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Abstract. In this paper we discuss a verification method for concur-
rent Java programs based on the concept of dynamic frames. We build
on our earlier work that proposes a new, symbolic permission system for
concurrent reasoning and we provide the following new contributions.
First, we describe our approach for proving program specifications to be
self-framed w.r.t. permissions, which is a necessary condition to main-
tain soundness in concurrent reasoning. Second, we show how we use
predicates to provide modular and reusable specifications for program
synchronisation points, like locks or forked threads. Our work primarily
targets the KeY verification system with its specification language JML∗

and symbolic execution proving method. Hence, we also give the current
status of the work on implementation and we discuss some examples that
are verifiable with KeY.

1 Introduction

Permission-based verification of concurrent programs relies on specifications in
an appropriate formalism enriched with permission annotations [1]. These anno-
tations specify the read or write access rights to memory locations of the program
to be verified. The verification is thread local and, when successful, shows the
absence of race conditions in the verified program as well as some functional
properties to hold. Many verification formalisms for permission-based reasoning
are built on Separation Logic [2] or equivalent Implicit Dynamic Frames [3,4].

In the context of the VerCors project1 [5], which is concerned with verification
of concurrent data structures, we propose an approach to permission-based ver-
ification built on top of the more fundamental Dynamic Frames [6] verification
method. We base our work on the Java Dynamic Logic [7] and its implementation
in the KeY verifier2 [8]. KeY is a symbolic execution-based interactive verification
system for Java programs annotated with JML [9]. In addition to our automated
VerCors toolset [10], KeY is meant to provide interactive verification capabilities
in the VerCors project for more involved Java programs.

In our earlier work we developed a symbolic permission system that remedies
some of the problems we identified with fractional permissions [11] and we also
? This work is supported by ERC grant 258405 for the VerCors project.
1 http://fmt.cs.utwente.nl/research/projects/VerCors/.
2 http://www.key-project.org/.

1

http://fmt.cs.utwente.nl/research/projects/VerCors/
http://www.key-project.org/


provided a base line for verification of concurrent Java programs in KeY based on
Dynamic Frames and explicit use of two memory heaps in the verification logic
and the specification language [12]. In this paper we extend this earlier work and
describe our method for showing self-framing of specification w.r.t. permissions,
and we discuss the use of JML model methods [13] for modular specification
and verification of concurrent Java programs that make use of API methods
that involve synchronisation. Throughout the paper, we relate our approach to
the existing ones.

The rest of this paper is organised as follows. Section 2 recapitulates our
symbolic permission system, and briefly explains verification of Java programs
with Dynamic Frames as implemented in the KeY verifier. Sections 3 to 5 present
the main contributions of the paper. Section 6 concludes the paper, discusses the
current state of the implementation and future work.

2 Background

Symbolic Permissions. In an earlier paper [11] we proposed a symbolic per-
mission system for concurrent reasoning as an alternative to classical fractional
style permissions. Symbolic permissions address some of the issues we identified
with fractional permissions, like inflexibility to handle complex synchronisation
scenarios. Here we only give a brief description of the main idea behind sym-
bolic permissions and we refer the reader to [11] for full account, including formal
definitions and mechanically proved consistency properties.

A single symbolic permission p refers to one heap memory location of the
program to be verified. From the point of view of the currently running thread,
permission p maintains information about which other threads possibly hold ac-
cess to the memory location and which threads are the permission’s originators,
i.e., threads that the permission should be returned to during synchronisation.
As in Java, threads are identified by their corresponding object references and
the currently running thread is uniquely identified by ct. On the top level, the
permission expression assigned to p consists of a list of permission slices, and
each slice defines one piece of ownership of the permission. Such a slice is again
a list that holds the history of owners (threads) of this slice, with the current
owner at the head of the list, and the tail containing previous owners that this
slice is owed to (originators of the slice). Permission p grants read access to
thread t when there is at least one slice in p that is owned by t, while the write
access requires all of the slices in p to be owned by t. In principle, no empty
permissions (with no slices) or empty slices (with no owners) are allowed and
the defined permission operations guarantee this property.

For example, after acquiring a simple read lock the running thread might hold
a permission of the form [[ct, l], [l]] to some memory location, where l is the lock
that provides read access to the threads that acquire it.3 This permission contains
two slices. The first slice [ct, l] belongs to the current thread and consequently
3 Although locks are actually not threads, classifying them as such allows us to suitably
generalise the symbolic permission approach.
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grants it a read permission while upon lock release it will be returned to the
lock l, the originator of this slice. The second slice belongs to lock l only and
allows further acquirings of the lock by other threads. When the current thread
releases the lock the complete permission becomes [[l], [l]] which is semantically
equivalent to [[l]] (and can be reduced to become so) meaning that the lock holds
the full access to the associated memory location.

With symbolic permissions, the core difference compared to fractional style
permissions is how permission transfers are specified. In our approach we state
what kind of transfer is applied to a permission rather than saying how much
of the permission is transferred. Using functional style expressions, we specify
how a permission is changed w.r.t. its previous value upon a synchronisation
point. For our lock example, when acquiring the lock, the specification would
say p = transferPerm(true, l, ct, p′). It states that the old permission p′ becomes
permission p after splitting (indicated by parameter true) one (any) slice that
belongs to l and transferring the ownership of one of the newly created slices to
ct. That is if p′ = [[l]] it becomes p in two steps, first it becomes [[l], [l]] and then
[[ct, l], [l]]. For a write lock, by giving a false first parameter, no splitting of the
permission would be applied and p would become [[ct, l]], temporarily giving ct
full access right to the associated resource.

Such functional style specifications are particularly suitable for dynamic
frames with explicit heaps as we explain in the next section. However, in many
situations it is not possible to operate on concrete permissions expressions that
explicitly state all the threads that share the permission. In fact, in the example
above the read lock would be passing the permission to other threads unknown
to ct and it cannot be assumed that the slices we specified are the only ones that
comprise the permission at any point in time. To cover situations like this, ab-
straction of the permission is necessary and possible, as we show later in Sect. 5.
In particular, instead of spelling out concrete permission expressions, one simply
uses readPerm or writePerm predicates that establish if a permission is sufficient
to grant a read or write access, respectively, to a given thread.

Dynamic Frames in JML∗ Specifications. In Dynamic Frames specifica-
tions [6] memory locations are first class citizens, typically stored in ghost or
model variables typed as location sets, which in turn are used to specify method
frames or frame dependency relations, and mechanisms are provided that allow
to specify dynamic changes of these frames (typically called memory footprints).
In the KeY verification system, dynamic frames are added to the Java Modelling
Language (JML) [9], a behavioural specification language for Java, to form a
KeY-specific version of JML called JML∗ [7].

Listing 1 shows a simple example of a Java program specified with dynamic
frames, purposely underspecified for clarity. It implements a simple array list
based on an interface specification, which abstractly specifies a memory foot-
print that the implementations will be working with through declaring a model
variable of a primitive type \locset. This footprint is made concrete in the im-
plementing class with the represents clause that puts all the concrete locations
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public interface List {
//@ instance model \locset footprint;
//@ accessible footprint : footprint;

//@ ensures \result == size();
//@ accessible footprint;
public /*@ pure @*/ int size();

//@ ensures size()==\old(size()) + 1;
//@ assignable footprint;
public void add(Object o);

}

public class ArrayList implements List {
private Object[] contents;
private int size;
//@ represents footprint = size,

↪→ contents, contents[*];

public int size() { return size; }

public void add(Object o) {
contents[size++] = o;

}
}

Lst. 1. Java program annotated with JML∗

used by the ArrayList class into the footprint model field. This model field is in
turn used in two frame specifications. Firstly, the assignable clause of method
add states that these are the locations that may change when add is called.
Secondly, through the accessible clause, the size method specifies that its result
only depends on the locations contained in the footprint. Such specifications are
commonly used to prove independence of pure expressions; If an expression is
to be evaluated on two different heaps and it can be proved that the two heaps
differ only on locations disjoint with the ones in the accessible clause, then it can
be concluded that the two expressions are equal. This in turn enables abstract
reasoning about expressions.

Note that in dynamic frames there is no implicit framing as found in ap-
proaches based on Separation Logic [2] or Implicit Dynamic Frames [4], hence
the assignable and accessible clauses have to be stated explicitly. In particu-
lar, we also have to explicitly specify that the footprint is self-framed. However,
there is no obligation to use model (or ghost) fields as in our example, it is also
possible to state the locations explicitly in the corresponding clauses.

To prove a JML∗ annotated programs correct in KeY, the specifications are
translated to the Java Dynamic Logic (JDL) in which the memory heap is mod-
elled with an explicit program variable using the theory of arrays [7]. This pro-
gram variable, simply called heap, is used in translating Java and JML∗ ex-
pressions to JDL and generating suitable proof obligations over this variable to
show the correctness of method framing. For example, an object field access o.f
is typically translated to select(heap, o, f) which reads the contents of the heap
variable at the location mapped by o and f. Further, a part of the formula that
establishes correct framing of a method usually reads:

∀o:Object,f :Field (o, f) ∈ frame ∨ o.f@heap = o.f@heapAtPre (1)

where (i) frame is the methods frame, either concrete or abstract (in the latter
case it can be concretely instantiated when the concrete instance of the object
involved is known), (ii) @ is a shorthand notation for the select function, and
(iii) heapAtPre is a snapshot of the heap taken before the method was called
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(which is also used to translate JML∗ \old expressions). The actual Java pro-
grams are embedded in and treated with Dynamic Logic [p]φ and 〈p〉φmodalities
for partial and total correctness, respectively, where p is a program and φ is a
correctness formula. Modalities are actually in most part a orthogonal issue to
the subject of this paper, however, what is important is that during correctness
proofs programs in modalities are evaluated on a statement by statement basis
using symbolic execution. During this evaluation the program heap is modi-
fied accordingly by updating the heap variable. For example, an object field
assignment o.f = v; results in a modification of the heap variable expressed by
store(heap, o, f, v), which gives a newly modified heap.

JML∗ Model Methods. Model methods [13] are specification only methods
that extend the notion of model fields to fully fledged abstract predicates. When
abstract, they do not have any method body, when instantiated (typically in
a subclass), they contain a single return statement that gives the predicate its
definition. Model methods are strictly pure, which means that they are not
allowed to modify any of the heaps. The accessible clause attached to the method
specifies memory locations that the method at most depends on, this is used
to reason about their (in-)equality upon state changes (see Sect. 4). Finally, a
model method can have a specification of its own, which essentially serves as a
lemma mechanism for predicates to state additional properties. Model methods
are particularly suitable to specify linked data structures [14], in this paper we
use them to provide modular specification of Java API synchronisation points.
In Sect. 5 we give the examples of the use of model methods for this.

3 Dynamic Frames with Permissions

The above described verification methodology works very well in a sequential
setting. For the permission-based concurrent setting an appropriate extension
is needed. Because the heap is a first class citizen in JDL, the extension is
actually rather straightforward. The base heap stores the values of the memory
locations that the program operates on, adding a second heap that stores our
symbolic permissions in parallel to the values is in essence sufficient. Adding
this permission heap means adding a second heap variable, which we simply call
permissions, and extending the verification mechanisms of Java Dynamic Logic
from one heap to two heaps. In fact, one can use more than two heaps in JDL
easily, as long as the number of heaps is fixed, all mechanisms that work with
the single heap variable extend naturally to multiple heaps [12].

For example, for proving the framing property (1) above, stemming from the
assignable clauses, now two quantifiers, over the two heaps, are needed. The
core semantics of the permission heap, i.e., granting of access permissions to
heap locations, is encoded in the rules for heap location reading and assignment,
these rules now operate on our two heaps. As before, the regular heap is read
and modified to store the values of corresponding memory locations as briefly
explained at the end of the previous section. In addition, each time a memory
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location is read from or stored onto this heap, the access right is checked on
the permission heap. The permission heap is read at the corresponding location
and the resulting permission value is checked accordingly to establish that the
current thread has the respective permission.

More concretely, when a location writing statement o.f = v; is symbolically
executed, the value mapped to o.f on the heap is updated with store(heap, o, f, v)
as before, but first the permission p is read from the permission heap with
select(permission, o, f) and p is checked to be a write permission for the cur-
rent thread, i.e., as explained in Sect. 2 all slices in p have to belong to the
current thread object ct. Reading of locations from the heap is analogous, only
the permission is checked to be a read permission instead. In both cases, the
permission values stored on the permission heap are only read, but in two cases
writing of permission values can also occur. First, when objects are created and
permissions are initialised to full permissions for the current thread, i.e., when
object o is created, for all fields f of this object a new full permission is stored
on the permission heap with store(permissions, o, f, [[ct]]). Second, permissions
are changed, and hence written on the permission heap, when they are subjected
to permission transfers upon synchronisation points, in which case the current
permission is first read from the permission heap and a modified one is then writ-
ten back. For example, when a permission for location o.f is transferred from the
lock l to the current thread as explained in Sect. 2, the permission heap becomes
store(permissions, o, f, transferPerm(true, l, ct, select(permissions, o, f))).

For writing suitable user level specifications this extension of JDL to use two
heaps has to be lifted to JML∗. Following the explicit heap variable approach of
JDL, we allow for the same explicit reference of the heap variables in JML∗ and
provide operators to access permissions on the second heap and evaluate them.
The following is a short example that illustrates this:

//@ requires \writePerm(\perm(this.o)); ensures this.o == p;
//@ assignable<heap> this.o; assignable<permissions> \nothing;
public void set(Object p) { this.o = p; }

First, we allow to explicitly state the heap variable that the assignable clause
refers to (and similarly for the accessible clauses). This allows us to decouple
the two heaps in the specifications. In the example, we state that the value of
the this.o field is changed by pointing the assignable clause to the main heap
variable, however, on the permissions heap the frame is empty, because the
permission to the field o does not change when the set method is executed, it is
only read to check the (write) access to the field this.o.

Furthermore, we provide operators to access the permission heap in the pre-
and postconditions, and to evaluate the permission values. In the example, we use
the \perm operator to access the this.o location on the permission heap. Thus,
\perm is somewhat analogous to the \old operator, which redirects access from
the current heap to the heap before the method was called. In our specifications
the combination of the two operators is also possible, \old(\perm(·)) reads the
value of the permission before the method was called. Then, \writePerm is a
predicate that abstracts checking the permission to be a write permission for the
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current thread, an analogous predicate for checking the permission to be a read
one is called \readPerm. Finally, operations \transferPerm and \returnPerm
to modify permissions upon synchronisation points are also available. Typically,
when this happens the corresponding location is also listed in the assignable
clause for the permission heap, concrete examples of that are provided in Sect. 5.

4 Proof Obligations for Self-Framing

The above is sufficient to relate heap locations with their permissions and to
perform basic permission-aware reasoning in the dynamic frames approach, i.e.,
permissions can be specified and are checked when locations are accessed in the
verified program. However, permissions have also consequences for the specifi-
cations themselves, in terms of which specifications are actually sound and how
they should be applied in modular reasoning. Namely, specifications themselves
have to be self-framed w.r.t. permissions, i.e., specifications are only allowed to
reference heap locations they have at least a read permission to. Locations with
no permission can be modified by other threads that potentially hold a complete
write permission, hence nothing can be said about them. The mechanism of ap-
plying method specifications in modular reasoning is also affected, i.e., when a
permission to some memory location is lost, so should be the information about
its current value on the heap. Unlike in Separation Logic (-like) approaches [4],
in dynamic frames self-framing of expressions (even without permissions) is not
given and has to be shown explicitly. In particular, explicit assignable clauses
are required (not necessary in SL) and proof obligations have to be generated,
like (1) above, to prove them correct.

In permission-based reasoning each thread is verified (on a per-method ba-
sis) in isolation under the assumption that it is the currently executing thread.
The reasoning itself is very similar to the one for sequential programs, with the
addition that if permission annotations are verified to be consistent for each
thread then the threads are guaranteed to be non-interfering. In such a veri-
fication context, it is sufficient to abstract the permissions to be simply read,
write, or no permission for the current thread, also when talking about sound-
ness of specifications themselves. Hence, the actual permission system (symbolic
or fractions-based) is irrelevant. What is relevant is how the memory and per-
missions are referred to in the logic, in our case through explicit heap variables.

Examples of Sound and Unsound Specifications. Suppose we have the following
very simple method specified with JML∗:

//@ requires \writePerm(\perm(this.f)); ensures this.f == v;
//@ assignable<heap> this.f; assignable<permissions> \nothing;
void setF(int v) { this.f = v; }

This specification is sound w.r.t. permission annotations. The preconditions es-
tablishes at least a read permission (here a full write one) for this.f, the permis-
sion is not changed by this method, hence the postcondition can freely specify
the value of this.f. However, if we change the scenario slightly to become:
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//@ requires \writePerm(\perm(this.f)); ensures this.f == v;
//@ assignable<heap> this.f; assignable<permissions> this.f;
void setFandUnlock(int v) { this.f = v; l.unlock(); }

then referencing this.f in the postcondition is no longer sound. Knowing that
the unlock method modifies the permission to this.f we also have to put this
location in the assignable permissions of setFandUnlock and consequently we
cannot establish any permission to this.f in the postcondition. To fix this, if the
unlock method leaves a read permission with the current thread then we can
specify it:

//@ ensures \readPerm(\perm(this.f)) && this.f == v;

Or, if no permission to this.f is left after unlock the postcondition over the value
of this.f has to be removed altogether, and the specification becomes:

//@ requires \writePerm(\perm(this.f));
//@ assignable<heap> this.f; assignable<permissions> this.f;

On top of that, when client code that calls setAandUnlock is verified, it is
mandatory to loose all information about this.f after the call.4 However, it is
sound to leave this location in the assignable clause for the base heap, and in fact
necessary. The presence of this location in the assignable clause actually causes
erasure of information about this location from the current verification context
upon a setFandUnlock method call, because no postcondition can be specified
that would give the new value of this location. In other verification systems
the mechanism of erasing information is typically called havocing [16], in the
Java Dynamic Logic it is called anonymisation, and incidentally it also gives
us the base for showing that specifications are self-framed w.r.t. permissions
in JDL. We show how this is done for the preconditions in their basic form.
With small technical alternations, the method scales correspondingly to other
specification constructs, like postconditions, measured_by termination clauses,
or model methods with their specifications (see Sect. 5).

Anonymisation. Locations on the heap are anonymised with the anon(heap1,
locs, heap2) function that gives a new heap with the locations not appearing in
locs copied from heap1 and otherwise the locations are copied from heap2. For
example, to anonymise locations o.f and o.g on the base heap one typically cre-
ates a new heap with anon(heap, {(o, f), (o, g)}, anonHeap), where anonHeap is
a fresh unspecified heap. Such an operation is applied to the current heap during
modular verification, when a method call is dispatched using its specification, in
which case locs are the locations defined in the assignable clause.

This function can also be used in an inverse way, i.e., all locations outside of
a certain set locs can be anonymised with anon(heap, allLocs \ locs, anonHeap).
4 This problem is common in permission-based approaches and makes reasoning about
functional behaviour of concurrent programs difficult. Solutions exist to enable to
keep certain information about temporarily inaccessible locations [15], however, they
are beyond the scope of this paper, here we concentrate on the basic soundness of
dynamic frames enriched with permissions.
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Now all locations in locs keep their values in the resulting heap w.r.t. the input
heap, while all other locations are left undefined. This mechanism is commonly
used in JDL to show data independence of expressions, in particular, to prove the
accessible clauses of read-only methods. Suppose a method getVal() is specified
with an accessible clause to only depend on o.f. To prove that this is indeed so,
the following JDL proof obligation has to be discharged:

getVal() = {heap := anon(heap, allLocs \{(o, f)}, anonHeap)}getVal() (2)

The meaning of the right hand side of this equality is that getVal should be
evaluated in a state with modified heap where all locations not in the set of
locations locs are anonymised. Proving this equality means that changing the
values of locations outside of the set locs cannot influence the valuation of getVal
and indeed it depends at most on the values of locations in locs. In KeY, such a
proof obligation is generated by default for every state observing symbol [7,13]
with an accessible clause, in particular, for all read-only methods.

Proof Obligations for Self-Framing. To prove correct framing of specifications
w.r.t. permissions a similar mechanism is used. The expression is simply our spec-
ification, e.g., a complete expression pre representing the method’s precondition.
However, there is no accessible clause to give the set of dependency locations of
the expression, so we have to “extract” it from the expression instead. To this
end, we introduce a fresh location set logic variable readLocs and we indirectly
specify which locations it contains. Namely, locations that we can show at least
a read permission for under the assumption that the expression pre itself holds.
The complete proof obligation to show self-framing then reads:

pre ∧ ∀o:Object,f :Field readPerm(o.f@permissions)→ (o, f) ∈ readLocs
→ pre = {heap := anon(heap, allLocs \ readLocs, anonHeap)}pre (3)

For a postcondition this construction has small additional complexity, which
stems from the fact that the read permission might be specified in the postcon-
dition itself, or, if the permission is not modified by the method, it might be
kept from the precondition. To account for this, additional base and permission
heap operations are required to “find” the permission in the method specifica-
tion. Due to space restrictions, we do not quote the formula here, however, the
main principle is exactly the same as in (3).

Proof obligation (3) shows that every location referenced on the base heap
is accompanied by at least a read access on the permission heap. As explained
above, we also have to show that all locations that the method may loose permis-
sions to, i.e., locations for which at least a read permission cannot be established,
are included in the assignable clause for the base heap. For this, the following
formula has to be proved:

post→ ∀o:Object,f :Field (o, f) ∈ permMod
→ readPerm(o.f@permissions) ∨ (o, f) ∈ heapMod (4)

where permMod and heapMod are locations listed in the assignable clauses for
the permission and base heap, respectively. Note, that (a) it is not necessary to
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add locations to the base assignable clause for which the method did not have
permissions for in the first place, only for the ones that are lost, (b) locations for
which there is no permission can nevertheless remain in the base assignable clause
without breaking the soundness. Locations without an initial permission (point
(a)) cannot be used in method’s specification or code. Hence, any information
(or lack thereof) about such locations can remain in the verification context. For
point (b) it is a simple case of over-approximation where the verification context
will loose more information about locations than necessary.

Discussion. Enforcing the lost permission locations to be explicit in the assign-
able clause of the base heap puts unnecessary burden on the specifier. In (4) we
name these locations directly and simply check that they are in the assignable
clause. What is equivalently sound, but more practical, is to instead add these
locations dynamically to the anonymisation set when the method contract is
applied during a proof, in which case (4) does not have to be proved. In fact,
this approach can be pushed even more to completely deduce assignable (and
accessible) clauses from permission specifications. This exactly is the methodol-
ogy used in Implicit Dynamic Frames (IDF) [4], where frames are inferred from
permissions. A specified read permission implies that the corresponding location
is in the accessible clause, and a specified write location puts the location in
the assignable clause. The resulting reasoning system has the look-and-feel of
permission-based Separation Logic [17,18]. It is also possible to achieve full IDF-
style framing in our framework, however, we have chosen not to do so (yet) for
two reasons. First, our explicit approach enables high specification and verifica-
tion precision, in particular, explicit framing avoids frame over-approximation.
For example, a write permission in the specification does not necessarily imply
that the method assigns the corresponding location, in fact, it can still be a read-
only method, in which case it can be used in specifications. For us, the query
or mutator status of a method is indicated by the accessible, resp. assignable,
clause independent of the permissions. Second, keeping the base and permission
heaps explicit with separate framing enables decoupling permission-based rea-
soning from the classical sequential dynamic frames one while using the same
specifications for both. To change from permission-based to sequential reasoning
the permission heap is simply omitted during proof obligation generation, and
our implementation in KeY provides a simple mechanism to do that.

5 Modular Specifications for Synchronisers

The most intricate part of permission-based reasoning are permission transfers
that occur upon synchronisation points between threads, e.g., acquiring and re-
alising of locks, thread forking and joining, etc. In approaches based on quantita-
tive permissions the modelling of the synchronisation involve the use of so-called
resource (or monitor) invariants [19]. Such invariant is essentially a quantitative
amount of resource permissions that is passed to and from the current thread
upon synchronisation. For example, in Chalice [3] every object can be used as a
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lock (as in Java), and when an object is locked all permissions from the object’s
resource invariant are transferred to the currently running thread. Using Java
and JML syntax, to use a shared counter one would specify and use it as follows:

class Counter { int val; /*@ monitor Perm(val, 1); @*/ }
class Client { void inc(Counter c) { synchronized(c) { c.val++; } } }

Here, in the scope of the synchronized block the method increase temporarily
holds the permission to c.val specified in the monitor of the Counter class.

To make this method more modular and flexible one typically uses predicates
to embed a set of permissions in one formula and use it as a single resource
invariant. This way, concrete permissions are hidden behind the predicate and
are only unfolded when required during verification. Such a predicate can be also
passed between different classes. In particular, this is used when complex API
synchronisation methods are considered [20]. API based synchronisation brings
the challenge that several different use scenarios are possible for each mechanism
(for locks, e.g., there are read locks, write locks, reentrant locks, etc.) and that
they cannot be considered as primitive language constructs with a fixed notion of
a resource invariant as above. Instead, their semantics is given with a generic API
specification, which is external to the concrete use case. By passing a suitably
defined resource predicate one makes such a generic specification concrete [21].

However, we cannot use resource invariants in our approach in the same way,
because we specify permission transformations instead of permission amounts.
Instead, we use a two stage mechanism. First, similarly to resource invariants, we
give a formula that describes the state of permissions for the given synchroniser.
But here, this specification contains a compound description of the symbolic
permissions for both the state when the synchroniser is engaged and when it is
not, both of which are described with the reference to the current thread and the
synchroniser itself. Second, we make a connection between this state description
and the methods that change the state, i.e., the actual synchronisation calls, like
lock and unlock. We explain our method based on a simple example of a write
lock used to protect a single counter variable, as above.

The abbreviated listing of our lock specification and sample client is given in
Lst. 2. We compacted it for presentation, in particular we skipped all but one
framing specifications to concentrate on the modular specification of the lock
behaviour w.r.t. permissions. The full example that can be loaded and proved
with KeY is available on-line [22]. The specification of a lock is delegated to a
separate interface LockSpec that serves as a template and provides signatures
of all predicates that clients have to instantiate. The lock itself, specified in
the Lock interface, “receives” this specification through a binding of its ghost
variable spec (l. 14). Then, the client code in the Counter class instantiates the
specification and passes it to the lock object by specifying the binding in the
invariant (l. 21).5

5 This is not the most elegant way of passing specifications (predicates) around classes
in JML∗, however, a working one and currently the only one that the KeY implemen-
tation allows. In the future we plan to provide proper ghost and model parameters
to classes and methods in the style of [21].
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public class LockSpec {
2 //@ model \locset fpPerm();

//@ accessible<permissions> fpPerm(); model boolean state(boolean locked);
4 //@ model boolean status(boolean locked);

//@ model two_state boolean lockTr();
6 //@ model two_state boolean unlockTr();

/*@ ensures \result;
8 model final two_state boolean consistent() { return

(\old(state(false)) && \old(status(false)) && lockTr() ==>
10 (state(true) && status(true))) &&

(\old(state(true)) && \old(status(true)) && unlockTr() ==>
12 (state(false) && status(false))); } @*/ }

14 public interface Lock { //@ public instance ghost LockSpec spec;
//@ requires spec.status(false); ensures spec.status(true) && spec.lockTr();

16 public void lock();
//@ requires spec.status(true); ensures spec.status(false) && spec.unlockTr();

18 public void unlock(); }

20 public class Counter extends LockSpec { private int val;
private Lock lock; //@ invariant lock.spec == this && . . .;

22 /*@ model boolean state(boolean locked) { return \perm(val) ==
locked ? [[ \ct, lock ]] : [[ lock ]]; } @*/

24 /*@ model boolean status(boolean locked) { return locked ?
\writePerm(\perm(val)) : !\readPerm(\perm(val)); } @*/

26 /*@ model two_state boolean lockTr() { return \perm(val) ==
\transferPerm(false, lock, \ct, \old(\perm(val))); } @*/

28 /*@ model two_state boolean unlockTr() { return \perm(val) ==
\returnPerm(\ct, lock, \old(\perm(val))); } @*/

30

//@ requires status(false); ensures status(false);
32 public void inc() { lock.lock(); val++; lock.unlock(); } }

Lst. 2. Modular specification for a lock in JML∗.

To enable modularity, our predicates are specified with JML∗ model meth-
ods [13] briefly introduced in Sect. 2. The state predicate (l. 3) describes the
state of the permissions in the locked and unlocked state. In the client (ls. 22–
23) the lock is specified to protect the val field of the Counter object. In the
unlocked state the permission to val is a single slice belonging to the lock –
[[ lock ]]. When locked, the permission is also a single slice, but temporarily be-
longing to the current thread that acquired the lock and owing the slice to the
lock – [[ \ct, lock ]]. The status predicate (l. 4) serves two purposes. First, it
represents the binary state of actually holding the lock at any given point. Sec-
ond, it provides an abstracted view of the permission to the protected resource,
here the val field. By knowing the status the client can also deduce the actual
access permission to the resource without having to evaluate the concrete sym-

12



bolic permission expression kept in the lock state. Our client code (ls. 24–25)
specifies that in the locked state it holds a complete write permission to val,
while in the unlocked state it holds no permission at all. Note that in this case
these two are not the binary opposites of each other, hence the need for the
locked parameter in status. The predicates lockTr and unlockTr (ls. 5 and 6)
describe the permission change upon lock acquiring and releasing, respectively.
They are two_state predicates, because they describe the state of permissions
before and after the corresponding lock calls. Such two-state predicates can be
used in an appropriate context, i.e., the method postcondition (e.g., l. 15). Upon
locking (l. 27) all permission slices (the first false parameter denotes this) to val
are transferred from the lock to the currently running thread (denoted with \ct).
Upon unlocking (l. 29) all slices for val are returned from the current thread to
the lock object.

Finally, the consistent predicate (ls. 7–12) binds the specification structure
together. It establishes the relationship between the concrete and abstract view
of permission for the lock, and that the two transfers correctly change the state of
the lock. This predicate is defined directly in LockSpec – all clients instantiating
this specification have to show this predicate to hold (its postcondition in l. 7
states so) to prove that their concrete lock specifications are consistent.

Following the same methodology we can develop similar generic specifications
for other synchronisation triggering methods of the Java API, and in particu-
lar modular specification for asynchronous method calls invoked through the
start() and join() methods of the Thread class [23]. In each such case a generic
specification that would cover the typical usage scenarios is possible. Our Lock
specification is not fully generic in this respect, in particular it does not cover
Java re-entrant locks, but it can be extended to resemble the ones we developed
before for Separation Logic [21] that cover all kinds of Java lock flavours. How-
ever, there will always be scenarios that would not fall within such a generic
scheme. In particular, our version [11] of the motivating example from [24] that
uses a primitive lock combined with a counter variable to effectively implement
a semaphore-like read-write lock cannot be put in the frame of our Lock spec-
ification presented here without further extensions of this specification. Hence,
we did not construct a complete generic specification solution for all API-based
synchronisers, we only showed a methodology with a number of possible appli-
cations.

6 Conclusions

We presented an approach to the verification of concurrent Java programs based
on Dynamic Frames extended with permissions. In particular, we showed how
to treat the self-framing of specifications in Java Dynamic Logic and how to use
JML∗ model methods to provide modular specifications for Java API synchro-
nisation points.

Implementation Status. Our symbolic permission framework described in Sect. 2
is implemented in the current development version of the KeY verifier, and so is
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the extension from Sect. 3 that incorporates permissions into the JML∗ dynamic
frames. Furthermore, model methods that we used for modular specification in
Sect. 5 are also implemented in KeY [13], and in fact did not require any particu-
lar extensions to work with permissions, apart from accounting for one additional
heap. What is not yet implemented, is the generation of the additional proof obli-
gations and checks for self-framing w.r.t. permissions described in Sect. 4. This
is work in progress and we expect this to be finished soon.

Further Examples. The current state of the implementation allows for all the
examples that we discussed or referred to in this paper to be verified. Technically
speaking, however, the tool is not yet fully sound, in the sense that possibly un-
sound specifications can be admitted by KeY. Nevertheless, we developed several
more non-trivial examples and verified them with KeY, while checking specifi-
cation framing by hand. In particular, the KeY distribution contains modularly
specified and fully verifiable example of a multi-threaded plotter that we devel-
oped earlier using Separation Logic [5]. In this example four different threads
manipulate two shared buffers to process and “draw” some input data passing
the permissions to these buffers in a non-trivial way. Few other examples are
available in the KeY distribution, in particular fully specified and verified read-
write lock example from [24] we mentioned above, and the examples from this
and earlier paper on symbolic permissions are available on-line [22].

Related Work. To the best of our knowledge, our method so far is the only one
that uses Dynamic Frames in the explicit form with permissions [1] and in this
paper we have shown the necessary extensions and modifications to the Java Dy-
namic Logic (JDL) used in the KeY verifier to build a fully functional verification
system for this combination. The existing approaches to (fractional) permission-
based reasoning with functional tools are based on Separation Logic (SL) [2] or
Implicit Dynamic Frames (IDF) [4], e.g., our own VerCors toolset [5,18], Veri-
Fast [25], Silicon [26], or Chalice [3].

Compared to these existing approaches, ours is based on symbolic permissions
we developed earlier to allow for more flexibility in permission flow specifications.
Furthermore, we are more explicit in terms of exhibiting the underlying logic
mechanism to the specifier, e.g., by allowing to refer to heaps directly in explicit
JML∗ frame specifications. In comparison, e.g., in IDF memory and permission
frames are calculated on the fly from pre- and postconditions. We stated two
reasons for considering our explicit approach advantageous, namely very precise
specifications and reasoning, as well as the possibility to decouple reasoning
about functional and permission properties.

Future Work. Approaches based on SL and IDF have been shown to be prac-
tically equivalent [4]. On the verification end, the problems are translated to
FOL formulas to be proved by an appropriate verifier, e.g., an SMT solver. In
this respect our method is no different, symbolic execution of permission anno-
tated program leads to pure FOL problems which are then discharged with FOL
reasoning. However, our specification methodology is more explicit and closely
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related to the actual reasoning logic, in our case Java Dynamic Logic imple-
mented in the KeY verifier. In this respect, for future work we also consider a
translation from permission-based SL to JDL with permissions making it an in-
termediate verification language, similarly to Silicon [26]. This translation would
be a mixture of ideas presented in this paper and in [27] where a bridge between
SL and Dafny – also DF-based – is described. Otherwise, we are finishing the
implementation and working on more examples for our approach.
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