
Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 1

Accurate Programming
Third Halmstad Summer School on Testing

June 3-5, 2013

Testing and Verification in ACL2
Rex Page, University of Oklahoma

14:00 – 15:30

Support provided by

Third Halmstad Summer School on Testing June 2-5, 2013 1

Goal
software that meets expectations

Third Halmstad Summer School on Testing June 2-5, 2013 2

Specifying expectations
 suite of test cases

input, expected output (operation x2): 22 = 4, 32 = 9
 corner cases

carefully chosen input, expected output: (-1)2 = 1
 operator relationships

Boolean formulas: x2 ≥ 0, (x + y)2 = x2 + 2xy + y2 , …

Tests are theorems
 test cases: theorems with one-element domains
 operator relationships: more general theorems
 type checking: theorems proved by compilers

input output

3

Theorems are derived from axioms
x + 0 = x {+ identity}
(-x) + x = 0 {+ complement}
x 1 = x { identity}
x 0 = 0 { null}
x + y = y + x {+ commutative}
x + (y + z) = (x + y) + z {+ associative}
x (y + z) = (x y) + (x z) {distributive law}

x, y, z stand for any formula

Software verification
 axioms = programs
 theorems =

properties of programs

(-1) (-1)
= ((-1) (-1)) + 0 {+ id}
= ((-1) (-1)) + ((-1) + 1) {+ comp}
= (((-1)(-1)) + (-1)) + 1 {+ assoc}
= (((-1)(-1)) + (-1)1) + 1 { id}
= ((-1)((-1) + 1)) + 1 {dist law}
= ((-1)0) + 1 {+ comp}
= 0 + 1 { null}
= 1 + 0 {+ comm}
= 1 {+ id}

theorem: (-1)(-1) = 1

Software framework
 programs =

systems of equations
 constrains programs,

but not computationsThird Halmstad Summer School on Testing June 2-5, 2013 3

Some operations on lists (informal specs)
(cons x [x1 x2 … xn]) = [x x1 x2 … xn]
(first [x1 x2 … xn+1]) = x1
(rest [x1 x2 … xn+1]) = [x2 … xn+1]
(append [x1 x2 … xn] [y1 y2 … ym]) = [x1 x2 … xn y1 y2 … ym]
(len [x1 x2 … xn]) = n

4

Theorems (properties derivable from axioms)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

Axioms (equations of computation … “programs”)
(first (cons x xs)) = x {first}
(rest (cons x xs)) = xs {rest}
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
(len nil) = 0 {len0}
(len (cons x xs)) = 1 + (len xs) {len1}

Tests are all you need
Axioms, programs, properties … all can be formulated as tests

Third Halmstad Summer School on Testing June 2-5, 2013

algebra of software

5

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered by left-hand-side formulas
 consistent ― no two equations specify conflicting results
 computational

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Third Halmstad Summer School on Testing June 2-5, 2013 6

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Third Halmstad Summer School on Testing June 2-5, 2013

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 2

7

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Third Halmstad Summer School on Testing June 2-5, 2013

Formal definition of concatenation (ACL2 syntax)
(defun append (xs ys)
(if (consp xs) ; cons predicate: Is xs a cons?

(cons (first xs) (append (rest xs) ys)) ; {app1}
ys ; {app0}

8

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Equations satisfying “the 3 c’s” define an operator
 all properties of the operation derive from the equations
 including computational properties

Third Halmstad Summer School on Testing June 2-5, 2013

Proof Pad ― IDE for ACL2 (Eggensperger)
 programming + theorem proving = full ACL2
 + property-based testing

… but no narrowing, no user-defined data generators
 other ACL2 IDEs

Emacs (comes with ACL2 installation: Moore, Kaufmann)
DrACuLA (DrRacket plug-in: PLT, Felleisen, Eastlund)
ACL2 Sedan (Eclipse plug-in: Manolios, Dillinger, Vroon …)

What is ACL2 ?
ACL2 ― A Computational Logic for Applicative Common Lisp
programming language and mechanized logic

dialect of Common Lisp
conservative logic for effective mechanization/automation
1st-order logic, terminating functions, no mutable variables

Boyer/Moore theorem-prover, latest edition
40 years in the making
Many commerical applications (AMD, Rockwell-Collins, NSA …)

9Third Halmstad Summer School on Testing June 2-5, 2013

Formal specifications of properties (Proof Pad)

10Third Halmstad Summer School on Testing June 2-5, 2013

Some expected properties (informal specs)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

Formal specifications of properties (Proof Pad)

11Third Halmstad Summer School on Testing June 2-5, 2013

fo
rm

al
 p

ro
pe

rt
y (defproperty app-assoc-tst ; {app-assoc}

(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

12Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty app-assoc-tst ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

Formal specifications of properties (Proof Pad)

fo
rm

al
 p

ro
pe

rt
ie

s
(P

ro
of

 P
ad

)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 3

13Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty app-assoc-tst ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

Formal specifications of properties (Proof Pad)

fo
rm

al
 p

ro
pe

rt
ie

s
(P

ro
of

 P
ad

)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

14

Formal specifications of theorems (ACL2)

(defproperty app-assoc-tst ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

(defthm app-assoc-thm ; {app-assoc}
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defthm append-preserves-len-thm; {app-len}
(= (len (append xs ys)) (+ (len xs) (len ys))))

pr
op

er
ti

es
 (P

ro
of

 P
ad

)

theorem
s (A

CL2)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

15

Additional properties of concatenation

Third Halmstad Summer School on Testing June 2-5, 2013

Axioms defining prefix operator
(prefix 0 xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}
(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

16

Additional properties of concatenation

Third Halmstad Summer School on Testing June 2-5, 2013

Axioms defining prefix operator
(prefix 0 xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}
(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

17

Additional properties of concatenation

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))

:where (true-listp xs) ; xs must be list
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

; import some theorems of algebra
(include-book "arithmetic-3/top" :dir :system)

(defthm append-prefix-thm ; {app-pfx}
(implies (true-listp xs) ; xs must be a list

(equal (prefix (len xs) (append xs ys))
xs)))

theorem becomes
implication with
:where-condition
as hypothesis 18

Mechanization Is Necessary
without it, all is lost in the details

Even simple properties lead to big proofs
 millions of details in proofs about big programs

People can’t keep track of millions of details
Besides, a proof at least is as likely to be wrong as a program

Third Halmstad Summer School on Testing June 2-5, 2013

Same strategy for testing
 formulate, then automate

 people formulate properties … computers push details
proof organized into lemmas — similar to software components

rigorous, but not fully formal
like a paper-and-pencil proof, as done by mathematicians

some lemma architectures are better than others
like modular decomposition of software … design matters

formulation of properties is a big task
experience/judgment required … as in software development

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 4

19

Things that have been done with ACL2
AMD Athlon (K7) floating point processor (1999)
AMD floating-point division circuit verified

after 1994/97 Pentium floating-point division bugs
 Property verified

(implies (and (floating-point-numberp p 15 64)
(floating-point-numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))

(equal (divide p d mode)
(round (/ p d) mode)))…

Other commercial applications
Motorola DSP microcode
Rockwell Collins AAMP7 avionics software … ongoing
CenTaur VLSI chip design … ongoing
Numerous NSA applications … ongoing

High-assurance software and circuits
Third Halmstad Summer School on Testing June 2-5, 2013 20

Test suites versus proofs
Testing
AMD floating-point

AMD test suite of 80-million cases
gazillions of cases to consider (215+64 215+64 = 2158)
physically impossible to do that many tests

Proofs cover all cases
Extra investment for proof is substantial
 justified in some applications, but not all
 property-based testing justified in most applications

Third Halmstad Summer School on Testing June 2-5, 2013

21

Practice exercises (20 minutes)
Ex 1: insert element at the end of a list

Suppose snoc inserts an element at the end of a list
(snoc x [x1 x2 … xn]) = [x1 x2 … xn x]

a) Complete the following equations
(snoc x nil) = ?? {snoc0}
(snoc x [x1 x2 … xn+1]) = ?? {snoc1} (use circular reference)

b) Define snoc formally (that is, in ACL2)
Ex 2: reverse a list

Use snoc to define a list reversal operator in ACL2
(rev [x1 x2 … xn-1 xn]) = [xn xn-1 … x2 x1]

Ex 3: properties of reverse
a) Define/test a property of the formula (rev (rev xs))
b) Define/test a property of (rev (append xs ys))
c) Use ACL2 to verify (prove) those properties

Third Halmstad Summer School on Testing June 2-5, 2013

Download Proof Pad: http://proofpad.org

Multiplexor – informal specification
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]

Definitional properties of mux
(mux nil [y1 … ym]) = ??
(mux [x1 … xn] nil) = ??
(mux [x1 … xn+1] [y1 … ym+1]) = ??

Third Halmstad Summer School on Testing June 2-5, 2013 22

Definitional properties of mux
(mux nil [y1 … ym]) = [y1 … ym]
(mux [x1 … xn] nil) = [x1 … xn])
(mux [x1 … xn+1] [y1 … ym+1]) = [x1 y1 ... ?? ...]

Multiplexor – informal specification
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]

th
e

3
c’s

Formal definition (ACL2)
(defun mux (xs ys)
(if (not (consp xs))

ys ; mux0
(if (not (consp ys))

xs ; mux10
(cons (first xs) (cons (first ys)

(mux (rest xs) (rest ys))))))) ; mux11

Third Halmstad Summer School on Testing June 2-5, 2013 23

Some properties of dmx
(dmx nil) = [nil nil]
(dmx [x2 … xn+1]) = [[x2 x4 x6 …] [x3 x5 x7 …]]

= [odds evns]
(dmx [x1 x2 … xn+1]) = [(cons x1 odds) evns]

Demultiplexor – informal specification
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

Formal definition (ACL2)
(defun dmx (xys)
(if (consp xys)

(let* ((x (first xys))
(ysxs (dmx (rest xys)))
(ys (first ysxs))
(xs (second ysxs)))

(list (cons x xs) ys)) ; dmx1
(list xys xys))) ; dmx0

Third Halmstad Summer School on Testing June 2-5, 2013eh? 24

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 5

Length preservation
(defthm dmx-preserves-length-thm
(= (len xys)

(+ (len (first (dmx xys)))
(len (second (dmx xys))))))

Expectations – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

(defthm mux-preserves-length-thm
(= (len (mux xs ys))

(+ (len xs) (len ys))))

Third Halmstad Summer School on Testing June 2-5, 2013 25

Expectations – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

Conservation of elements
(defthm dmx-conserves-of-elements-thm
(iff (member-equal e xys)

(or (member-equal e (first (dmx xys)))
(member-equal e (second (dmx xys))))))

(defthm mux-conserves-of-elements-thm
(iff (member-equal e (mux xs ys))

(or (member-equal e xs)
(member-equal e ys))))

Third Halmstad Summer School on Testing June 2-5, 2013 26

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

Third Halmstad Summer School on Testing June 2-5, 2013 27

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (dmx (mux xs ys))

(list xs ys)))

Third Halmstad Summer School on Testing June 2-5, 2013 28

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (dmx (mux xs ys))

(list xs ys)))

Third Halmstad Summer School on Testing June 2-5, 2013 29

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(n :value (random-natural)
xs :value (random-integer-list-of-length n)
ys :value (random-integer-list-of-length n))
(implies (and (true-listp xs) (true-listp ys)

(= (len xs) (len ys)))
(equal (dmx (mux xs ys))

(list xs ys))))

Third Halmstad Summer School on Testing June 2-5, 2013 30

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 6

(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1 z2 … zn+m if

if x1 x2 … xn and y1 y2 … ym

informal spec

definitional properties of mrg
(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Third Halmstad Summer School on Testing June 2-5, 2013 31

Ordered merge

definitional properties of mrg

(defun mrg (xs ys)
(if (and (consp xs) (consp ys))

(let* ((x (first xs)) (y (first ys)))
(if (<= x y)

(cons x (mrg (rest xs) ys)) ; {mgx}
(cons y (mrg xs (rest ys))))) ; {mgy}

(if (not (consp ys))
xs ; ys is empty ; {mg0}
ys))) ; xs is empty ; {mg1}

(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1 z2 … zn+m if

if x1 x2 … xn and y1 y2 … ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

formal definition

Third Halmstad Summer School on Testing June 2-5, 2013 32

Ordered merge

definitional properties of mrg

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1 z2 … zn+m if

if x1 x2 … xn and y1 y2 … ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Third Halmstad Summer School on Testing June 2-5, 2013 33

additional expectations
(defthm mrg-preserves-order-thm

(implies (and (up xs) (up ys))
(up (mrg xs ys))))

(up [x1 x2… xn]) = x1 x2 … xn

definitional properties of mrg

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1 z2 … zn+m if

if x1 x2 … xn and y1 y2 … ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Third Halmstad Summer School on Testing June 2-5, 2013 34

additional expectations
(defthm mrg-preserves-order-thm

(implies (and (up xs) (up ys))
(up (mrg xs ys))))

(up [x1 x2… xn]) = x1 x2 … xn

(defthm mrg-conservation-of-values-thm
(iff (member-equal e (mrg xs ys))

(or (member-equal e xs) (member-equal e ys))))

(member-equal x [x1 x2… xn]) = (xx1) or (xx1) or … or (xxn)

definitional properties of merge-sort

Merge-sort
(msort [x1 x2… xn] = [z1 z2 … zn]
where z1 z2 … zn

and [z1 z2 … zn] is a permutation of = [z1 z2 … zn]

informal spec

(msort []) = [] {ms0}
(msort [x]) = [x] {ms1}
(msort [x1 x2… xn]) = (mrg (msort [x1 x2… xn/2] {ms2}

(msort [x n/2+1 … xn]))

Third Halmstad Summer School on Testing June 2-5, 2013 35

additional expectations
(defthm msort-order-thm

(up (msort xs))))

(defthm msort-conservation-of-values-thm
(iff (member-equal e (msort xs))

(member-equal e xs)))

definitional properties of merge-sort

Merge-sort
(msort [x1 x2… xn] = [z1 z2 … zn]
where z1 z2 … zn

and [z1 z2 … zn] is a permutation of = [z1 z2 … zn]

informal spec

(msort []) = [] {ms0}
(msort [x]) = [x] {ms1}
(msort [x1 x2… xn]) = (mrg (msort [x1 x2… xn/2] {ms2}

(msort [x n/2+1 … xn]))

Third Halmstad Summer School on Testing June 2-5, 2013 36

additional expectations
(defthm msort-order-thm

(up (msort xs))))

(defthm msort-conservation-of-values-thm
(iff (member-equal e (msort xs))

(member-equal e xs))) any split putting half of the
elements in one list and half

in the other is okay

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 7

definitional properties of mrg

(defun mrg (xs ys)
(declare (xargs :measure (+ (len xs) (len ys))))
(if (and (consp xs) (consp ys))

(let* ((x (first xs)) (y (first ys)))
(if (<= x y)

(cons x (mrg (rest xs) ys)) ; {mgx}
(cons y (mrg xs (rest ys))))) ; {mgy}

(if (not (consp ys))
xs ; ys is empty ; {mg0}
ys))) ; xs is empty ; {mg1}

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1 z2 … zn+m if

if x1 x2 … xn and y1 y2 … ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

fo
rm

al
 d

ef
in

it
io

n

Third Halmstad Summer School on Testing June 2-5, 2013 37

formal definition of merge-sort
Merge-sort

Third Halmstad Summer School on Testing June 2-5, 2013 38

(defun msort (xs)
(if (consp (rest xs)) ; (len xs) > 1?

(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]
(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

formal definition of merge-sort
Merge-sort

Third Halmstad Summer School on Testing June 2-5, 2013 39

(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))

(and (< (len(first(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

(defun msort (xs)
(if (consp (rest xs)) ; (len xs) > 1?

(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]
(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

maybe it doesn’t know dmx reduces the list length

formal definition of merge-sort
Merge-sort

Third Halmstad Summer School on Testing June 2-5, 2013 40

maybe it doesn’t know dmx reduces the list length

(defun msort (xs)
(declare ; suggest using lemma to prove termination
(xargs :measure (len xs)

:hints (("Goal"
:use ((:instance dmx-reduces-len-thm))))))

(if (consp (rest xs)) ; (len xs) > 1?
(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]

(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))

(and (< (len(first(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

41

Practice exercises (30 minutes)

Linear Encoding
Define operators to encode and decode lists of
natural numbers within a given range, and verify
that decode inverts encode
Encode

The encoding process adds adjacent numbers in the
input list, modulo the given range

Decode
Inverse of encode

Project description
http://blog.accurate-programming.org/

Third Halmstad Summer School on Testing June 2-5, 2013 42

The End

June 4, 2013
14:00-15:30 session

Third Halmstad Summer School on Testing June 2-5, 2013

