s
- Understanding of Residual AFAs
 - Properties of ARFAs
 - Theorem: The algorithm AL* returns an AFA for the unknown language
 - Conjecture: The algorithm AL* returns an ARFA for the unknown language

Learning regular w-languages

```
Infinite Words
          {e<sub>1</sub> = abcdbcaadcacbbccaabcdaaabbbccdddeeaaaabab
          e<sub>2</sub> = bbbcdcaaacbccccccaabcdababababababaccabab
                  Lw
```

[Angluin & Fisman ALT'14]



prefixes

Is wingardium laviosaw in L?

ultimately
periodic words

(Lasso words)

Teacher

Is wingardium laviosaw in L?

wingardium laviosa laviosa laviosa laviosa laviosa ...

ultimately period.

THM:

Two regular w-languages are equivalent iff they agree on the set of lasso words

w-automata

w-automaton
$$(\Sigma, S, S_0, \delta, a)$$

States

Alphabet

Transition

Relation

Initial Acceptance
State Condition

- There are many ways to define acceptance condition for w-Automata
 - Büchi

Muller

Rabin

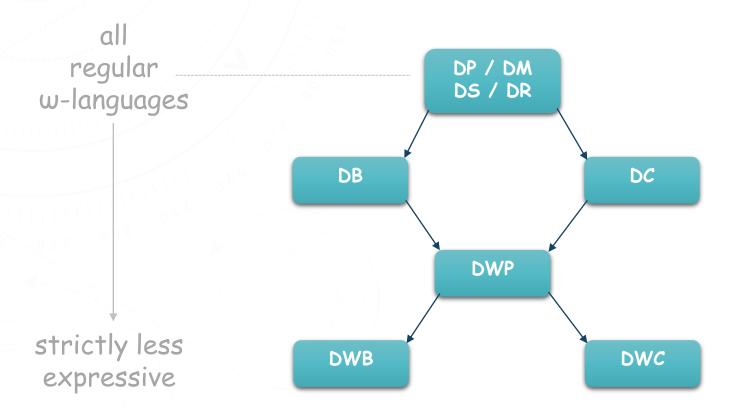
co-Büchi

Parity

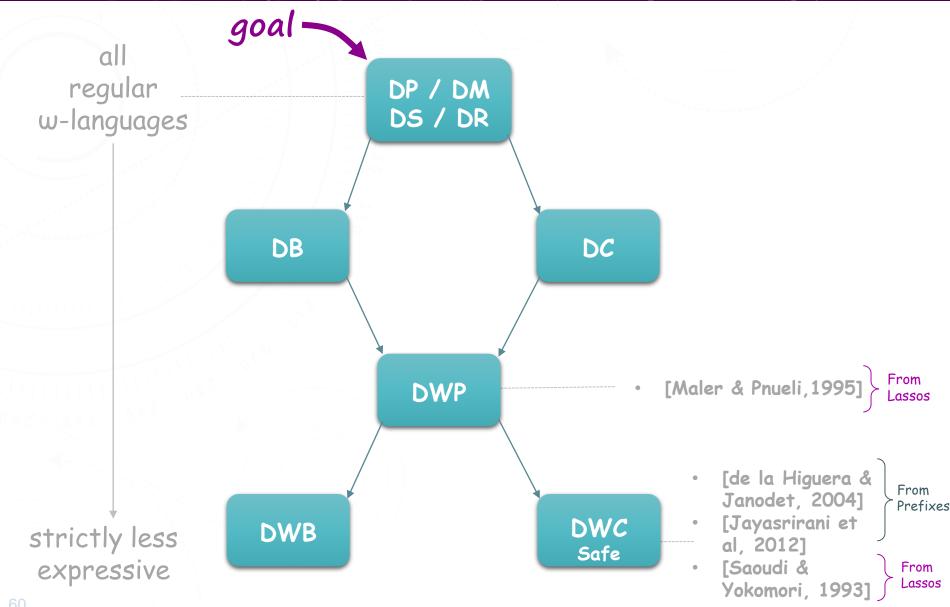
- Streett
- Roughly speaking, all are defined using the notion of the states visited infinitely often during a run.

w-automata - Expressiveness

- Some acceptance criteria are equally expressive, some are strictly less expressive than others.
- Overall picture looks like this:

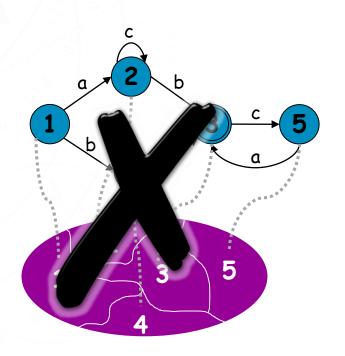


Previous work on learning w-langs.



Challenges

- L* works due to the Myhill-Nerode thm.
- The major difficulty in learning w-languages is a lack of a corresponding Myhill-Nerode theorem for w-automata (of all types)



2014

2012

2008

2005

1994

1987

| *

1962

waut.

Challenges

Fisma

 It turns out that an w-regular language can be represented by a regular language L_{\$} of finite words [Calbrix, Nivat, Podelski 93]

2014 2012 2008

 And thus one can use L* to learn this representation [Farzan et al. 2008]

1994 1993

2005

• However, this representation is quite big: Büchi with n states => DFA for L_{\pm} with $2^n + 2^{2n^2+n}$

1987

L^

1962

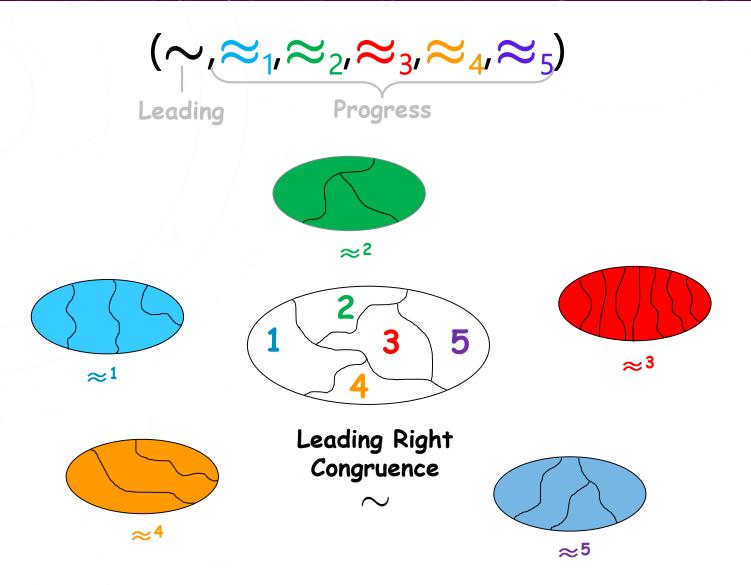
waut.

The way out

Fisma

A new representation: Family of DFAs and a new canonical rep Recurrent FDFAs based on families of FORCs [Maler & Staiger, 95] and the syntactic FORC which has a Myhill-Nerode theorem

Family of Right Congruences [MS97]



Plus some restriction (details omitted)

Family of DFAs (FDFA)

$$(M, P_1, P_2, P_3, P_4, P_5)$$
Leading Progress
$$P_2$$

$$P_1$$

$$P_3$$

$$P_4$$

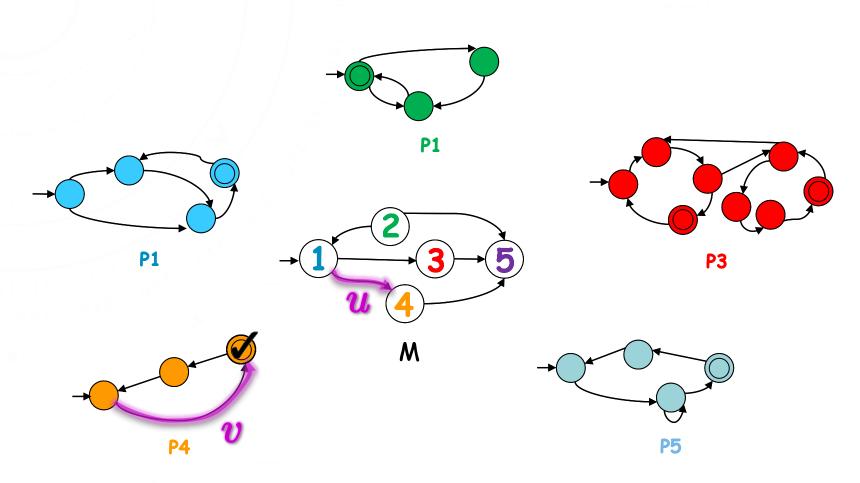
$$P_4$$

$$P_4$$

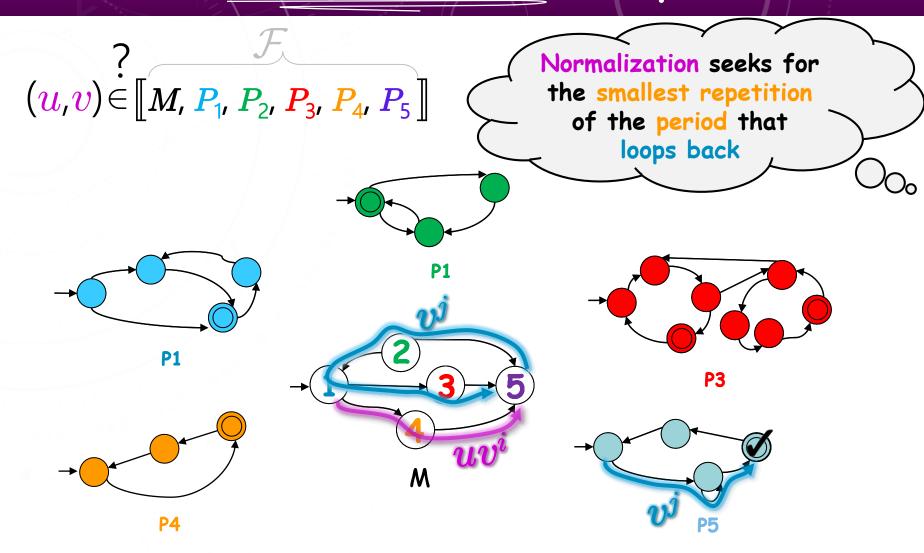
$$P_6$$

FDFA Acceptance

?
$$(u,v) \in [M, P_1, P_2, P_3, P_4, P_5]$$

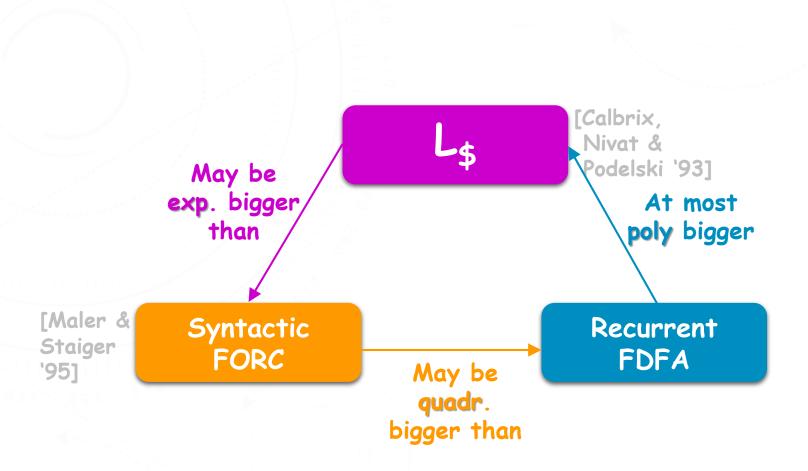


FDFA Normalized Acceptance



We term Recurrent FDFA the FDFA where progress DFA recognize only periods that loop back.

Results (1)

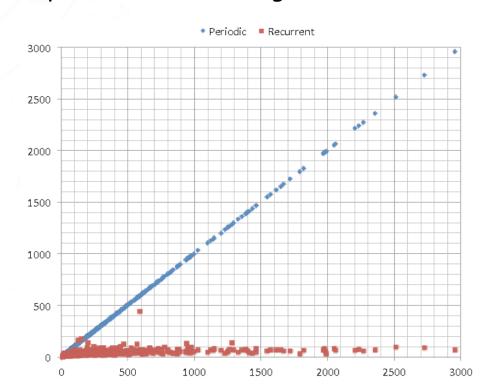


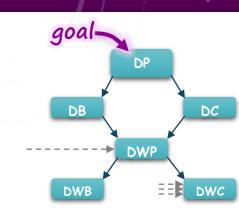
Results (2)

A learning algorithm L^w that learns the full class of regular w-languages using recurrent FDFAs

Worst-case time complexity polynomial in L_{\$}

Preforms very well on random targets





FDFAS as Acceptors of W-Langs [Angluin, Boker & Fisman FMC516]

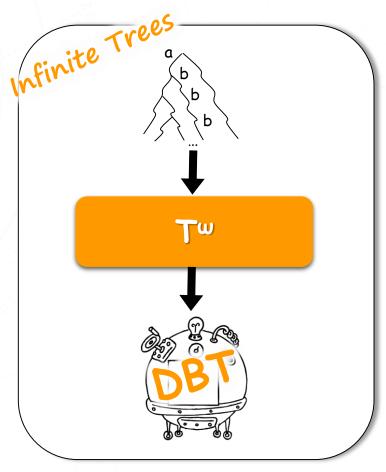
- Have a Myhill-Nerode characterization
- Boolean operations are in LOGSPACE
- Decision problems are in NLOGSPACE

Succinctness-wise DPA :; compl.

Some open questions

- Polytime learning of a class of w-Langs more expressive than DWP
- Saturation of FDFA is in PSPACE; currently no lower bound
- Find smaller canonical representations

Further Directions

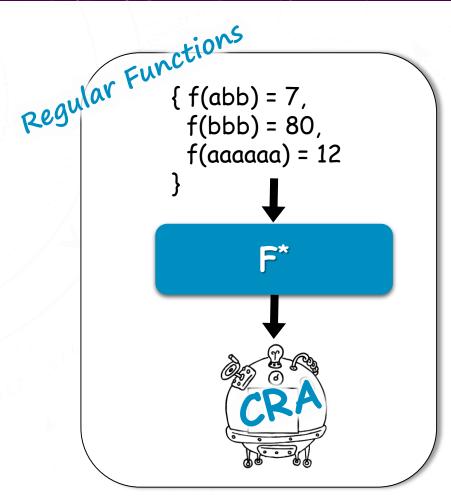


On going work with

DANA ANGLUIN &

Cimos Antonopulos

Further Directions



On going work with RAFEEV ALUR

