Halmstead Summer School on Testing
June 2013

Accurate Programming
Third Halmstad Summer School on Testing
June 3-5, 2013

Testing and Verification in ACL2
Rex Page, University of Oklahoma
14:00 - 15:30

Support provided by Y
I?LILBRIGH'[ National Science Foundation

‘Third Halmstad Summer School on Testing June 2-5, 2013 1

6/3/2013

Goal
software that meets expectations
Specifying expectations PUT ot

v suite of test cases

input, expected output (operation x?): 22=4,32=9
v’ corner cases

carefully chosen input, expected output: (-1)? = 1
v operator relationships

Boolean formulas: x22 0, (x +y)? = x2 + 2xy +y2 , ..

Tests are theorems

v test cases: theorems with one-element domains
v operator relationships: more general theorems
v type checking: theorems proved by compilers

‘Third Halmstad Summer School on Testing June 2-5, 2013 2

Theorems are derived from axioms

x+0=x {+ identity}
(-x)+x=0 {+ complement}
‘0(06 xx1=x {x identity}
N xx0=0 {x null}
X+y=y+Xx {+ commutative}
X+(y+2z)=(x+y)+z {+ associative}

xx(y+z)=(xxy)+(xxz) {distributive law}
X,y, z stand for any formula

Software verification theorem: (-1)x(-1) = 1

v axioms = programs (-1) x (-1)
v theorems = =((-D)x(-1)+0 {+id}
properties of programs = ((-1) x (-1)) + ((-1) + 1) {+ comp}
g
= ~1)x(- + (-1)x1) + X 0
f°f::"f::5 framework 2 (T 1 ) 41 {dist law}
Preg . = ((1)x0) + 1 & {+ comp)
systems of equations -0+1 WO {x null}
v constrains programs, =1+0 0(\“ {+ comm}
but not computationgnsa sumegschool on Tesing une 2:5, &3 {+id} 3

(Some operations on lists (informal specs) \
(cons x [X; X ... Xp]) = [X Xq X5 ... Xp]
(first [X; Xz .. Xpt]) = Xy %
(rest [X) X; ... Xp1]) = [Xz . Xput] s
(append [x; Xz .. X1 [y1 Y2 - Yn]) = [X1 Xz X0 Y1 Y2 - Yim] 3
(len [x; X5 ... X, ) = n °

Axioms (equations of computation ... "programs”) 3
(first (cons x xs)) = x {first} S,
(rest (cons x xs)) = xs {rest}y &
(append nil ys) = ys {app0} 2
(append (cons x xs) ys) = (cons x (append xs ys)) {appl} ©®
(lennil)= 0 {len0}
(len (cons x xs)) = 1 + (len xs) {lenl}

Theorems (properties derivable from axioms)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc
(len (append xs ys)) = (len xs) + (len ys) {app-len}

}

Tests are all you need
\___Axioms, programs, properties ... all can be formulated as tests
‘Third Halmstad Summer School on Testing June 2-5, 2013 4

&

Properties (tests) that act as definitions

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
These equations have the following attributes
v’ comprehensive — all cases covered by left-hand-side formulas
v consistent — no two equations specify conflicting results
v

computational

‘Third Halmstad Summer School on Testing June 2-5, 2013 5

Rex Page — Univ of Oklahoma

Properties (tests) that act as definitions
Two properties of concatenation

(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x ) {app1}

These equations have the following attributes
v' comprehensive — all cases covered
v consistent — no two equations specify conflicting results
v computational
circular of equation closer to
non-circular case than reference on left-hand-side

‘Third Halmstad Summer School on Testing June 2:5, 2013 6




Halmstead Summer School on Testing
June 2013

Properties (tests) that act as definitions
Two properties of concatenation

(append nil ys) = ys {app0}

(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
These equations have the following attributes

v comprehensive — all cases covered %

v consistent — no two equations specify conflicting results *©

computational K
circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

‘Third Halmstad Summer School on Testing June 2-5, 2013 7

6/3/2013

Properties (tests) that act as definitions
Two properties of concatenation

(append nil ys) = ys {app0}

(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
These equations have the following attributes

v' comprehensive — all cases covered A

computational
circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side
Equations satisfying “the 3 c's" define an operator
v all properties of the operation derive from the equations
v including computational properties
Formal definition of concatenation (ACL2 syntax)
(defun append (xs ys)
(if (consp xs) ; cons predicate: Is xs a cons?
(cons (first xs) (append (rest xs) ys)) ; {appl}
ys : {apsp0}

‘Third Halmstad Summer School on Testing June 2-5, 2013

v consistent — no two equations specify conflicting results GU)C

What is ACL2 ?

ACL2 — A computational Logic for Applicative Common Lisp
v programming language and mechanized logic
dialect of Common Lisp
conservative logic for effective mechanization/automation
1s*-order logic, terminating functions, no mutable variables
v Boyer/Moore theorem-prover, latest edition
40 years in the making
Many commerical applications (AMD, Rockwell-Collins, NSA ...)
Proof Pad — IDE for ACL2 (Eggensperger)
v programming + theorem proving = full ACL2
v’ + property-based festing
... but no narrowing, no user-defined data generators
v other ACL2 IDEs
Emacs (comes with ACL2 installation: Moore, Kaufmann)
DrACuLA (DrRacket plug-in: PLT, Felleisen, Eastlund)
ACL2 Sedan (Eclipse plug-in: Manolios, Dillinger, Vroon ...)

“Third Halmstad Summer School on Testing June 2-5, 2013 9

Formal specifications of properties (Proof Pad)
Some expected properties (informal specs)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

‘Third Halmstad Summer School on Testing June 2-5, 2013 10

Formal specifications of properties (Proof Pad)

[(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) informal {app-len}
(defproperty app-assoc-tst ; {app-assoc}

(xs :value (random-list-of (random-integer))

ys :value (random-list-of (random-integer))

zs :value (random-list-of (random-integer)))

(equal (append xs (append ys zs))

(append (append xs ys) zs)))

formal property

‘Third Halmstad Summer School on Testing June 2-5, 2013 1

Rex Page — Univ of Oklahoma

Formal specifications of properties (Proof Pad)

[(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) informal {app-len}
(defproperty app-assoc-tst ; {app-assoc}

(xs :value (random-list-of (random-integer))

ys :value (random-list-of (random-integer))

zs :value (random-list-of (random-integer)))

(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

formal properties (Proof Pad)

‘Third Halmstad Summer School on Testing June 2:5, 2013 12




Halmstead Summer School on Testing
June 2013

Formal specifications of properties (Proof Pad)

6/3/2013

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

informal
(defproperty app-assoc-tst ; {app-assoc}

(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))

(equal (append xs (append ys zs))

(append (append xs ys) zs)))

A\
a®

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

formal properties (Proof Pad)

‘Third Halmstad Summer School on Testing June 2-5, 2013 13

Formal specifications of theorems (ACL2)

[ (append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) informal {app-len}
(defproperty app-assoc-tst ; {app-assoc}

(xs :value (random-list-of (random-integer))

ys :value (random-list-of (random-integer))

zs :value (random-list-of (random-integer)))

(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defthm app-assoc-thm ; {app-assoc} K

(equal (append xs (append ys zs))

(append (append xs ys) zs)))
(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))

(= (len (append xs ys)) (+ (len xs) (len ys))))
(defthm append-preserves-len-thm; {app-len}
(= (len (append xs ys)) (+ (len xs) (len ys))))

‘Third Halmstad Summer School on Testing June 2-5, 2013 14

properties (Proof Pad)

(270v) swauoayy

Additional properties of concatenation

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))
Axioms defining prefix operator
(prefix O xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}

(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

‘Third Halmstad Summer School on Testing June 2-5, 2013 15

Additional properties of concatenation

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

Y2
Xs)) 6@6\0
Axioms defining prefix operator
(prefix O xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}

(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}
‘Third Halmstad Summer School on Testing June 2-5, 2013 16

Additional properties of concatenation
; import some theorems of algebra
(include-book "arithmetic-3/top" :dir :system)
(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))
ys))
(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
:where (true-listp xs) ; xs must be list
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

(defthm append-prefix-thm ; {app-pfx}

— (implies (true-listp xs) ; xs must be a list
theorem becomes (equal (prefix (len xs) (append xs ys))
implication with xs)))

‘where-condition
as hypothesis

‘Third Halmstad Summer School on Testing June 2-5, 2013 17

Rex Page — Univ of Oklahoma

Mechanization Is Necessary
without it, all is lost in the details

Even simple properties lead to big proofs
v millions of details in proofs about big programs
People can't keep track of millions of details
Besides, a proof at least is as likely to be wrong as a program
v people formulate properties ... computers push details
proof organized into lemmas — similar to software components
rigorous, but not fully formal
like a paper-and-pencil proof, as done by mathematicians
some lemma architectures are better than others
like modular decomposition of software ... design matters
formulation of properties is a big task
experience/ judgment required ... as in software development

Same strategy for testing
v formulate, then automate

‘Third Halmstad Summer School on Testing June 2:5, 2013 18




Halmstead Summer School on Testing
June 2013

6/3/2013

Things that have been done with ACL2

AMD Athlon (K7) floating point processor (1999)
v AMD floating-point division circuit verified
after 1994/97 Pentium floating-point division bugs
v Property verified
(implies (and (floating-point-numberp p 15 64)
(floating-point-numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))
(equal (divide p d mode)
(round (/ p d) mode)))...

Other commercial applications
Motorola DSP microcode
Rockwell Collins AAMP7 avionics software ... ongoing
CenTaur VLSI chip design ... ongoing
Numerous NSA applications ... ongoing
High-assurance software and circuits

‘Third Halmstad Summer School on Testing June 2-5, 2013 19

Test suites versus proofs

Testing
v AMD floating-point
AMD test suite of 80-million cases
gazillions of cases to consider (215+64 x 215+64 = 2158)
physically impossible to do that many tests

Proofs cover all cases

Extra investment for proof is substantial
v justified in some applications, but not all
v property-based testing justified in most applications

‘Third Halmstad Summer School on Testing June 2-5, 2013 20

Practice exercises (20 minutes)

Ex 1: insert element at the end of a list
Suppose snoc inserts an element at the end of a list
(snoc x [Xq Xz ... Xp]) = [Xg Xz ... X, X]
a) Complete the following equations
(shoc x nil) = 22 {snoc0}
(shoc X [X; X5 ... Xpq]) = 22 {snoc1} (use circular reference)
b) Define snoc formally (that is, in ACL2)
Ex 2: reverse a list
Use snoc to define a list reversal operator in ACL2
(rev [Xy Xz . Xpg Xp]) = [Xq Xpg o X2 X4]
Ex 3: properties of reverse
a) Define/test a property of the formula (rev (rev xs))
b) Define/test a property of (rev (append xs ys))
c) Use ACL2 to verify (prove) those properties

Download Proof Pad: http://proofpad.org

‘Third Halmstad Summer School on Testing June 2-5, 2013 21

Multiplexor - informal specification

(mux [x; X5 X3 . 1[y1 Y2 Y3 1) = [X1 Y1 X2 Y2 X3 ¥3 -..]
Definitional properties of mux

(mux nil [y; ... ynl) = ?2?

(mux [xq ... x,] nil) = 22

(Mmux [Xq . Xpug1 [y1 - YD) = 22

‘Third Halmstad Summer School on Testing June 2-5, 2013 22

Multiplexor - informal specification
(mux [xy X2 X3 .1 [y1 Y2 ¥3 1) = [X1 Y1 X2 Y2 X3 ¥3 -]

. . M
Definitional properties of mux \W",w\
G| (mux nil Iy .. yol) = [y1 - Y] RO
@l (mux [x; .. X,]nil) = [x; .. X,]) (e
£ (mux [X) . Xp1d Y1 o Yierd) = [X1 Y7 22?00 ]

Formal definition (ACL2)
(defun mux (xs ys)
(if (not (consp xs))
5 mux0

ys
(if (not (consp ys))
Xs 5 mux10

(cons (first xs) (cons (Ffirst ys)
(mux (rest xs) (rest ys))))))) ; muxll

‘Third Halmstad Summer School on Testing June 2-5, 2013 23

Demultiplexor - informal specification
(dmx [x; X5 X3 ...]1) = [[X; X3 X5 ..] [X2 X4 X -..]]
Some properties of dmx

(dmx nil) = [nil nil] ,bc‘ﬁ
(dmx [X; ... Xpo1]) = [[X2 X4 Xg ...] [X3 X5 X7 ...]] ,&/

= [odds evns ]
(dmx [X; X5 ... X,.q]) = [(cons x; odds) evns]

Formal definition (ACL2)
(defun dmx (xys)
(if (consp xys)
(let* ((x (First xys))
(ysxs (dmx (rest xys)))
(ys (First ysxs))
(xs (second ysxs)))

(list (cons x xs) ys)) ; dmx1
(list xys xys))) ; dmx0
eh—>/7 ‘Third Halmstad Summer School on Testing June 2-5, 2013 24

Rex Page — Univ of Oklahoma



Halmstead Summer School on Testing 6/3/2013

June 2013

Expectations - mux, dmx
(mux [x; Xz X3 . 1[y1 Y2 Y3 1) = [X1 Y1 X2 Y2 X3 ¥3 ...]
(dmx [x; Xz X3 ...1) = [[X; X3 X5 ..] [Xz X4 X¢ ...]]
Length preservation
(defthm dmx-preserves-length-thm
(= (len xys)
(+ (len (First (dmx xys)))
(len (second (dmx xys))))))
(defthm mux-preserves-length-thm
(= (len (mux xs ys))
(+ (len xs) (len ys))))

‘Third Halmstad Summer School on Testing June 2-5, 2013 25

Expectations - mux, dmx
(mux [x; X X3 .1 [y1 Y2 Y3 1) = [X1 Y1 X2 Y2 X3 ¥3 -]
(dmx [x; X5 X3 ...]1) = [[X; X3 X5 ..] [X2 X4 X ...]]

Conservation of elements
(defthm dmx-conserves-of-elements-thm
(iff (member-equal e xys)
(or (member-equal e (First (dmx xys)))
(member-equal e (second (dmx xys))))))

(defthm mux-conserves-of-elements-thm
(iff (member-equal e (mux xs ys))
(or (member-equal e xs)
(member-equal e ys))))

‘Third Halmstad Summer School on Testing June 2-5, 2013 26

Round-trip properties - mux, dmx
(mux [x; X X3 . 1[y1 Y2 Y3 1) = [X1 y1 X2 Y2 X3 ¥3 ...]
(dmx [x; X5 X3 ...1) = [[X; X3 X5 ..] [X2 X4 X¢ ...]]
mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (Ffirst (dmx xys))
(second (dmx xys)))
Xys))

‘Third Halmstad Summer School on Testing June 2-5, 2013 27

Round-trip properties - mux, dmx
(mux [x; X X3 .1 [y1 Y2 Y3 1) = [X1 Y1 X2 Y2 X3 ¥3 -]
(dmx [x; X5 X3 ...]1) = [[X; X3 X5 ..] [X2 X4 X -..]]

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (First (dmx xys))
(second (dmx xys)))
Xys))

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (dmx (mux xs ys))
(list xs ys))) a

e

‘Third Halmstad Summer School on Testing June 2-5, 2013 28

Round-trip properties - mux, dmx
(mux [x; X X3 . 1[y1 Y2 Y3 1) = [X1 Y1 X2 Y2 X3 Y3 ]
(dmx [X; x5 X3 ...]1) = [[X1 X3 X5 ..] [X2 X4 X¢ -..]]

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (First (dmx xys))
(second (dmx xys)))
Xys))

dmx inverts mux
efproperty dmx-inverts-mux-tst

)

&
00‘?6

A 5

‘Third Halmstad Summer School on Testing June 2-5, 2013

Round-trip properties - mux, dmx
(mux [xy X, X3 ..1[y1 Y2 Y3 1) = [X1 Y1 X2 Y2 X3 Y3 -]
(dmx [x; X5 X3 ...]) = [[Xq X3 X5 ...] [X2 X4 Xg -..]]

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (First (dmx xys))
(second (dmx xys)))
Xys))

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(n :value (random-natural)
xs :value (random-integer-list-of-length n)
ys :value (random-integer-list-of-length n))
(implies (and (true-listp xs) (true-listp ys)
(= (len xs) (len ys)))
(equal (dmx (mux xs ys)) Q
(list xs ys)))) 0?
&

‘Third Halmstad Summer School on Testing June 2:5, 2013 30

Rex Page — Univ of Oklahoma



Halmstead Summer School on Testing
June 2013

6/3/2013

Ordered merge informal spec

(mrg [Xl Xge xn] [Y1 Y2 - Ym]) = [Zl Z; .. me]
where z; <z, < .. <z, if
if X;<X;<..<x, and y; <y, < .. <yq

definitional properties of mrg

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys)))  {x<y}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs)ys)) {y<x}

Ordered merge informal spec

(H’\I"g [xl Xae Xn] [Y1 Y2 - Ym]) = [Zl Zy . me]
where z; <z, < .. <z, if
if X;<X;<..<x, and y; <y, <. <y,

definitional properties of mrg
(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys)))  {x<y}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs)ys)) {y<x}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}
formal definition
(defun mrg (xs ys)
(if (and (consp xs) (consp ys))
(let* ((x (Ffirst xs)) (y (first ys)))
Gf (<= xvy)
(cons x (mrg (rest xs) ys)) : {mgx}
(cons y (mrg xs (rest ys))))) : {mgy}
(if (not (consp ys))
xS 5 ys is empty ; {mg0}

ys) ; Xs is empty ; {mgl}
‘Third Halmstad Summer School on Testing June 2-5, 2013 32

(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}
‘Third Halmstad Summer School on Testing June 2-5, 2013 31
Ordered merge informal spec
(mrg [x; Xz Xp] [y1 Y2 - YmD) = [21 22 - Zpem]
where z, <z, < .. <z, if
if X{<x,<..<x, and y; <y, <. <yq
definitional properties of mrg
(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (consy ys)))  {x<y}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs)ys))  {y<x}
(mrg xs nil) = xs {mgO0}
(mrg nil ys) = ys {mg1}

additional expectations
(defthm mrg-preserves-order-thm
(implies (and (up xs) (up ys))
(up (mrg xs ys))))

(up [X; Xz X,]) = X S X, < . < X

‘Third Halmstad Summer School on Testing June 2-5, 2013

Ordered merge informal spec

(mrg [Xx; Xz Xo] [Y1 Y2 - Ym]) = [21 22 . Zpe)
where z; <z, < .. <z, if
if X{<x,<..<x, and y; <y, <..<yq

definitional properties of mrg

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (consy ys)))  {x<y}

(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs)ys)) {y<x}

(mrg xs nil) = xs {mg0}

(mrg nil ys) = ys {mg1}
additional expectations

(defthm mrg-preserves-order-thm

(implies (and (up xs) (up ys))
(up (mrg xs ys))))
(defthm mrg-conservation-of-values-thm
(iff (member-equal e (mrg xs ys))
(or (member-equal e xs) (member-equal e ys))))

(up [X) X Xp]) = Xy S X5 < . < X,

(member-equal X [X; X,... X,]) = (X=X;) or (x=x;) or ... or (x=X,)
‘Third Halmstad Summer School on Testing June 2-5, 2013 34

Merge-sort informal spec

(msort [X; X5... Xp] = [21 2, ... 2,]
where z,<z,< .. <z,

and [z, z, .. z,]is a permutation of = [z, z, ..

z,]

definitional properties of merge-sort
(msort [N =1]
(msort [x]) = [x]
(msort [x; X,... X,]) = (mrg (msort [X; X,... X271

additional expectations (msort [Xfy/zh - Xo]

(defthm msort-order-thm
(up (msort xs))))
(defthm msort-conservation-of-values-thm
(iff (member-equal e (msort xs))
(member-equal e xs)))

‘Third Halmstad Summer School on Testing June 2-5, 2013

{ms0}
{ms1}
{ms2}

Merge-sort

informal spec
(msort [X; X,... X,] = [21 Z5 ... Z,]
where z,<z,< .. <z,

and [z, Zz, .. z,]is a permutation of = [z, z, ..

z,]

definitional properties of merge-sort
(msort [1)=11] {msQ}
(msort [x]) = [x] {ms1}
(msort [X; X,... X,] ) = (mrg (msort [X; X,... X{p/21] {ms2}

additional expectations (msort [X[uzp1 - Xa]))
(defthm msort-order-thm o B
(up (msort xs)))) 660
(defthm msort-conservation-of-values-thm
(iff (member-equal e (msort xs))
(member-equal e xs))) any split putting half of the
elements in one list and half
in the other is okay
Third Halmstad Summer School on Testing June 2-5, 2013 36

Rex Page — Univ of Oklahoma




Halmstead Summer School on Testing
June 2013

Ordered merge

informal spec
(mrg [Xl Xz xn] [Y1 Y2 - Ym]) = [ZI Z; - Zn+m]
where z; <z, < .. <z, if

if X;<X;<..<x, and y; <y, < .. <yq

definitional properties of mrg
(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (consy ys)))  {x<y}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {y<x}

6/3/2013

Merge-sort

formal definition of merge-sort
(defun msort (xs)
(if (consp (rest xs)) ; (len xs) > 1?

(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]
(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) {ms2}
Xs)) ; Xs = [x1] or empty {msl}

‘Third Halmstad Summer School on Testing June 2-5, 2013 38

(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mgl1}
(defun mrg (xs ys)

< (declare (xargs :measure (+ (len xs) (len ys)))) N@

.© (if (and (consp xs) (coNs o

x (let* ((x (First xs)\(y (First y=" @& 6@(‘\

< - - "W

= (f (== xy) C!

“5 (cons x (mrg (res¥ x<~ K\o“ 5 {mox}

o (cons y (nrg xs < NANC,)))) ; {moy}

S (if (not (consp ys> @d W

£ S T @5 empty ; {mg0}

S v 9% is empty : {mg1}

Y ‘Third Ha. ..otad Summer School on Testing June 2-5, 2013 37
Merge-sort

formal definition of merge-sort
(defun msort (xs)
(if (consp (rest xs)) ; (len xs) > 1?
(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]

(odds (first odds-evens))
(evns (second odds-evens)))
(mrg (msort odds) (msort evns))) ; {ms2}
Xs)) ; xs = [x1] or empty {msl}

maybe it doesn't know dmx reduces the list length
(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))
(and (< (Ien(Ffirst(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

‘Third Halmstad Summer School on Testing June 2-5, 2013 39

Merge-sort e

formal definition of merge-sort éq,«\"
(defun msort (xs)
(declare ; suggest using lemma to prove termination
(xargs :measure (len xs)
thints (("Goal""

tuse ((:instance dmx-reduces-len-thm))))))

(if (consp (rest xs)) ; (len xs) > 17?
(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]

(odds (First odds-evens))
(evns (second odds-evens)))
(mrg (msort odds) (msort evns))) ; {ms2}
Xs)) ; Xs = [x1] or empty {msl}

maybe it doesn't know dmx reduces the list length
(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))
(and (< (len(Ffirst(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

‘Third Halmstad Summer School on Testing June 2-5, 2013 40

Practice exercises (30 minutes)

Linear Encoding

Define operators to encode and decode lists of
natural numbers within a given range, and verify
that decode inverts encode

Encode

The encoding process adds adjacent numbers in the
input list, modulo the given range

Decode
Inverse of encode

Project description
http://blog.accurate-programming.org/

‘Third Halmstad Summer School on Testing June 2-5, 2013 a1

Rex Page — Univ of Oklahoma

The End

June 4, 2013
14:00-15:30 session

‘Third Halmstad Summer School on Testing June 2:5, 2013 42




