
Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 1

Accurate Programming
Third Halmstad Summer School on Testing

June 3-5, 2013

Testing and Verification in ACL2
Rex Page, University of Oklahoma

14:00 – 15:30

Support provided by

Third Halmstad Summer School on Testing June 2-5, 2013 1

Goal
software that meets expectations

Third Halmstad Summer School on Testing June 2-5, 2013 2

Specifying expectations
 suite of test cases

input, expected output (operation x2): 22 = 4, 32 = 9
 corner cases

carefully chosen input, expected output: (-1)2 = 1
 operator relationships

Boolean formulas: x2 ≥ 0, (x + y)2 = x2 + 2xy + y2 , …

Tests are theorems
 test cases: theorems with one-element domains
 operator relationships: more general theorems
 type checking: theorems proved by compilers

input output

3

Theorems are derived from axioms
x + 0 = x {+ identity}
(-x) + x = 0 {+ complement}
x  1 = x { identity}
x  0 = 0 { null}
x + y = y + x {+ commutative}
x + (y + z) = (x + y) + z {+ associative}
x  (y + z) = (x  y) + (x  z) {distributive law}

x, y, z stand for any formula

Software verification
 axioms = programs
 theorems =

properties of programs

(-1)  (-1)
= ((-1)  (-1)) + 0 {+ id}
= ((-1)  (-1)) + ((-1) + 1) {+ comp}
= (((-1)(-1)) + (-1)) + 1 {+ assoc}
= (((-1)(-1)) + (-1)1) + 1 { id}
= ((-1)((-1) + 1)) + 1 {dist law}
= ((-1)0) + 1 {+ comp}
= 0 + 1 { null}
= 1 + 0 {+ comm}
= 1 {+ id}

theorem: (-1)(-1) = 1

Software framework
 programs =

systems of equations
 constrains programs,

but not computationsThird Halmstad Summer School on Testing June 2-5, 2013 3

Some operations on lists (informal specs)
(cons x [x1 x2 … xn]) = [x x1 x2 … xn]
(first [x1 x2 … xn+1]) = x1
(rest [x1 x2 … xn+1]) = [x2 … xn+1]
(append [x1 x2 … xn] [y1 y2 … ym]) = [x1 x2 … xn y1 y2 … ym]
(len [x1 x2 … xn]) = n

4

Theorems (properties derivable from axioms)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

Axioms (equations of computation … “programs”)
(first (cons x xs)) = x {first}
(rest (cons x xs)) = xs {rest}
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
(len nil) = 0 {len0}
(len (cons x xs)) = 1 + (len xs) {len1}

Tests are all you need
Axioms, programs, properties … all can be formulated as tests

Third Halmstad Summer School on Testing June 2-5, 2013

algebra of software

5

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered by left-hand-side formulas
 consistent ― no two equations specify conflicting results
 computational

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Third Halmstad Summer School on Testing June 2-5, 2013 6

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Third Halmstad Summer School on Testing June 2-5, 2013

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 2

7

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Third Halmstad Summer School on Testing June 2-5, 2013

Formal definition of concatenation (ACL2 syntax)
(defun append (xs ys)
(if (consp xs) ; cons predicate: Is xs a cons?

(cons (first xs) (append (rest xs) ys)) ; {app1}
ys ; {app0}

8

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Equations satisfying “the 3 c’s” define an operator
 all properties of the operation derive from the equations
 including computational properties

Third Halmstad Summer School on Testing June 2-5, 2013

Proof Pad ― IDE for ACL2 (Eggensperger)
 programming + theorem proving = full ACL2
 + property-based testing

… but no narrowing, no user-defined data generators
 other ACL2 IDEs

Emacs (comes with ACL2 installation: Moore, Kaufmann)
DrACuLA (DrRacket plug-in: PLT, Felleisen, Eastlund)
ACL2 Sedan (Eclipse plug-in: Manolios, Dillinger, Vroon …)

What is ACL2 ?
ACL2 ― A Computational Logic for Applicative Common Lisp
programming language and mechanized logic

dialect of Common Lisp
conservative logic for effective mechanization/automation
1st-order logic, terminating functions, no mutable variables

Boyer/Moore theorem-prover, latest edition
40 years in the making
Many commerical applications (AMD, Rockwell-Collins, NSA …)

9Third Halmstad Summer School on Testing June 2-5, 2013

Formal specifications of properties (Proof Pad)

10Third Halmstad Summer School on Testing June 2-5, 2013

Some expected properties (informal specs)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

Formal specifications of properties (Proof Pad)

11Third Halmstad Summer School on Testing June 2-5, 2013

fo
rm

al
 p

ro
pe

rt
y (defproperty app-assoc-tst ; {app-assoc}

(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

12Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty app-assoc-tst ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

Formal specifications of properties (Proof Pad)

fo
rm

al
 p

ro
pe

rt
ie

s
(P

ro
of

 P
ad

)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 3

13Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty app-assoc-tst ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

Formal specifications of properties (Proof Pad)

fo
rm

al
 p

ro
pe

rt
ie

s
(P

ro
of

 P
ad

)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

14

Formal specifications of theorems (ACL2)

(defproperty app-assoc-tst ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty append-preserves-len-tst; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

(defthm app-assoc-thm ; {app-assoc}
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defthm append-preserves-len-thm; {app-len}
(= (len (append xs ys)) (+ (len xs) (len ys))))

pr
op

er
ti

es
 (P

ro
of

 P
ad

)

theorem
s (A

CL2)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

15

Additional properties of concatenation

Third Halmstad Summer School on Testing June 2-5, 2013

Axioms defining prefix operator
(prefix 0 xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}
(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

16

Additional properties of concatenation

Third Halmstad Summer School on Testing June 2-5, 2013

Axioms defining prefix operator
(prefix 0 xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}
(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

17

Additional properties of concatenation

(defproperty app-suffix-tst ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

Third Halmstad Summer School on Testing June 2-5, 2013

(defproperty app-prefix-tst ; {app-pfx}
(xs :value (random-list-of (random-integer))

:where (true-listp xs) ; xs must be list
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

; import some theorems of algebra
(include-book "arithmetic-3/top" :dir :system)

(defthm append-prefix-thm ; {app-pfx}
(implies (true-listp xs) ; xs must be a list

(equal (prefix (len xs) (append xs ys))
xs)))

theorem becomes
implication with
:where-condition
as hypothesis 18

Mechanization Is Necessary
without it, all is lost in the details

Even simple properties lead to big proofs
 millions of details in proofs about big programs

People can’t keep track of millions of details
Besides, a proof at least is as likely to be wrong as a program

Third Halmstad Summer School on Testing June 2-5, 2013

Same strategy for testing
 formulate, then automate

 people formulate properties … computers push details
proof organized into lemmas — similar to software components

rigorous, but not fully formal
like a paper-and-pencil proof, as done by mathematicians

some lemma architectures are better than others
like modular decomposition of software … design matters

formulation of properties is a big task
experience/judgment required … as in software development

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 4

19

Things that have been done with ACL2
AMD Athlon (K7) floating point processor (1999)
AMD floating-point division circuit verified

after 1994/97 Pentium floating-point division bugs
 Property verified

(implies (and (floating-point-numberp p 15 64)
(floating-point-numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))

(equal (divide p d mode)
(round (/ p d) mode)))…

Other commercial applications
Motorola DSP microcode
Rockwell Collins AAMP7 avionics software … ongoing
CenTaur VLSI chip design … ongoing
Numerous NSA applications … ongoing

High-assurance software and circuits
Third Halmstad Summer School on Testing June 2-5, 2013 20

Test suites versus proofs
Testing
AMD floating-point

AMD test suite of 80-million cases
gazillions of cases to consider (215+64  215+64 = 2158)
physically impossible to do that many tests

Proofs cover all cases
Extra investment for proof is substantial
 justified in some applications, but not all
 property-based testing justified in most applications

Third Halmstad Summer School on Testing June 2-5, 2013

21

Practice exercises (20 minutes)
Ex 1: insert element at the end of a list

Suppose snoc inserts an element at the end of a list
(snoc x [x1 x2 … xn]) = [x1 x2 … xn x]

a) Complete the following equations
(snoc x nil) = ?? {snoc0}
(snoc x [x1 x2 … xn+1]) = ?? {snoc1} (use circular reference)

b) Define snoc formally (that is, in ACL2)
Ex 2: reverse a list

Use snoc to define a list reversal operator in ACL2
(rev [x1 x2 … xn-1 xn]) = [xn xn-1 … x2 x1]

Ex 3: properties of reverse
a) Define/test a property of the formula (rev (rev xs))
b) Define/test a property of (rev (append xs ys))
c) Use ACL2 to verify (prove) those properties

Third Halmstad Summer School on Testing June 2-5, 2013

Download Proof Pad: http://proofpad.org

Multiplexor – informal specification
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]

Definitional properties of mux
(mux nil [y1 … ym]) = ??
(mux [x1 … xn] nil) = ??
(mux [x1 … xn+1] [y1 … ym+1]) = ??

Third Halmstad Summer School on Testing June 2-5, 2013 22

Definitional properties of mux
(mux nil [y1 … ym]) = [y1 … ym]
(mux [x1 … xn] nil) = [x1 … xn])
(mux [x1 … xn+1] [y1 … ym+1]) = [x1 y1 ... ?? ...]

Multiplexor – informal specification
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]

th
e

3
c’s

Formal definition (ACL2)
(defun mux (xs ys)
(if (not (consp xs))

ys ; mux0
(if (not (consp ys))

xs ; mux10
(cons (first xs) (cons (first ys)

(mux (rest xs) (rest ys))))))) ; mux11

Third Halmstad Summer School on Testing June 2-5, 2013 23

Some properties of dmx
(dmx nil) = [nil nil]
(dmx [x2 … xn+1]) = [[x2 x4 x6 …] [x3 x5 x7 …]]

= [odds evns]
(dmx [x1 x2 … xn+1]) = [(cons x1 odds) evns]

Demultiplexor – informal specification
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

Formal definition (ACL2)
(defun dmx (xys)
(if (consp xys)

(let* ((x (first xys))
(ysxs (dmx (rest xys)))
(ys (first ysxs))
(xs (second ysxs)))

(list (cons x xs) ys)) ; dmx1
(list xys xys))) ; dmx0

Third Halmstad Summer School on Testing June 2-5, 2013eh? 24

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 5

Length preservation
(defthm dmx-preserves-length-thm
(= (len xys)

(+ (len (first (dmx xys)))
(len (second (dmx xys))))))

Expectations – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

(defthm mux-preserves-length-thm
(= (len (mux xs ys))

(+ (len xs) (len ys))))

Third Halmstad Summer School on Testing June 2-5, 2013 25

Expectations – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

Conservation of elements
(defthm dmx-conserves-of-elements-thm
(iff (member-equal e xys)

(or (member-equal e (first (dmx xys)))
(member-equal e (second (dmx xys))))))

(defthm mux-conserves-of-elements-thm
(iff (member-equal e (mux xs ys))

(or (member-equal e xs)
(member-equal e ys))))

Third Halmstad Summer School on Testing June 2-5, 2013 26

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

Third Halmstad Summer School on Testing June 2-5, 2013 27

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (dmx (mux xs ys))

(list xs ys)))

Third Halmstad Summer School on Testing June 2-5, 2013 28

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (dmx (mux xs ys))

(list xs ys)))

Third Halmstad Summer School on Testing June 2-5, 2013 29

mux inverts dmx
(defproperty mux-inverts-dmx-tst
(xys :value (random-list-of (random-integer)))
(equal (mux (first (dmx xys))

(second (dmx xys)))
xys))

Round-trip properties – mux, dmx
(mux [x1 x2 x3 …] [y1 y2 y3 …]) = [x1 y1 x2 y2 x3 y3 …]
(dmx [x1 x2 x3 …]) = [[x1 x3 x5 …] [x2 x4 x6 …]]

dmx inverts mux
(defproperty dmx-inverts-mux-tst
(n :value (random-natural)
xs :value (random-integer-list-of-length n)
ys :value (random-integer-list-of-length n))
(implies (and (true-listp xs) (true-listp ys)

(= (len xs) (len ys)))
(equal (dmx (mux xs ys))

(list xs ys))))

Third Halmstad Summer School on Testing June 2-5, 2013 30

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 6

(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

informal spec

definitional properties of mrg
(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Third Halmstad Summer School on Testing June 2-5, 2013 31

Ordered merge

definitional properties of mrg

(defun mrg (xs ys)
(if (and (consp xs) (consp ys))

(let* ((x (first xs)) (y (first ys)))
(if (<= x y)

(cons x (mrg (rest xs) ys)) ; {mgx}
(cons y (mrg xs (rest ys))))) ; {mgy}

(if (not (consp ys))
xs ; ys is empty ; {mg0}
ys))) ; xs is empty ; {mg1}

(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

formal definition

Third Halmstad Summer School on Testing June 2-5, 2013 32

Ordered merge

definitional properties of mrg

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Third Halmstad Summer School on Testing June 2-5, 2013 33

additional expectations
(defthm mrg-preserves-order-thm

(implies (and (up xs) (up ys))
(up (mrg xs ys))))

(up [x1 x2… xn]) = x1  x2  …  xn

definitional properties of mrg

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Third Halmstad Summer School on Testing June 2-5, 2013 34

additional expectations
(defthm mrg-preserves-order-thm

(implies (and (up xs) (up ys))
(up (mrg xs ys))))

(up [x1 x2… xn]) = x1  x2  …  xn

(defthm mrg-conservation-of-values-thm
(iff (member-equal e (mrg xs ys))

(or (member-equal e xs) (member-equal e ys))))

(member-equal x [x1 x2… xn]) = (xx1) or (xx1) or … or (xxn)

definitional properties of merge-sort

Merge-sort
(msort [x1 x2… xn] = [z1 z2 … zn]
where z1  z2  …  zn

and [z1 z2 … zn] is a permutation of = [z1 z2 … zn]

informal spec

(msort []) = [] {ms0}
(msort [x]) = [x] {ms1}
(msort [x1 x2… xn]) = (mrg (msort [x1 x2… xn/2] {ms2}

(msort [x n/2+1 … xn]))

Third Halmstad Summer School on Testing June 2-5, 2013 35

additional expectations
(defthm msort-order-thm

(up (msort xs))))

(defthm msort-conservation-of-values-thm
(iff (member-equal e (msort xs))

(member-equal e xs)))

definitional properties of merge-sort

Merge-sort
(msort [x1 x2… xn] = [z1 z2 … zn]
where z1  z2  …  zn

and [z1 z2 … zn] is a permutation of = [z1 z2 … zn]

informal spec

(msort []) = [] {ms0}
(msort [x]) = [x] {ms1}
(msort [x1 x2… xn]) = (mrg (msort [x1 x2… xn/2] {ms2}

(msort [x n/2+1 … xn]))

Third Halmstad Summer School on Testing June 2-5, 2013 36

additional expectations
(defthm msort-order-thm

(up (msort xs))))

(defthm msort-conservation-of-values-thm
(iff (member-equal e (msort xs))

(member-equal e xs))) any split putting half of the
elements in one list and half

in the other is okay

Halmstead Summer School on Testing
June 2013

6/3/2013

Rex Page – Univ of Oklahoma 7

definitional properties of mrg

(defun mrg (xs ys)
(declare (xargs :measure (+ (len xs) (len ys))))
(if (and (consp xs) (consp ys))

(let* ((x (first xs)) (y (first ys)))
(if (<= x y)

(cons x (mrg (rest xs) ys)) ; {mgx}
(cons y (mrg xs (rest ys))))) ; {mgy}

(if (not (consp ys))
xs ; ys is empty ; {mg0}
ys))) ; xs is empty ; {mg1}

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

informal spec

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

fo
rm

al
 d

ef
in

it
io

n

Third Halmstad Summer School on Testing June 2-5, 2013 37

formal definition of merge-sort
Merge-sort

Third Halmstad Summer School on Testing June 2-5, 2013 38

(defun msort (xs)
(if (consp (rest xs)) ; (len xs) > 1?

(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]
(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

formal definition of merge-sort
Merge-sort

Third Halmstad Summer School on Testing June 2-5, 2013 39

(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))

(and (< (len(first(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

(defun msort (xs)
(if (consp (rest xs)) ; (len xs) > 1?

(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]
(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

maybe it doesn’t know dmx reduces the list length

formal definition of merge-sort
Merge-sort

Third Halmstad Summer School on Testing June 2-5, 2013 40

maybe it doesn’t know dmx reduces the list length

(defun msort (xs)
(declare ; suggest using lemma to prove termination
(xargs :measure (len xs)

:hints (("Goal"
:use ((:instance dmx-reduces-len-thm))))))

(if (consp (rest xs)) ; (len xs) > 1?
(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]

(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))

(and (< (len(first(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

41

Practice exercises (30 minutes)

Linear Encoding
Define operators to encode and decode lists of
natural numbers within a given range, and verify
that decode inverts encode
Encode

The encoding process adds adjacent numbers in the
input list, modulo the given range

Decode
Inverse of encode

Project description
http://blog.accurate-programming.org/

Third Halmstad Summer School on Testing June 2-5, 2013 42

The End

June 4, 2013
14:00-15:30 session

Third Halmstad Summer School on Testing June 2-5, 2013

