
Real-Time Embedded Systems

DT8025, Fall 2016

http://goo.gl/AZfc9l

Lecture 4

Masoumeh Taromirad
m.taromirad@hh.se

Center for Research on Embedded Systems
School of Information Technology

Critical Section Problem
Revisited!

Critical Section

I part of a multi-threaded program that may not be
concurrently executed by more than one of the program’s
processes.

I typically, accesses a shared resource.

Critical Section Problem
Solution properties

Mutual Exclusion
One thread of execution never enters its critical section at the
same time that another, concurrent thread of execution enters its
own critical section.

Critical Section Problem
Solution properties

Progress

If no process is executing in its critical section and some processes
wish to enter their critical sections, then only those processes that
are not executing in their remainder section can participate in
deciding which will enter its critical section next, and this selection
cannot be postponed indefinitely.

Critical Section Problem
Solution properties

Bounded Waiting (starvation-free, finite bypass)

There exists a bound, or limit, on the number of times other
processes are allowed to enter their critical sections after a process
has made request to enter its critical section and before that
request is granted.

Starvation happens when a process is perpetually denied necessary
resources to process its work.

Mutual Exclusion: An example algorithm

flag[0]: false, flag[1]: false, turn: 0 or 1

p0:

flag[0] = true

while (flag[1]) {

if (turn = 1) {

flag[0] = false

while (turn = 1) {}

flag[0] = true

}

}

// critical section

turn = 1

flag[0] = false

// remainder section

p1:

flag[1] = true

while (flag[0]) {

if (turn = 0) {

flag[1] = false

while (turn = 0) {}

flag[1] = true

}

}

// critical section

turn = 0

flag[1] = false

// remainder section

Context Switching

The process of storing and restoring the state (more specifically,
the execution context) of a process or thread so that execution can
be resumed from the same point at a later time.

Stack Pointer
A small register that stores the address of the last program request
in a stack.

Program Counter

A processor register that indicates where a computer is in its
program sequence.

Execution of a C program

x =

PC
SP

Code

 int x;

}

...

a(){

v = 0

u = 0
w = 0 v = 0

Globals

Locals of a()

Stack

Execution of a C program

Stack
Locals of a()

Globals

u = 0

v = 0

a(){

}

 int x;

Code

SP

x = 9;

...PC w = 6;

x = 9

w = 6

Execution of a C program

b(55);

Stack
Locals of a()

Globals

u = 0

v = 0

a(){

}

 int x;

Code

SP

x = 9;

PC
w = 6;

x = 9

w = 6

Execution of a C program

y = 55
Locals of b()

w = 6

x = 9

w = 6; PC
x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

}

Execution of a C program

}

y = c();
y = 55

Locals of b()

w = 6

x = 9

w = 6; PC
x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

Execution of a C program

Locals of c() }

 ...

 int z = 23;
c(){

}

y = c();
y = 55

Locals of b()

w = 6

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

z = 23

Execution of a C program

...
w = 77;

z = 23
Locals of c() }

 int z = 23;
c(){

}

y = c();
y = 55

Locals of b()

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

w = 77

Execution of a C program

}

w = 77

w = 77;

z = 23
Locals of c()

 int z = 23;
c(){

}

y = c();
y = 55

Locals of b()

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

return z;

Execution of a C program

y = 23

return z;
}

w = 77

w = 77;

 int z = 23;
c(){

}

y = c();

Locals of b()

x = 9

w = 6;

PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

Execution of a C program

... return z;
}

w = 77

w = 77;

 int z = 23;
c(){

}

y = c();

x = 9

w = 6;
PC

x = 9;

SP

Code

 int x;

}

a(){

v = 0

u = 0

Globals

Locals of a()

Stack

b(55);

b(int y){

 ...

Concurrent Programs?

Imagine we had 2 CPUs, then we could run two programs at the
same time!

One way of programming this in only 1 CPU is to keep track of 2
stack pointers and 2 program counters!

What is it about?

struct Params params;

void controller_main() {

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main() {

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

We want to provide means for these two mains to execute
concurrently! As if we had 2 CPUs!

What might a program look like?

main(){

create_thread(decoder_main);

controller_main();

}

Notice that the function create thread takes a function as an
argument!

The role of create thread is to provide one extra Program
Counter and Stack Pointer.

What we need ...

We will have to keep track of the threads, so we introduce a data
structure describing a thread.

struct Thread_Block{

void (*fun)(int) // function to run

int arg; // argument to the above

ucontext context; // pc and sp

... // ...

};

typedef struct Thread_Block *Thread

We will keep track of threads using global variables for

1. a queue of Threads: the ready queue

2. and the current thread.

	
	Mutual Execution
	The C execution model
	Context switch
	Tracing an example

