Computational Complexity and Graphs

Amin Farjudian¹

Hamlstad University

DT8014 Algorithms Course, Autumn 2016

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

¹Originally by Masoumeh Taromirad.

[Computational Complexity](#page-1-0)

[Refreshment](#page-2-0) [Asymptotic Complexity](#page-3-0) ["Big-Oh" Notation](#page-4-0)

[Presentations](#page-11-0)

[Graphs](#page-13-0) [Terminology and Properties](#page-15-0) [Graph Representations](#page-21-0)

[Exercise](#page-23-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright Complexity roughly refers to the number of steps the algorithm will take for input of size n.
	- An algorithm that compares every pair of values in a list of n items will have to make n^2 comparisons, and so it takes about n^2 steps.
- An algorithm's running time on inputs of size n is proportional to the number of steps the algorithm will take (expressed by a function $f(n)$).

 \blacktriangleright f(n): the number of 'atomic' steps taken for inputs of size n;

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Asymptotic Complexity

- An exact formulation of $f(n)$:
	- \blacktriangleright Tedious/complicated activity
	- \triangleright Differentiates (classes) of algorithms that have similar behaviour
	- \triangleright Many of the details are of little significance
- \triangleright Compared with exact derivation of f, deriving its growth rate:
	- \triangleright Simpler due to the richer structure of growth rates
	- \triangleright Not sensitive to irrelevant additive or multiplicative factors
	- Informally: the fastest-growing term
	- \blacktriangleright e.g.
		- **1.**62 $n^2 + 3.5n + 8$ grows like n^2 ► $1.62 \times 10^{-1000} n^2 + 3.5 \times 10^{1000} n + 8 \times 10^{1000}$ also grows like n^2 , not like n.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- ▶ Asymptotic Upper Bounds (O) ("Big-Oh" Notation)
- \triangleright Asymptotic Lower Bounds ($Ω$)
- **Asymptotically Tight Bounds (** Θ **)**

"Big-Oh" Notation

- **Asymptotic Upper Bounds**
	- \blacktriangleright Focus on the worst-case running time
- \blacktriangleright "Big-O" notation is a mathematical notation for upper-bounding a function's growth rate.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright Examples:

►
$$
n + 137 = O(n)
$$

\n► $n^2 + 3n - 2 = O(n^2)$
\n► $n^3 + 10n^2 \log n - 15n = O(n^3)$
\n► $2^n + n^2 = O(2^n)$
\n► $n! + 2^n = O(n!)$
\n► $2^{2^n} + n^n + n! = O(2^{2^n})$
\n► ...

►
$$
f, g : \mathbb{N} \to \mathbb{N}
$$

\n► We say $f(n) = O(g(n))$ —equivalently, $f(n) \in O(g(n))$ — iff
\n $\exists n_0 \in \mathbb{N}, c \in \mathbb{R} : \forall n \in \mathbb{N} : (n \ge n_0 \to f(n) \le c g(n))$

- \triangleright When *n* gets "sufficiently large" (i.e. greater than n_0), $f(n)$ is bounded from above by some constant multiple (specifically, c) of $g(n)$.
- \blacktriangleright Asymptotic growth of f is not more than that of g .

$$
3n^2 + 2n + 1 = O(n^2)
$$

Proof

$$
\blacktriangleright \text{Take } n_0 = 1 \text{ and } c = 6
$$

► Then for any $n \ge n_0$, we have

$$
3n2 + 2n + 1 \le 3n2 + 2n \cdot n + 1 \cdot n2
$$

= 3n² + 2n² + n²
= 6n²
 $\le 6(n2)$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

- \blacktriangleright For any algorithm A that works on inputs of size n, the function $T(n)$ gives the execution time of A working on an input of size n.
- Algorithm A has runtime of $O(f(n))$ means

 $T(n) \in O(f(n))$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \triangleright $T(n)$: Execution time T is a function of the problem size n.
- \triangleright $O(f(n))$: Complexity class (e.g. $O(\log n)$)

```
for i in 1 .. N do
   for j in 1 \ldots M do
       sequence of statements;
       // without any breaks or jumps to outside
   end for
end for
```
- \blacktriangleright The outer loop executes N times.
- Every time the outer loop executes, the inner loop executes M times.
- \blacktriangleright The statements in the inner loop execute a total of $N \times M$ times.
- \blacktriangleright The complexity is $O(NM)$.

Let's do some exercise!**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

when the problem size N grows to N' the execution time τ grows to τ' according to the term "inside" the Big-Oh

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- ▶ Asymptotic Lower Bounds: a complementary notation for lower bounds
	- \triangleright for large input sizes n, the function $T(n)$ is at least a constant multiple of some specific function $f(n)$

 $\exists n_0 \in \mathbb{N}, c > 0 : \forall n \in \mathbb{N} : (n \geq n_0 \rightarrow f(n) \geq c g(n))$

$$
\blacktriangleright \ \mathcal{T}(n) \in \Omega(f(n)) \ \text{or} \ \mathcal{T}(n) = \Omega(f(n))
$$

- **•** Asymptotically Tight Bounds: $T(n)$ grows exactly like $f(n)$
	- \triangleright $T(n)$ is both $O(f(n))$ and also $\Omega(f(n))$
	- \blacktriangleright $T(n)$ is $\Theta(f(n))$ or $T(n) = \Theta(f(n))$

[Computational Complexity](#page-1-0)

[Refreshment](#page-2-0) [Asymptotic Complexity](#page-3-0) ["Big-Oh" Notation](#page-4-0)

[Presentations](#page-11-0)

[Graphs](#page-13-0) [Terminology and Properties](#page-15-0) [Graph Representations](#page-21-0)

[Exercise](#page-23-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

\blacktriangleright Topics

- 1. Divide and conquer technique (e.g. Mergesort)
- 2. Longest Path Problem
- 3. Minimum Steiner Tree
- 4. Huffman Codes
- \blacktriangleright 20-minute presentations
	- \triangleright What the problem is
	- \triangleright Overview of the existing solutions or a well-know solution

- \blacktriangleright Two presentations in each lecture session in week 38 and 39
- \blacktriangleright Assignment

[Computational Complexity](#page-1-0)

[Refreshment](#page-2-0) [Asymptotic Complexity](#page-3-0) ["Big-Oh" Notation](#page-4-0)

[Presentations](#page-11-0)

[Graphs](#page-13-0) [Terminology and Properties](#page-15-0) [Graph Representations](#page-21-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

[Exercise](#page-23-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

A mathematical structure for representing relationships

 \blacktriangleright E.g. Chemical Bonds, Transportation Maps, ...

Terminology and Properties Formalism

- $G = (V, E)$: graph
- $V =$ nodes
- \blacktriangleright $E =$ edges between pairs of nodes.
- \triangleright Captures pairwise relationship between objects
- Graph size parameters: $n = |V|$, $m = |E|$.

$$
V = \{1, 2, 3, 4, 5, 6, 7, 8\}
$$

\n
$$
E = \{1 - 2, 1 - 3, 2 - 3, 2 - 4, 2 - 5, 3 - 5, 3 - 7, 3 - 8, 4 - 5, 5 - 6, 7 - 8\}
$$

\n
$$
m = 11, n = 8
$$

KORK STRAIN A BAR SHOP

Simple Graph

- \blacktriangleright undirected
- \triangleright no loops (edges that start and end at the same node)
- \triangleright at most one edge between any two vertices

Regular Graph

 \triangleright each vertex has the same number of neighbours

Complete Graph

- \triangleright every pair of vertices has an edge connecting them Planar Graph
- \triangleright can be drawn on the plane such that no edges intersect. Bipartite Graph
	- \triangleright vertices can be split in two sets so that, in both sets, no two vertices are adjacent.

Subgraph of $G = (V, E)$

- \triangleright its vertices form a subset of V
- its edges form a subset of E

Clique

- \blacktriangleright a set of pairwise adjacent vertices
- **a k-clique** has k vertices in this set

Path

Ex a sequence of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Simple Path

 \blacktriangleright a path in which all nodes are distinct.

Two vertices u and v are

- **connected** if there is a path from u to v .
- \triangleright adjacent if there is an edge between them

A graph is

- \triangleright connected if every pair of vertices is connected.
- **E** k-connected if no set of $k 1$ vertices exist that, if removed, would disconnect the graph.

Cycle

a path $v_1, v_2, ..., v_k$ in which $v_1 = v_k, k > 2$, and the first $k-1$ nodes are all distinct.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Tree

- \blacktriangleright a connected acyclic graph.
- \triangleright for directed graphs, each vertex has at most one incoming edge.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- \blacktriangleright G is connected.
- \triangleright G does not contain a cycle.
- \triangleright G has $n-1$ edges.

Graph Representations

Adjacency Matrix

Adjacency matrix: *n*-by-*n* matrix with $A_{uv} = 1$ if (u, v) is an edge.

- \blacktriangleright Two representations of each edge.
- Space proportional to n^2
- \blacktriangleright Checking if (u, v) is an edge takes:
	- \blacktriangleright $\Theta(1)$ time with arrays.
	- \triangleright $O(n^2)$ time with lists.
- Identifying all edges takes $\Theta(n^2)$ time.

Graph Representations

Adjacency List

Adjacency lists: Node indexed array of lists.

- \blacktriangleright Two representations of each edge.
- ► Space is $\Theta(m+n)$.
- \blacktriangleright Checking if (u, v) is an edge takes:
	- \rightarrow O(degree(u)) time time with arrays.
	- \triangleright $O(n^2)$ time with lists.
- I Identifying all edges takes $\Theta(m + n)$ time.

[Computational Complexity](#page-1-0)

[Refreshment](#page-2-0) [Asymptotic Complexity](#page-3-0) ["Big-Oh" Notation](#page-4-0)

[Presentations](#page-11-0)

[Graphs](#page-13-0) [Terminology and Properties](#page-15-0) [Graph Representations](#page-21-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

[Exercise](#page-23-0)

Minimum Spanning Tree Exercise 2^2

 \triangleright A spanning tree of a connected, undirected graph is a subgraph of that graph which is a tree and connects all the vertices together. In a weighted graph, the sum of the weights of the edges in a spanning tree computes the weight of that spanning tree.

A minimum spanning tree (MST) is then a spanning tree with weight less than or equal to the weight of every other spanning tree.

- \triangleright The aim is to get familiar with MSTs:
	- \triangleright Applications of MST in real-world problems
	- \blacktriangleright naive algorithm to find MST
	- \blacktriangleright Kruskal's algorithm
- \triangleright Complete description is available on the course web page (Blackboard)
	- \blacktriangleright [My homepage](http://ceres.hh.se/mediawiki/Amin_Farjudian) for now

 2 Taken from DT8014, 2014

- \blacktriangleright Asymptotic Complexity
- \blacktriangleright "Big-Oh" notation
- \blacktriangleright How O is used to demonstrate algorithm complexity
- \blacktriangleright Fundamentals of Graphs
- \blacktriangleright Exercise

Any Question?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어