
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 8

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering



Real Time

Real Time and a program

I An external process to sample (did that!)

I An external process to react to (did that: remember AFTER?)

I An external process to be constrained by.

Constrained by time

Do something before a certain point in time.

Difficult
There is a limit to how fast a processor can work . . .



Execution speed

Fast enough in sequential programs

I use a sufficiently efficient algorithm

I running it on a sufficiently fast computer

Execution time . . .
the time from program start to program stop

. . . depends on input data

So . . . the real issue is whether the Worst Case Execution Time
(WCET) for a program on a platform is small enough!



Obtaining WCET

By meassurement

Deal with data dependencies by
testing the program on every
possible combination of input
data.

Usually not feasible! Must find
instead a representative subset of
all cases!

By analysis

Deal with data dependencies
using semantic information and
conservative approximations.

Exact analysis is usually no more
feasible than exhaustive testing!



WCET by meassurements

Generate test cases automaticaly?

int g(int in1, int in2){

if((in1*in2)%in2==3831)

// do something that takes 300ms

else

// do something that takes 5ms

}

How likely is it that it generates data that finds the worst case?



WCET by meassurements

Test all cases?
For one 16-bit integer as input there are 65536 cases.

Test all cases?
For two 16-bit integer as input there are 4 294 967 296 cases.



WCET through analysis

Example

for(i=1;i<=10;i++){

if(E)

// do something

// that takes 300ms

else

// do something

// that takes 5ms

}

A conservative approximation

Each turn takes 300 ms and so
WCET = 10*300 ms!

Assume the worst, err on the safe
side!

Using semantic information

Suppose E is i<3. The test is true
at most 2 turns, WCET is
2*300+8*5 = 640ms!



Obtaining WCET

Testing

is likely to find the typical
execution times, but finding the
worst case is much harder.

Analysis

can always find a safe WCET
approximation but comming close
to the real WCET is much harder

There is a lot of research about how to obtain WCET, it is beyond
the scope of this course dealing with programming techniques.

In this course
We will assume that for any sequential program fragment a safe
WCET can be obtained either by meassurement or by analysis or
both!



Scheduling

If 2 tasks share a
single processor,
there are 2 ways of
running one before
the other

If 3 tasks share a
single processor,
there are 3*2 ways of
running them in
series

If n tasks share a
single processor,
there are n! ways of
running them.

Interleaving

Moreover, if tasks can be split into arbitrarily small fragments,
there are infinitely many ways of running the fragments of even
just 2 tasks!



Scheduling

The schedule
is a major factor
in real-time
behaviour of
concurrent tasks!



Three issues

Deadlines
How do we express the real-time constraints a program must meet?

How do we construct a scheduler that ensures that those
constraints are met if at all possible?

Priority scheduling!

Schedulability analysis

How do we tell whether scheduling is impossible? Ahead of time or
only when it is too late? (next lecture)



Deadlines

A point in time when some work must be finished is called a
deadline.

A deadline is often meassured relative to the occurrence of some
event:

I When the bill arrives, pay it whithin 10 days

I At 9am, complete the exam in 5 hours

I When a MIDI note-on message arrives, start emitting a tone
within 15 milliseconds



Deadlines

Meeting a deadline

Generate some specific response
before the specified time

I Signal level must reach
10mV before . . .

I Letter must be post-stamped
no later than . . .



Deadlines for reactive objects

A point in time when the reaction to an event mut be completed!

Deadlines are naturally meassured relative to the baseline of the
current event.

Example 1

When a SIG PIN CHANGE

interrupt occurs, react within
15ms from the time of the
interrupt (i.e. the newly defined
baseline)

Example 2

When a timer signals that a
future baseline is due, react within
200ms from the new baseline



Deadlines for reactive objects

What should qualify as a response to an event?

What must actually be done in order to meet a deadline?

Begin execution?

Does that mean completing the first assembler instruction? Is that
observable?

Complete the observable instructions?

For example port writes . . . But not all methods write to ports!

Complete all instructions?

Plausible. But then what about messages a method generates
itself?



Deadlines for reactive objects

I A SYNC message is really executed by the caller . . .

I An ASYNC message is just a delegation from one task to
another!

Conclusion
All instructions should be completed before the deadline for all
messages of a chain-reaction.



Timely reaction

Original event

"finish before"
Deadline

"start after"
Baseline



Late reaction

Original event

"finish before"
Deadline

"start after"
Baseline



Timely reaction

"finish before"

B

A
SYNC(&B,meth,arg)

deadline
same

baseline
same 

Original event

Baseline
"start after"

Deadline



Late reaction

"finish before"

B

A
SYNC(&B,meth,arg)

deadline
same

baseline
same 

Original event

Baseline
"start after"

Deadline



Late reaction

"finish before"

B

A
SYNC(&B,meth,arg)

deadline
same

baseline
same 

Original event

Baseline
"start after"

Deadline



Timely reaction

B

ASYNC(&B,meth,arg)

"finish before"
Deadline

"start after"
Baseline

Original event

same 
baseline

same
deadline

A



Late reaction

B

ASYNC(&B,meth,arg)

"finish before"
Deadline

"start after"
Baseline

Original event

same 
baseline

same
deadline

A



Late reaction

B

ASYNC(&B,meth,arg)

"finish before"
Deadline

"start after"
Baseline

Original event

same 
baseline

same
deadline

A



Priorities

Task or Thread or Message priorities are integer values that denote
the relative importance of each task.

Quite often the priority scale is reversed!

Low priority values = high priority!

Priority scheduler

Always run the task with the highest priority! (tasks with the same
prio are sorted according to some secondary scheme, e.g. FIFO)

A task can only run after all tasks considered more important have
terminated or are blocked.



Terminology

Static vs. dynamic priorities

I A system where the programmer assigns the priorities of each
task is said to use static (or fixed) priorities.

I A system where priorities are automaticaly derived from some
other run-time value is using dynamic priorities.



Terminology

Preemptivness

I A system where the scheduler is run only when a task calls the
kernel (or terminate) is non-preemptive.

I A system where it also runs as the result of interrupts is called
preemptive.



The common case

Preemptive scheduling based on static prios

totally dominates the field of real-time programming.

in OS
Supported by real-time operating systems like QNX, VxWorks,
RTLinux, Lynx and standards like POSIX (pthreads)

in Languages

The basis of real-time languages like Ada and Real-time Java

This course

I Preemptive scheduling (dispatch might be called within
interrupt handlers).

I Static as well as dynamic priorities.



Implementing priority scheduling

static void enqueueByPriority (Msg p, Msg *queue){

Msg prev = NULL;

Msg q = *queue;

while(q && (q->priority <= p->priority) ){

prev=q;

q=q->next;

}

p->next=q;

if(prev==NULL)

*queue=p;

else

prev->next=p;

}

Replace calls to enqueue by calls to enqueueByPriority. Msg

has an extra field! See the reversed scale?



Setting the priority

Could be done like this (but TinyTimber does differently!)

void async(Time offset, int prio ,

Object *to, Method meth, int arg){

Msg m = dequeue(&msgPool);

m->to = to;

m->meth = meth;

m->arg = arg;

m->baseline = MAX(TIMERGET(),current->baseline+offset);

m->priority = prio;

...

}

We discuss TinyTimber later!



Using priorities

Static priorities offer a way of assigning a relative importance to
each task/thread/message.

The highest priority task is offered the whole processor.

Any cycles not used by this task are offered to the second but
highest priority task.

A task that consumes whatever cycles it is given will effectively
disable all lower priority tasks.



Using priorities

With static priorities, the relative importance of each task must be
such that its active execution time is less than the deadline of
every task of less importance!

Then all possibilities of interference by several high priority tasks
must be taken into account!

Depends on detailed knowledge (or assumptions) about external
event patterns!

Requires means to connect the priority settings to deadline
constraints, as well as sophisticated analysis techniques.



Timely reaction

Original event

"finish before"
Deadline

"start after"
Baseline



Late reaction

Original event

"finish before"
Deadline

"start after"
Baseline

Where will this
reaction deadline be
defined?

In informal comments
only?

Or in concrete source
code?



Timely reaction

B

ASYNC(&B,meth,arg)

"finish before"
Deadline

"start after"
Baseline

Original event

same 
baseline

same
deadline

A



Late reaction

B

ASYNC(&B,meth,arg)

"finish before"
Deadline

"start after"
Baseline

Original event

same 
baseline

same
deadline

A

But what if B actually needs a deadline of its own?



Adjusted deadlines

"finish before"

new deadline

dl

MAX(now, current−>baseline+0)

BEFORE(dl,&B,meth,arg)

B

A

baseline
same 

Baseline
"start after"

Deadline



Late reaction

new deadline

"finish before"
Deadline

"start after"
Baseline

same 
baseline

A

B

BEFORE(dl,&B,meth,arg)

MAX(now, current−>baseline+0)

dl



Deadlines and AFTER

A

deadlinebaseline

bl

deadline = infinity!new baseline

AFTER(bl,&B,meth,arg)

"finish before""start after"

B



Deadlines and AFTER

A

MAX(now, current−>baseline+bl)

deadlinebaseline

bl

deadline = infinity!new baseline

AFTER(bl,&B,meth,arg)

"finish before""start after"

B



Deadlines and AFTER

A

dlbl

new deadlinenew baseline

AFTERBEFORE(bl,dl,&B,meth,arg)

deadlinebaseline

new baseline

"finish before""start after"

B



Late reaction

A

dlbl

new deadlinenew baseline

AFTERBEFORE(bl,dl,&B,meth,arg)

deadlinebaseline

new baseline

"finish before""start after"

B



Interrupt handler deadline

timestamp

object
level
top

Interrupt signal

deadline = infinity!

Note
Interrupt handlers are scheduled by the CPU hardware, i.e. they
will run as fast as possible without regard to any deadline.



Expressing deadlines

In TinyTimber.h

#define BEFORE(dl, to, meth, arg) \

SEND(0, dl, to, meth, arg);

#define AFTER(bl, to, meth, arg) \

SEND(bl, 0, to, meth, arg);

#define ASYNC(to, meth, arg) \

SEND(0, 0, to, meth, arg);

#define SEND(bl, dl, to, meth, arg) \

async(bl, dl, to, meth, arg);

Defaults for interrupt handlers

baseline = timestamp and deadline = infinity (0).



Deadlines and priorities

In the application

Using BEFORE, we can both define the deadline for a chain of
reactions to an external interrupt, and fork off a new chain of
reactions with its own deadline at any point.

Inside the kernel
The priorities used will determine in which order messages are
scheduled, and hence affect the time when a reaction is able to
complete.

Core question

What will be the preferred relation between deadlines and
priorities?



Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

It is possible to get by if we concentrate on programs of a
restricted form.


	 
	Constrained by time
	Deadlines
	Priorities
	Deadlines in TinyTimber

