
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 6

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering

Encoding state layout

TinyTimber: a micro-kernel for embedded systems programming

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! (used by the

kernel)

I Unconstrained!

I initMyClass: constructor

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

TinyTimber: a micro-kernel for embedded systems programming

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! (used by the

kernel)

I Unconstrained!

I initMyClass: constructor

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

TinyTimber: a micro-kernel for embedded systems programming

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! (used by the

kernel)

I Unconstrained!

I initMyClass: constructor

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

TinyTimber: a micro-kernel for embedded systems programming

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! (used by the

kernel)

I Unconstrained!

I initMyClass: constructor

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

TinyTimber: a micro-kernel for embedded systems programming

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! (used by the

kernel)

I Unconstrained!

I initMyClass: constructor

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Encoding state layout

TinyTimber: a micro-kernel for embedded systems programming

In MyClass.h

#include "TinyTimber.h"

typedef struct{

Object super;

int x;

char y;

} MyClass;

#define initMyClass(z) \

{ initObject ,0,z}

I Mandatory! (used by the

kernel)

I Unconstrained!

I initMyClass: constructor

Using it

#include "MyClass.h"

MyClass a = initMyClass(13);

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

Objects are statically
allocated (unlike Java)

Constructors:
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

Objects are statically
allocated (unlike Java)

Constructors:
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

Objects are statically
allocated (unlike Java)

Constructors:
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

Objects are statically
allocated (unlike Java)

Constructors:
preprocessor macros!

Comparing with Java

class MyClass{

int x;

char y;

MyClass(int z){

x=0;

y=z;

}

}

MyClass a = new MyClass(13);

Objects are statically
allocated (unlike Java)

Constructors:
preprocessor macros!

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding methods declarations

In MyClass.h

typedef struct{

Object super;

int x;

char y;

} MyClass;

...

int myMethod(MyClass *self , int q);

In MyClass.c

int myMethod(MyClass *self , int q){

self -> x = self -> y + q;

}

In Java

class MyClass{

int x;

char y;

...

int myMethod(int q){

x=y+q;

}

}

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

Today’s order of business: synchronous and asynchronous messages

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

Today’s order of business: synchronous and asynchronous messages

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

Today’s order of business: synchronous and asynchronous messages

Encoding function calls

In Java

...

MyClass a = new MyClass(13);

a.myMethod(44);

In our C programs

...

MyClass a = initMyClass(13);

myMethod(&a ,44);

Today’s order of business: synchronous and asynchronous messages

Asynchronous calls

B

A

Time

(resting)

ASYNC(B,meth,73)

meth(B,73)

(Pseudo-) parallel
execution!

Asynchronous calls

B

ASYNC(B,meth,73)

Time

A

some other B method meth(B,73)

(Pseudo-) parallel execution
between A and B.

Strictly sequential execution
between B’s methods!

Asynchronous calls

B

ASYNC(B,meth,73)

Time

A

some other B method meth(B,73)

(Pseudo-) parallel execution
between A and B.

Strictly sequential execution
between B’s methods!

Asynchronous calls

B

ASYNC(B,meth,73)

Time

A

some other B method meth(B,73)

(Pseudo-) parallel execution
between A and B.

Strictly sequential execution
between B’s methods!

Synchronous calls

(resting)

SYNC(B,meth,73)
A

B

Time

meth(B,73)

Strictly sequential
execution between A
and B!

Synchronous calls

B

SYNC(B,meth,73)

Time

A

some other B method meth(B,73)

(Pseudo-) parallel execution
between A and B’s other method.

Strictly sequential execution
between B’s methods and
between A and the method called
synchronously.

Synchronous calls

B

SYNC(B,meth,73)

Time

A

some other B method meth(B,73)

(Pseudo-) parallel execution
between A and B’s other method.

Strictly sequential execution
between B’s methods and
between A and the method called
synchronously.

Synchronous calls

B

SYNC(B,meth,73)

Time

A

some other B method meth(B,73)

(Pseudo-) parallel execution
between A and B’s other method.

Strictly sequential execution
between B’s methods and
between A and the method called
synchronously.

Observations

I Serialization of object methods: mutual exclusion

I Synchronous call: mutex-protected function call.

I Asynchronous calls: synchronous calls in concurrent threads

Observations

I Serialization of object methods: mutual exclusion

I Synchronous call: mutex-protected function call.

I Asynchronous calls: synchronous calls in concurrent threads

Observations

I Serialization of object methods: mutual exclusion

I Synchronous call: mutex-protected function call.

I Asynchronous calls: synchronous calls in concurrent threads

Observations

I Serialization of object methods: mutual exclusion

I Synchronous call: mutex-protected function call.

I Asynchronous calls: synchronous calls in concurrent threads

Implementing SYNC

In TinyTimber.c

int sync(Object *to, Meth meth, int arg){

int result;

lock(&to->mutex);

result = meth(to,arg);

unlock(&to->mutex);

return result;

}

Every object has to have its own mutex and we need a way to
force every instance to have type Object!

Implementing SYNC

In TinyTimber.c

int sync(Object *to, Meth meth, int arg){

int result;

lock(&to->mutex);

result = meth(to,arg);

unlock(&to->mutex);

return result;

}

Every object has to have its own mutex and we need a way to
force every instance to have type Object!

Implementing SYNC

In TinyTimber.h

typedef struct{

mutex mutex;

} Object;

typedef int (*Meth)(Object*,int);

#define SYNC(obj,meth,arg) = \

sync((Object*)obj,(Meth)meth, arg)

Implementing ASYNC

In TinyTimber.c

void async(Object* to, Method meth, int arg){

Msg msg = dequeue(&freeQ);

msg->function = meth;

msg->arg = arg;

msg->to = to;

if(setjmp(msg->context)!=0){

sync(current->to,current->function,current->arg);

enqueue(current,&freeQ);

dispatch(dequeue(&readyQ));

}

STACKPTR(msg->context)=&msg->stack;

enqueue(msg,&readyQ);

}

Implementing ASYNC

In TinyTimber.c

void async(Object* to, Method meth, int arg){

Msg msg = dequeue(&freeQ);

msg->function = meth;

msg->arg = arg;

msg->to = to;

if(setjmp(msg->context)!=0){

sync(current->to,current->function,current->arg);

enqueue(current,&freeQ);

dispatch(dequeue(&readyQ));

}

STACKPTR(msg->context)=&msg->stack;

enqueue(msg,&readyQ);

}

Implementing ASYNC

In TinyTimber.h

#define ASYNC(obj,meth,arg) = \

async((Object *)obj, (Meth)meth, arg)

Summary

I Threads are replaced by asynchronous messages

I Old operation spawn superceeded by async

I Old oprations lock and unlock are only used inside sync

I The new kernel interface:

void async(Object *to, Meth meth, int arg)

int sync(Object *to, Meth meth, int arg)

typedefs for Object and Meth

defines for ASYNC and SYNC

Summary

I Threads are replaced by asynchronous messages

I Old operation spawn superceeded by async

I Old oprations lock and unlock are only used inside sync

I The new kernel interface:

void async(Object *to, Meth meth, int arg)

int sync(Object *to, Meth meth, int arg)

typedefs for Object and Meth

defines for ASYNC and SYNC

Summary

I Threads are replaced by asynchronous messages

I Old operation spawn superceeded by async

I Old oprations lock and unlock are only used inside sync

I The new kernel interface:

void async(Object *to, Meth meth, int arg)

int sync(Object *to, Meth meth, int arg)

typedefs for Object and Meth

defines for ASYNC and SYNC

Summary

I Threads are replaced by asynchronous messages

I Old operation spawn superceeded by async

I Old oprations lock and unlock are only used inside sync

I The new kernel interface:

void async(Object *to, Meth meth, int arg)

int sync(Object *to, Meth meth, int arg)

typedefs for Object and Meth

defines for ASYNC and SYNC

Summary

I Threads are replaced by asynchronous messages

I Old operation spawn superceeded by async

I Old oprations lock and unlock are only used inside sync

I The new kernel interface:

void async(Object *to, Meth meth, int arg)

int sync(Object *to, Meth meth, int arg)

typedefs for Object and Meth

defines for ASYNC and SYNC

ASYNC to self?

ASYNC(A,meth,73)
A

Time

current A method meth(A,73)

Strictly sequential
execution!

ASYNC to self?

ASYNC(A,meth,73)
A

Time

current A method meth(A,73)

Strictly sequential
execution!

SYNC to self?

Time

A
SYNC(A,meth,73)

?

?

DEADLOCK!

SYNC to self?

Time

A
SYNC(A,meth,73)

?

?

DEADLOCK!

Deadlock

Deadlock arises when requesting new exclusive access to something
you already have. In general, a chain of tasks may be involved:

m3

m2

m1

T3

T2

T1
T1 holds m1
T1 wants m2

T2 holds m2
T2 wants m3

T3 holds m3
T3 wants m1

Deadlock

A system in deadlock will remain stuck, unless a thread chooses to
back off from its current claim . . .

Deadlock in the real world

Deadlock via SYNC

A cycle of possible simultaneus calls to SYNC

Deadlock via SYNC

Sufficient deadlock protection: insert at least one ASYNC.

Programming idiom

1. Classes
All objects must inherit Object:

typedef struct{

Object super;

// extra fields

} MyClass;

2. Objects

Object instantiation is done declaratively on the top level (static
object structure):

ClassA a = initClassA(ival);

ClassB b1 = initClassB();

ClassB b2 = initClassB();

Programming idiom

1. Classes
All objects must inherit Object:

typedef struct{

Object super;

// extra fields

} MyClass;

2. Objects

Object instantiation is done declaratively on the top level (static
object structure):

ClassA a = initClassA(ival);

ClassB b1 = initClassB();

ClassB b2 = initClassB();

Programming idiom

1. Classes
All objects must inherit Object:

typedef struct{

Object super;

// extra fields

} MyClass;

2. Objects

Object instantiation is done declaratively on the top level (static
object structure):

ClassA a = initClassA(ival);

ClassB b1 = initClassB();

ClassB b2 = initClassB();

Programming idiom (ctd.)

3. Method calls
Whenever a method call goes to another object, either SYNC or
ASYNC must be used.

(Tiny) Limitation

All methods must take arguments self and an int!

Programming idiom (ctd.)

3. Method calls
Whenever a method call goes to another object, either SYNC or
ASYNC must be used.

(Tiny) Limitation

All methods must take arguments self and an int!

Programming idiom (ctd.)

3. Method calls
Whenever a method call goes to another object, either SYNC or
ASYNC must be used.

(Tiny) Limitation

All methods must take arguments self and an int!

Connecting the external world

write to port

write to port

read from port

interrupt

interrupt

Making the methods explicit

write to port

write to port

interrupt

interrupt

read from port

The top-level object

read from port

write to port

write to port

interrupt

interrupt

Notice the interrupt handlers.

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

The top-level object

The microprocessor itself!

I It is just like any other reactive object!
I it is implicitly instantiated when power is turned on
I its state is all global variables, of which many will be reactive

objects in their own right
I its methods are the installed interrupt handlers
I its self is only conceptual (there is no concrete pointer . . .)

I The top-level object methods are scheduled by the CPU
hardware, not by the TinyTimber kernel!

Connecting interrupts

Incoming method calls from the hardware environment correspond
to interrupt signals received by the microprocessor. Apart from this
special link to the outside world, interrupt handlers are ordinary
methods accepting the same type of parameters as methods
invoked with SYNC and ASYNC.

To install method meth on object obj as an interrupt handler for
interrupt source IRQ X, one writes

INSTALL(&obj, meth, IRQ_X);

Connecting interrupts

To install method meth on object obj as an interrupt handler for
interrupt source IRQ X, one writes

INSTALL(&obj, meth, IRQ X);

This call, which preferably should be performed during system
startup, causes meth to be subsequently invoked with &obj and
IRQ X as arguments whenever the interrupt identified by IRQ X

occurs.

The symbol IRQ X is here used as a placeholder only; the exact set
of available interrupt sources is captured in a platform-dependent
enumeration type Vector defined in the TinyTimber interface.

Example

Counter (counter.h)

#include "TinyTimber.h"

typedef struct{

Object super;

int val;

} Counter;

#define initCounter(n) {initObject(),n}

Counter (counter.c)

int inc(Counter *self, int arg){

self->val = self->val + arg;

}

int reset(Counter *self, int arg){

self->val = arg;

}

Example

Counter (counter.h)

#include "TinyTimber.h"

typedef struct{

Object super;

int val;

} Counter;

#define initCounter(n) {initObject(),n}

Counter (counter.c)

int inc(Counter *self, int arg){

self->val = self->val + arg;

}

int reset(Counter *self, int arg){

self->val = arg;

}

Example

Counter (counter.h)

#include "TinyTimber.h"

typedef struct{

Object super;

int val;

} Counter;

#define initCounter(n) {initObject(),n}

Counter (counter.c)

int inc(Counter *self, int arg){

self->val = self->val + arg;

}

int reset(Counter *self, int arg){

self->val = arg;

}

Example client

In main.c

Counter counter = initCounter(0);

INSTALL(&counter, inc, IRQ PCINT1);

Reset

When system starts up, a reset signal is generated by the
hardware. There will be an interrupt routine like any other one . . .

Reset

Timer comp

Pin1 change

.

.

.

Complication

The reset routine cannot
return as it has not
really interrupted
anything!

In the active system view
this is interpreted as
compute until someone
turns off the power!

Reset

When system starts up, a reset signal is generated by the
hardware. There will be an interrupt routine like any other one . . .

Reset

Timer comp

Pin1 change

.

.

.

Complication

The reset routine cannot
return as it has not
really interrupted
anything!

In the active system view
this is interpreted as
compute until someone
turns off the power!

Reset

When system starts up, a reset signal is generated by the
hardware. There will be an interrupt routine like any other one . . .

Reset

Timer comp

Pin1 change

.

.

.

Complication

The reset routine cannot
return as it has not
really interrupted
anything!

In the active system view
this is interpreted as
compute until someone
turns off the power!

main()

The main() function in C is an abstraction of the reset handler . . .

. . . just as a program is an abstraction of the notion of running a
computer until it stops

In traditional programs main() does indeed return, which can be
understood as a request to the OS to turn off the power to the
virtual computer that was set up to run the program!

In a reactive system we do not want power to be turned off at all,
but we also do not want to let main() compute forever just to keep
it from returning . . . a reactive system rests when it is not reacting

main()

The main() function in C is an abstraction of the reset handler . . .

. . . just as a program is an abstraction of the notion of running a
computer until it stops

In traditional programs main() does indeed return, which can be
understood as a request to the OS to turn off the power to the
virtual computer that was set up to run the program!

In a reactive system we do not want power to be turned off at all,
but we also do not want to let main() compute forever just to keep
it from returning . . . a reactive system rests when it is not reacting

main()

The main() function in C is an abstraction of the reset handler . . .

. . . just as a program is an abstraction of the notion of running a
computer until it stops

In traditional programs main() does indeed return, which can be
understood as a request to the OS to turn off the power to the
virtual computer that was set up to run the program!

In a reactive system we do not want power to be turned off at all,
but we also do not want to let main() compute forever just to keep
it from returning . . . a reactive system rests when it is not reacting

main()

The main() function in C is an abstraction of the reset handler . . .

. . . just as a program is an abstraction of the notion of running a
computer until it stops

In traditional programs main() does indeed return, which can be
understood as a request to the OS to turn off the power to the
virtual computer that was set up to run the program!

In a reactive system we do not want power to be turned off at all,
but we also do not want to let main() compute forever just to keep
it from returning . . . a reactive system rests when it is not reacting

The idle task

Solution
Let main() finish by literally putting the CPU to sleep until the
next interrupt! (Most architectures have a special machine
instruction that does so!)

We want main() to finish by calling this instruction:

void idle(){

ENABLE();

while(1)SLEEP();

}

The idle task

Solution
Let main() finish by literally putting the CPU to sleep until the
next interrupt! (Most architectures have a special machine
instruction that does so!)

We want main() to finish by calling this instruction:

void idle(){

ENABLE();

while(1)SLEEP();

}

The idle task

Solution
Let main() finish by literally putting the CPU to sleep until the
next interrupt! (Most architectures have a special machine
instruction that does so!)

We want main() to finish by calling this instruction:

void idle(){

ENABLE();

while(1)SLEEP();

}

main in a tinytimber program

This is achieved by invoking the non-terminating primitive
TINYTIMBER as the last main statement:

int main() {

INSTALL(&obj1, meth1, IRQ 1);

INSTALL(&obj2, meth2, IRQ 2);

return TINYTIMBER(&obj3, meth3, val);

}

The scheduler

In TinyTimber:

int tinytimber(Object *obj, Method m, int arg) {

DISABLE();

initialize();

ENABLE();

if (m != NULL)

m(obj, arg);

DISABLE();

idle();

return 0;

}

Sanity rules

In a system of reactive objects

I Methods only access variables that belong to self.

I Global variables that are not objects, are considered local to
the top-level object.

I method calls between objects that are wrapped within a SYNC

or ASYNC shield.

Properly upheld, these rules guarantee a system that is

I free from deadlock (provided the absence of cyclic SYNC)

I free from critical section race conditions

Sanity rules

In a system of reactive objects

I Methods only access variables that belong to self.

I Global variables that are not objects, are considered local to
the top-level object.

I method calls between objects that are wrapped within a SYNC

or ASYNC shield.

Properly upheld, these rules guarantee a system that is

I free from deadlock (provided the absence of cyclic SYNC)

I free from critical section race conditions

Sanity rules

In a system of reactive objects

I Methods only access variables that belong to self.

I Global variables that are not objects, are considered local to
the top-level object.

I method calls between objects that are wrapped within a SYNC

or ASYNC shield.

Properly upheld, these rules guarantee a system that is

I free from deadlock (provided the absence of cyclic SYNC)

I free from critical section race conditions

Sanity rules

In a system of reactive objects

I Methods only access variables that belong to self.

I Global variables that are not objects, are considered local to
the top-level object.

I method calls between objects that are wrapped within a SYNC

or ASYNC shield.

Properly upheld, these rules guarantee a system that is

I free from deadlock (provided the absence of cyclic SYNC)

I free from critical section race conditions

Sanity rules

In a system of reactive objects

I Methods only access variables that belong to self.

I Global variables that are not objects, are considered local to
the top-level object.

I method calls between objects that are wrapped within a SYNC

or ASYNC shield.

Properly upheld, these rules guarantee a system that is

I free from deadlock (provided the absence of cyclic SYNC)

I free from critical section race conditions

	
	Encoding state layout
	Encoding methods
	Programming with TinyTimber

