
Computational Complexity and Graphs

Amin Farjudian1

Hamlstad University

DT8014 Algorithms Course, Autumn 2016

1Originally by Masoumeh Taromirad.

In this Session ...

Computational Complexity
Refreshment
Asymptotic Complexity
“Big-Oh” Notation

Presentations

Graphs
Terminology and Properties
Graph Representations

Exercise

Computational Complexity
Refreshment

I Complexity roughly refers to the number of steps the
algorithm will take for input of size n.

I An algorithm that compares every pair of values in a list of n
items will have to make n2 comparisons, and so it takes about
n2 steps.

I An algorithm’s running time on inputs of size n is proportional
to the number of steps the algorithm will take (expressed by a
function f (n)).

I f (n): the number of ‘atomic’ steps taken for inputs of size n;

Asymptotic Complexity

I An exact formulation of f (n):
I Tedious/complicated activity
I Differentiates (classes) of algorithms that have similar

behaviour
I Many of the details are of little significance

I Compared with exact derivation of f , deriving its growth rate:
I Simpler due to the richer structure of growth rates
I Not sensitive to irrelevant additive or multiplicative factors
I Informally: the fastest-growing term
I e.g.

I 1.62n2 + 3.5n + 8 grows like n2

I 1.62 × 10−1000n2 + 3.5 × 101000n + 8 × 101000 also grows like
n2, not like n.

I Asymptotic Upper Bounds (O) (“Big-Oh” Notation)

I Asymptotic Lower Bounds (Ω)

I Asymptotically Tight Bounds (Θ)

“Big-Oh” Notation

I Asymptotic Upper Bounds
I Focus on the worst-case running time

I “Big-O” notation is a mathematical notation for
upper-bounding a function’s growth rate.

I Examples:
I n + 137 = O(n)
I n2 + 3n − 2 = O(n2)
I n3 + 10n2 log n − 15n = O(n3)
I 2n + n2 = O(2n)
I n! + 2n = O(n!)
I 22n + nn + n! = O(22n)
I · · ·

“Big-Oh” Notation
Formal Definition

I f , g : N→ N
I We say f (n) = O(g(n))—equivalently, f (n) ∈ O(g(n))— iff

∃n0 ∈ N, c ∈ R : ∀n ∈ N : (n ≥ n0 → f (n) ≤ c g(n))

I When n gets “sufficiently
large” (i.e. greater than n0),
f (n) is bounded from above
by some constant multiple
(specifically, c) of g(n).

I Asymptotic growth of f is
not more than that of g .

“Big-Oh” Notation
Example 1

3n2 + 2n + 1 = O(n2)

Proof

I Take n0 = 1 and c = 6

I Then for any n ≥ n0, we have

3n2 + 2n + 1 ≤ 3n2 + 2n.n + 1.n2

= 3n2 + 2n2 + n2

= 6n2

≤ 6(n2)

“Big-Oh” Notation
Algorithm Runtime

I For any algorithm A that works on inputs of size n, the
function T (n) gives the execution time of A working on an
input of size n.

I Algorithm A has runtime of O(f (n)) means

T (n) ∈ O(f (n))

I T (n): Execution time T is a function of the problem size n.

I O(f (n)): Complexity class (e.g. O(log n))

“Big-Oh” Notation
Algorithm Runtime Example

for i in 1 .. N do
for j in 1 .. M do

sequence of statements;
// without any breaks or jumps to outside

end for
end for

I The outer loop executes N times.

I Every time the outer loop executes, the inner loop executes M
times.

I The statements in the inner loop execute a total of N ×M
times.

I The complexity is O(NM).

Let’s do some exercise!

Big-Oh Relevance to Practice and P vs NP

when the problem size N grows to N ′

the execution time T grows to T ′

according to the term “inside” the Big-Oh

Ω and Θ

I Asymptotic Lower Bounds: a complementary notation for
lower bounds

I for large input sizes n, the function T (n) is at least a constant
multiple of some specific function f (n)

∃n0 ∈ N, c > 0 : ∀n ∈ N : (n ≥ n0 → f (n) ≥ c g(n))

I T (n) ∈ Ω(f (n)) or T (n) = Ω(f (n))

I Asymptotically Tight Bounds: T (n) grows exactly like f (n)
I T (n) is both O(f (n)) and also Ω(f (n))
I T (n) is Θ(f (n)) or T (n) = Θ(f (n))

In this Session ...

Computational Complexity
Refreshment
Asymptotic Complexity
“Big-Oh” Notation

Presentations

Graphs
Terminology and Properties
Graph Representations

Exercise

Presentation Topics

I Topics

1. Divide and conquer technique (e.g. Mergesort)
2. Longest Path Problem
3. Minimum Steiner Tree
4. Huffman Codes

I 20-minute presentations
I What the problem is
I Overview of the existing solutions or a well-know solution

I Two presentations in each lecture session in week 38 and 39

I Assignment

In this Session ...

Computational Complexity
Refreshment
Asymptotic Complexity
“Big-Oh” Notation

Presentations

Graphs
Terminology and Properties
Graph Representations

Exercise

Graphs

A mathematical structure for representing relationships

I E.g. Chemical Bonds, Transportation Maps, . . .

Terminology and Properties
Formalism

I G = (V ,E) : graph

I V = nodes

I E = edges between pairs of nodes.

I Captures pairwise relationship between objects

I Graph size parameters: n = |V |, m = |E |.

V ={1, 2, 3, 4, 5, 6, 7, 8}
E ={1− 2, 1− 3, 2− 3, 2− 4,

2− 5, 3− 5, 3− 7, 3− 8,

4− 5, 5− 6, 7− 8}
m =11, n = 8

Terminology and Properties

Simple Graph

I undirected

I no loops (edges that start and end at the same node)

I at most one edge between any two vertices

Regular Graph

I each vertex has the same number of neighbours

Complete Graph

I every pair of vertices has an edge connecting them

Planar Graph

I can be drawn on the plane such that no edges intersect.

Bipartite Graph

I vertices can be split in two sets so that, in both sets, no two
vertices are adjacent.

Terminology and Properties

Subgraph of G = (V ,E)

I its vertices form a subset of V

I its edges form a subset of E

Clique

I a set of pairwise adjacent vertices

I a k-clique has k vertices in this set

Terminology and Properties
Paths and Connectivity

Path

I a sequence of nodes v1, v2, ..., vk with the property that each
consecutive pair vi−1, vi is joined by an edge in E .

Simple Path

I a path in which all nodes are distinct.

Two vertices u and v are

I connected if there is a path from u to v .

I adjacent if there is an edge between them

A graph is

I connected if every pair of vertices is connected.

I k-connected if no set of k − 1 vertices exist that, if removed,
would disconnect the graph.

Terminology and Properties
Cycles

Cycle

I a path v1, v2, ..., vk in which v1 = vk , k > 2, and the first
k − 1 nodes are all distinct.

Terminology and Properties
Trees

Tree

I a connected acyclic graph.

I for directed graphs, each vertex has at most one incoming
edge.

Theorem. Let G be an undirected graph on n nodes. Any two of
the following statements imply the third.

I G is connected.

I G does not contain a cycle.

I G has n − 1 edges.

Graph Representations
Adjacency Matrix

Adjacency matrix: n-by-n matrix with Auv = 1 if (u, v) is an edge.
I Two representations of each edge.
I Space proportional to n2

I Checking if (u, v) is an edge takes:
I Θ(1) time with arrays.
I O(n2) time with lists.

I Identifying all edges takes Θ(n2) time.

Graph Representations
Adjacency List

Adjacency lists: Node indexed array of lists.

I Two representations of each edge.
I Space is Θ(m + n).
I Checking if (u, v) is an edge takes:

I O(degree(u)) time time with arrays.
I O(n2) time with lists.

I Identifying all edges takes Θ(m + n) time.

In this Session ...

Computational Complexity
Refreshment
Asymptotic Complexity
“Big-Oh” Notation

Presentations

Graphs
Terminology and Properties
Graph Representations

Exercise

Minimum Spanning Tree
Exercise 22

I A spanning tree of a connected, undirected graph is a
subgraph of that graph which is a tree and connects all the
vertices together. In a weighted graph, the sum of the weights
of the edges in a spanning tree computes the weight of that
spanning tree.
A minimum spanning tree (MST) is then a spanning tree
with weight less than or equal to the weight of every other
spanning tree.

I The aim is to get familiar with MSTs:
I Applications of MST in real-world problems
I naive algorithm to find MST
I Kruskal’s algorithm

I Complete description is available on the course web page
(Blackboard)

I My homepage for now

2Taken from DT8014, 2014

http://ceres.hh.se/mediawiki/Amin_Farjudian

In this session ...

I Asymptotic Complexity

I “Big-Oh” notation

I How O is used to demonstrate algorithm complexity

I Fundamentals of Graphs

I Exercise

Any Question?

	Computational Complexity
	Refreshment
	Asymptotic Complexity
	``Big-Oh'' Notation

	Presentations
	Graphs
	Terminology and Properties
	Graph Representations

	Exercise

