PARS: A Process Algebra with
Resources and Schedulers

MohammadReza Mousavi, Michel Reniers, Twan Basten, Michel Chaudron

Eindhoven University of Technology, Post Box 513,
NL-5600 MB, Eindhoven, The Netherlands
Email: {m.r.mousavi,m.a.reniers,a.a.basten,m.r.v.chaudron }@tue.nl

Abstract. In this paper, we introduce a dense time process algebraic
formalism with support for specification of (shared) resource require-
ments and resource schedulers. The goal of this approach is to facili-
tate and formalize introduction of scheduling concepts into process al-
gebraic specification using separate specifications for resource requiring
processes, schedulers and systems composing the two. The benefits of
this research are twofold. Firstly, it allows for formal investigation of
scheduling strategies. Secondly, it provides the basis for an extension of
schedulability analysis techniques to the formal verification process, facil-
itating the modelling of real-time systems in a process algebraic manner
using the rich background of research in scheduling theory.

1 Introduction

Scheduling theory has a rich history of research in computer science dating back
to the 60’s and early 70’s. Process algebras have been studied as a formal the-
ory of system design and verification since about the same time. These theories
have remained separate until recently some connections have been investigated.
However, combining scheduling theory in a process algebraic design still involves
many theoretical and practical complications. In this paper, building upon pre-
vious attempts in this direction, we propose a process algebra for the design of
scheduled real-time systems called PARS (for Process Algebra with Resources
and Schedulers). Previous attempts to incorporate scheduling algorithms in pro-
cess algebra either did not have an explicit notion of schedulers such as that
of [3,12,13] (thus, coding the scheduling policy in the process specification) or
scheduling is treated for restricted cases such as those of [4,10] (that only support
single-processor scheduling).

Our approach to modelling scheduled systems is depicted in Figure 1. Process
specification (including aspects such as causal relations of actions, their timing
and resource requirements) is separated from specification of schedulers. System
level specification consists of applying schedulers to process specifications, on
the one hand, and composing scheduled systems, on the other hand. A distin-
guishing feature of our process algebra is the possibility of specifying schedulers
as process terms (similar to resource-consuming processes). Another advantage
of the proposed approach is the separation between process specification and
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Fig. 1. Schematic view of the PARS approach

scheduler specification that provides a separation of concerns, allows for spec-
ifying generic scheduling strategies and makes it possible to apply schedulers
to systems at different levels of abstraction. Common to most process algebraic
frameworks for resources, the proposed framework provides the possibility of
extending standard schedulability analysis to the formal verification process.

The paper is organized as follows. We define the syntax and semantics of
PARS in three parts. In Section 2, we build a process algebra with asynchronous
relative dense time (i.e., with the possibility of interleaving timing transitions) for
process specification that has a notion of resource consumption. In Section 3, a
similar process algebraic theory is developed for schedulers as resource providers.
Section 4 defines application of a scheduler to a process. In each section, we
first give the formal syntax and semantics of our language and then explain its
usage using different aspects of one or more examples. In Section 5, we compare
our approach to several recent extensions of process algebra with resources and
finally, Section 6 concludes the results and presents future research directions.
Due to space restrictions, in this paper, we leave out a few details of the theory
and some definitions. We give informal explanation for the eliminated parts and
refer the interested reader to [14] for a detailed version of this paper.

2 Process Specification

The first part of specification in PARS consists of process specification which
represents the behavior of the system with the resource requirements of its basic
actions. In our framework, resources are represented by a set R. The amount of
resources required by a basic durational action is modeled by a function p : R —
IR=° (indicating required quantity of each resource). We assume the resource
demand to be constant during execution of basic actions. The resources provided
by schedulers are modeled using a function p: R — IR=°. Active tasks (actions
currently being executed) that require or provide resources are represented by
multisets of such tasks in the semantics. As a notational convention, we refer
to the set of all multisets as M. (We assume that the type of elements in the



multiset is clear from the context.) The operator + and — are overloaded to
represent addition and subtraction of multisets.
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Fig. 2. Syntax of PARS, Part 1: Process Specification

The syntax of process specification in PARS is presented in Figure 2. It re-
sembles a relative dense time process algebra (such as relative dense time ACP of
[2]) with empty process (e(0)) and deadlock (§). The main difference with such a
theory is the attachment of resource requirements to basic actions (most process
algebras abstract from resource requirements by assuming abundant availability
of shared resources) and our interpretation of time as duration of action execu-
tion. Basic action €(t) represents idling which lasts for ¢ time and does not require
any resource. Other basic actions (a, p)(t) are pairs of actions from the set A
together with the respective resource requirement function p and the timing ¢
during which the resource requirement should be provided to the action. Thus,
the time annotation ¢ should be interpreted as a duration, corresponding to the
time duration which action a is to be executed; in standard timed process alge-
bras, time annotations are usually interpreted as (absolute or relative) points in
time corresponding to the occurrence or completion of an action. Terms P ; P,
P || P, P ||| P, P+ P represent sequential composition, abstract, and strict
parallel composition, and nondeterministic choice, respectively. Abstract paral-
lel composition refers to cases where the ordering (and possible preemption) of
actions has to be decided by a scheduling strategy. Strict parallel composition
is similar to standard parallel composition in timed process algebra in that it
forces concurrent execution of the two operands. The deadline operator applied
to process P in o¢(P) specifies that process P should terminate within ¢ units
of time or it will deadlock. Recursion is specified explicitly using the expression
uX.P(X) where free variable X may occur in process P and is bound by puX.
The term fthT P(x;) specifies continuous choice of x; (from the set of timing
variables V;) over set T'. Similar to recursion, variable z; is bound in term P
by operator fwt <+ In this paper, we are only concerned with closed terms (pro-
cesses that do not have free recursion or timing variables). To prevent process P
from performing particular actions in some given set Act (in particular, to force
synchronization among two parallel processes, see e.g., [2]), the encapsulation
expression d4.(P) is used. Using the id : construct, process terms are decorated
with identifiers (natural numbers, following the idea of [4]) which serve to group
processes for scheduling purposes. Note that an atomic action is neither required
to have an identifier, nor its identifier needs to be unique. Later on, in the se-
mantics, a process identifier is augmented with a few estimations of performance
measures of processes, namely relative deadline and worst-case execution time.
Such a semantic identifer, in turn, is referenced by the scheduler specification



domain in order to devise scheduling strategies. Precedence of binding among
binary composition operators is ordered as ;, |||, ||, + where ; binds the strongest
and + the weakest. Unary operators are followed by a pair of parentheses or
they bind to the smallest possible term.

The operational semantics of process specification is given in Figure 3. States
are process terms and the semantics has two types of transitions. First, time

passage (by spending time on resources or idling) M where M is the multiset
that represents the amount of resources required by the actions participating in
the transition. Elements of M are of the form (ids, p), where ids is the set of
identifiers related to the action having resource requirements p. The second type
of transitions, %, represent the completion of actions. These transitions occur
when an action has used the resources it requires for the specified amount of time.
We do not combine resource requirements of different actions, but keep them
separate in a multiset, since they may be provided by different scheduling policies
(based on their respective process identifiers). We use - as a shorthand for
either of the two transitions. Predicate P4/ refers to the possibility of successful
termination of P. The semantics of process specification is the smallest transition
relation (union of the time and action transition relations) and the smallest
termination predicate satisfying the rules of Figure 3.

Rules (I0) and (I1) specify the transitions and termination options of idling
processes. In rule (I1), 0 is a shorthand for the function mapping all resources
to zero. Rules (A0) and (A1) specify how an atomic action can spend time on
its resources and after that commit. The semantics of sequential composition is
captured by (S0)-(S2). Abstract parallel composition is specified by (P0)-(P4)
and strict parallel composition by (SP0)-(SP3). In rule (P0), ¢t > @ uses an
auxiliary unary operator (called deadline shift) specifying that @ is getting ¢
units of time closer to its deadlines. Semantics of this operator is as follows:
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In the above semantics, the rules for sequential composition ((Sh2) and
(Sh3)) are in line with the intuition that in scheduling theory only ready ac-
tions can take part in scheduling and other actions have to wait for their causal
predecessors to commit. Function 7(a,b) in rules (P3) and (SP2) specifies the
result of a synchronized communication between a and b. The semantics of ab-
stract parallel composition deviates from standard semantics of parallelism in
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Fig. 3. Semantics of PARS, Part 1: Process Specification



timed process algebras in that it allows for asynchronous spending of time by the
two parties (rule (P0)). This reflects that depending on availability of resources
and due to scheduling, concurrent execution of tasks can be preempted and se-
rialized at any moment of time. Components not spending time on resources do
not participate (actively) in a time transition. Rules (C0)-(C1) provide a se-
mantics for nondeterministic choice. Given our interpretation of time, the choice
operator does not have the property of time-determinism (which states that
passage of time cannot determine choices): Starting to spend time on an action
reveals the choice in the same way executing an action determines the choice
in untimed process algebras. The deadline operator is defined by (DO0)-(D2).
There is no rule for o¢(P) when P can only do a time step. This means that this
process deadlocks (i.e., missing a deadline results in deadlock). Encapsulation
is defined in rules (EO0)-(E2) stating that the encapsulation operator prevents
process P from performing actions in Act. Rules (R0)-(R1) and (CC0)-(CC1)
specify the semantics of recursion and continuous choice. Note that in the seman-
tics of continuous choice, the choice is made as soon as the process term starts
making a transition. Rules (Id0)-(Id2) specify the semantics of id by adding
the semantic identifier id to the multiset in the transition, where id is the tu-
ple (id, DI(P), WCET(P)) consisting of the syntactic id, (an estimation of) the
deadline, and the worst-case execution time of P. We omit detailed definitions of
Dl and WCET. They are defined in [14] using structural induction on process
terms. Other performance measures can extend or replace this notion of seman-
tic identifier. In semantic rule (Id0), @ stands for adding a semantic identifier
to the set of identifiers of each resource-requirement function in the multiset.

The standard notion of strong bisimulation is not a congruence with respect
to the operators defined in the process language. The problem lies particularly
in the interaction between deadlines and abstract parallel composition. In [14],
it is shown that strong bisimulation is a congruence with respect to a restricted
subset of the language without the deadline operator. Also, there we define a
notion of deadline-sensitive bisimulation that is a congruence. To show how the
process specification language is to be used, next we specify a few common
patterns from scheduling literature [5].

Example 1 (Periodic and Aperiodic Tasks) First, we specify a periodic task,
consisting of an atomic action a requiring a single CPU and 100 units of memory
during its computation time of ¢, and with period of t'.

P, = uX.((a, {CPU — 1, Mem — 100})(¢) ||| e(t') ; X)
Note that the computation time of the periodic task may be larger than the
period (which means that any feasible scheduler must allow for task parallelism).
Now, suppose that the exact computation time of a is not known. However, we
know that the computation time is within a (possibly infinite) interval I, then
the periodic task is specified as follows.

Py = pX.([, c;(a,{CPU + 1, Mem +— 100})(z¢) ||| €(t') 5 X)
In the remainder, we use syntactic shorthand p(I) instead of fztel ().

Aperiodic tasks follow a similar pattern with the difference that instead of
computation time, their period of arrival is not known:



S = pX.((b,{CPU — 1})(t) ||| ([0, 00)) ; X)
If the process specification of the system consists of periodic user level tasks and
aperiodic system level tasks (e.g., system interrupts) that are to be scheduled
with different policies, the specification goes as follows:

SysProc = System : (S) || User : (Ps)
where System and User are distinct integer id’s for these two types of tasks.

Example 2 (Portable Tasks) Suppose that the task a can run on different plat-
forms, either on a dual-processor machine on which it will take 2 units of time
and 100 units of memory (during those 2 time units) or on a single processor
for which it will require 4 units of time and 70 units of memory (over the 4 time
units). Then it is specified as follows:

P = (a,{CPU — 2, Mem — 100})(2) + (a, {CPU — 1, Mem — 70})(4)

3 Scheduler Specification

The second part of system specification in PARS is about scheduler specifica-
tion. In this part, we model availability of resources and the strategy to grant
these resources to processes requiring them. This is done by using predicates re-
ferring to properties of processes eligible for receiving the resources. The syntax
of scheduler specification (Sc) is similar to process specification and is specified
in Figure 4. Basic actions of schedulers are predicates (Pred) mentioning ap-
propriate processes to be provided with resources and the amount of resources
available (p) during the specified time (t). The predicate can refer to the syntac-
tic identifier, deadline or worst-case execution time of processes. In the syntax
of Pred, Id is a variable from the set of semantic identifiers V; (with a distin-
guished member Id and typical members Idg, Idy,etc.). To refer to the specific
process receiving the provided resources, we use Id and to refer to the processes
in its context we use other members of V;. Following the structure of a semantic
identifier, Id is a tuple containing syntactic identifier (Id.id), deadline (Id.DI)
and execution time (Id.WCET). As in the process language, the language for
predicates can be extended to other metrics of processes.

A couple of new operators are added to the ones in the process specifica-
tion language. The preemptive precedence operator > gives precedence to the
right-hand-side term (with the possibility of the right-hand side taking over the
execution of the left-hand side at any point). Continuous preemptive precedence
) e 8ives precedence to the least possible matching of z; € T. To be more pre-
cise, a continuous precedence operator generates a symbolic transition system
with all possible ¢ € T, but, when confronted with a process, allows a transition
with a particular ¢’ if the processes confronted with cannot make a transition
with ¢ € T At” < ¢'. The non-preemptive counter-parts of precedence operators
>" and [)Zt < have the same intuition but they do not allow taking over of one
side if the other side has already decided to start. Timing variables bound by
continuous choice or continuous precedence operators can be used in predicates
(as timing constants) and in process timings.
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Fig. 4. Syntax of PARS, Part 2: Scheduler Specification

The semantics of schedulers is presented in Figure 5. It induces a symbolic
transition system that has predicates indicating resource grants on its labels. At
this level, we assume no information about resource requiring processes that the
scheduler is to be confronted with. Thus, the resource grant predicates specify
the criteria that processes receiving resources should satisfy and the criteria they
should falsify. The latter can be used to state that a process should not be able to

perform higher priority transitions. The transition relation is of the form %t,
where M is a multiset containing predicates about processes that can receive
a certain amount of resources during time ¢. Elements of M are of the form
(pred, npred, p) where pred is the positive predicate that the process receiving
resources should satisfy, npred is the negative predicate that it should falsify
and p is the function representing the amount of different resources offered.
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Fig. 5. Semantics of PARS, Part 2: Scheduler Specification

Rules (ScA0) and (ScA1) specify the semantics of atomic scheduler actions.
Rule (ScA1) shows that a scheduler can provide its resources if the requiring
process satisfies its predicate. The negative predicate of a basic scheduler is set
to false (which is by default falsified). Rules (Pr0)-(Pr2) specify the semantics
for the precedence operator. In these rules, M V,eg pred stands for adding pred
as a disjunction to all negative predicates in M. Enabledness of a process term



is used as a negative predicate to assure that a lower priority process cannot
take over a higher priority one. The notion of enabledness is defined as follows.
(P — stands for the possibility of performing a transition P % P’ for some P’
and . Moreover P - stands for its negation.)

en((pred, p)(t)) = pred

en(P)Ven(Q) if Py ANP—
en(P; Q) = en(P) if ~(Py)
en(Q) if P/ANP—-»

en(Pl|Q)=en(P+Q)=en(Pr> Q) =en(P>"Q)=-en(P)Ven(Q)

en(fxteT P(x1)) = en(),,erP(xr)) = en()y, cpP(we)) = 2 € T A en(P(xy))
Rules (CPr0)-(CPr1) present the semantic rules for the continuous precedence
operators. In rule (CPr0), expression |T|; is defined as {t'|t' € T At < t}.
Note that in both preemptive precedence operators, the possibility of other op-
tions (lower or higher priority processes) always remains after making a tran-
sition. This allows for preempting or changing the resource provision at any
point of time based on the processes that the scheduler is confronted with.
Rules (NPr0)-(NPr2) and (NCPr0)-(NCPr1l) specify the semantics of non-
preemptive precedence operators. We omit the semantic rules for operators
shared with process specification since they are analogous to those specified
in the process specification semantics. Apart from action transition rules such
as (P1) and (P3) that are absent in the semantics of schedulers, the rest of the
rules in Figure 3 remain intact for this semantics.

Example 3 Consider the process specification of Example 1, where the system
consists of two types of processes: User processes and system processes. Suppose
that our execution platform can provide two processors and 200 units of mem-
ory. System processes have priority over user processes (in using CPUs). The
following scheduler is the first attempt to specify our scheduling strategy:

Schytem = (true, {Mem — —200})([0, c0))

PrSchepuo = (1d.id = User, {CPU — —2})([0,00)) >

(Id.id = System,{CPU — —2})([0, c0))

Schg = Schyrem ||| PrSchepuo
The above specification generates a transition system that allows arbitrary time
transitions providing both CPUs and 200 units of memory with negative predi-
cate false to system processes (meaning that that there is no process that can
take over a system process). However, according to rule (Pr0), for transitions
providing CPU to user processes, the predicate ¢ € [0,00) A Id.id = System
is added as a negative predicate. Intuitively, this should mean that CPUs are
provided to a user process if no system process is able to take that transition.
However, this would prevent the user process from gaining access to its CPU
requirement even if only a single CPU is used by a system process (thus, one
CPU can be wasted without any reason). The following scheduler specification
solves this problem by separating the scheduling process of the two CPUs:

PrSchepyr = (Id.id = User, {CPU — —1})([0, <)) >

(Id.id = System,{CPU — —1})([0, c0))
SCh1 = PTSChchl |H PTSChCPU1 ‘H SChMem



Part of the symbolic transition system of scheduler Sch; is depicted in Figure 6.
Of course, part of the intuitive explanation given above remains to be formalized
by the semantics of applying schedulers to processes where resources are provided
to actual tasks (i.e., the symbolic transition of a scheduler is matched with an
actual transition of a process).

[(Id.id = System, false, {CPU +— —1}),
(Id.id = User, Id.id = System, {CPU — —1}), (true, false, {Mem — —200})], ¢

[(Id.id = System, false, {CPU +— —1}),
(Id.id = System, false, {CPU — —1}),
(true, false, {Mem +— —200})], ¢t

[(Id.id = User, Id.id = System,{CPU — —1}),
(Id.id = User, Id.id = System, {CPU — —1}),
(true, false, {Mem — —200})],t

Fig. 6. Part of the transition system of scheduler Sch; in Example 3

Example 4 (Specifying Scheduling Strategies) To illustrate the scheduler speci-
fication language, we specify a few generic single-processor scheduling strategies.
Non-preemptive Round-Robin Scheduling: Consider a scheduling strategy where
a single processor is going to be granted to processes non-preemptively in an
increasing order of process identifiers (from 0 to n). The following scheduler
specifies the round-robin strategy.

Schyp_grr = /LX((M =n, {CPU — 1})[0,00) >t LD

((Id = 1,{CPU ~— 1})[0,00) &* (Id = 0,{CPU ~ 1})[0,00))) ; X

Rate Monotonic Scheduling: Consider the following process specifications of sev-
eral periodic tasks:

SysProc= Py || P || ... || Pa

Py = pX.(2i +1) ((ai, pi) (1) Il] (2) : (e(#)) ; X
The following scheduler specifies the preemptive rate monotonic strategy, where
processes with the shortest period (the highest rate) have priority:

RMSch(i,x) =

(Idid =2i+1NIdy=2i N1dy.WCET = z,{CPU  1})([0, x0))

RMSch =), cp=0RMSch(0,z;) + ...+ RMSch(n, z)
Scheduler process RMSch(i,t) specifies that the process receiving CPU should
have an odd identifier (thus, being an action) and its corresponding period should
have worst-case execution time ¢t. Process RMSch states that the processes with
the least period have precedence over the others.

4 Applying Schedulers to Processes

Scheduled systems are processes resulting from application of a scheduler to
processes. Syntax of scheduled systems is presented in Figure 7. In this syntax,
P and Sc refer to the syntactic classes of processes and schedulers presented
in the previous sections. Term ((Sys))g. denotes applying scheduler Sc to the
system Sys and Jges(Sys) is used to close a system specification and prevent it
from requiring resources in Res.



Sys == P | (Sys) s, | Sys; Sys | Sys || Sys | Sys ||| Sys | Sys + Sys |
Ores(Sys) | 0:(Sys) | pX.Sys(X) | id : Sys

Fig. 7. Syntax of PARS, Part 3: Syntax of Scheduled Systems

The semantics of the new operators for scheduled systems is defined in Fig-
ure 8. The type of labels in the transition relation is the same as that of the
transition relation in the process specification semantics of Figure 3 (hence,
multisets in time transitions are resource requirement multisets). Since a pro-
cess is a system by definition, all semantic rules of Figure 3 carry over to the
semantics of systems. It should be understood that the variables ranging over
process terms in Figure 3, are in this case ranging over the more general class of
system terms.
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Fig. 8. Semantics of PARS, Part 3: Applying Schedulers to Processes

The application operator (Sys)) o is defined by semantic rules (Sys0)-(Sys2).
In (Sys0), the operator apply : Sys x Mx M — P (M) is meant to apply a mul-
tiset of resource providing predicates (third parameter) to a multiset of resource
requiring tasks (second parameter) originated from a system (first parameter).
The formal definition of this operator is the smallest function satisfying the
following constraint:

vaJM’ VM”EapplyTask(S,M,m,@) apply(sa MN7 M — [mD - apply(& M7 M/)
In this statement, applyTask (defined below) is meant to provide the set of
possible outcomes of applying a single resource providing task m to the resource
requiring multiset M (the forth parameter of applyTask is used to keep track of
resource requiring tasks checked so far to receive the provided resource). This
statement means that the application of a scheduler task to a multiset of process
tasks is done by taking an arbitrary scheduler task and applying it to the multiset
of process tasks and starting over with the rest of scheduler tasks. The function



applyTask is the smallest function satisfying the following constraints:
applyTask(S,0,m, M) = {0}
N + N’ € applyTask(S, [(ids, p)] + M, (pred, npred, p), M'), where
if pred(ids, M + M’ + [(ids, p)])A
—engage(S, M + M’ + [(ids, p)], (pred, npred, p))
N = [(ids,maz(0, p + p)]A
N' € applyTask(S, M, (pred, npred, min(0,p + p)), M’ + [(ids, p)])

otherwise

N = [(ids, p)]

N’ € applyTask(S, M, (pred, npred,p), M’ + [(ids, p)])
The above expression states that if we pick a resource requiring task (ids, p)
which satisfies the positive predicate (specified by pred(ids, M + M’ +[(ids, p)]))
and the tasks in its context (including the picked task itself) cannot satisfy the
negative predicate (~engage(S, M + M’ +[(ids, p)], (pred, npred, p))) then we can
grant the resources to this task and continue feeding the remaining tasks with the
remaining resources. Otherwise, we leave this resource requiring task and pro-
ceed with the remaining tasks. In this expression, min(0, p+p) and maz (0, p+p)
are point-wise minimum and maximum of 5(r) + p(r) with 0, respectively. The

predicate pred(fd, M) means that there exists a mapping from variables in V;
(set of id variables) to the semantic identifiers in M (particularly mapping Id to
a member of ids) which satisfies pred. The predicate engage is formally defined
as follows: /
engage (S, M, (pred, nprfd,ﬁ)) = EIM,,t7S,£dS,p,i7iS Mt st A M C M'A
(ids, p) € M' Nid € ids A npred(id, M') A 3rerp(r) > 0ADB(r) <0

This predicate checks if S can perform a transition with a resource requiring
multiset M’ that firstly, contains M (thus, extending the same group of tasks),
secondly, there exists a task identifier id in it that can satisfy the negative
predicate (npred(id, M'), defined in the same way as pred(id,...)) and the cor-
responding task can potentially use the resources offered by p. To summarize,
it checks for existence of a higher priority task in the context that can possibly
consume the resources offered by the scheduler.

Note that application of a scheduler to a system does not necessarily satisfy all
resource requirements of the system. Since the transition system of a scheduled
system is itself a process specification transition system, several schedulers can
be applied to a system in a distributed (using parallel composition of several
schedulers) or hierarchical (using several levels of application operator) fashion
in order to satisfy all its requirements.

Rules (ERO0)-(ER2) represent preventing the system from requiring resources

of a certain type by using an encapsulation operator on a given set of resources
(similar to the encapsulation construct for actions).

Example 5 Consider the following process specification and the two different
Earliest Deadline First (EDF) schedulers:



Proc=1:(o1(a,{CPU — 1, Mem — 100}(1))) ||
2: (02(b,{CPU — 1, Mem — 100}(2)))
EDFy = pX.(),,crzo (Ud-Dl = 2,){CPU + =2, Mem — —200}(2)) ; X
EDF; = pX.(),,cpzo ((I1d.Dl = 2;){CPU — —1, Mem — —100}(2)) |||
Ve,emzo((Id.Dl = 24 ){CPU + —1, Mem +— —100}(2))) ; X

In the system 9{cpu,pem) ((Proc) ppp, ), the scheduler should start providing
all available resources to task 1 for one unit of time, thus wasting one CPU and
100 units of memory. After that, available resources will be given to process
2. However, the process misses its deadline, since it needs 2 units of time to
compute while its deadline has been shifted to 1 already. In contrast, system
Otcpu,memy ((Proc) ppp,) allows for a successful run. In this case, at the first
time unit each of the two processes can receive a CPU and 100 units of memory.
This is due to the fact that after providing the required resources of process 1
by one of the basic schedulers, the other scheduler may assign its resources to
process 2. It follows from the semantics that after applying one resource offer
to process 1 the whole process cannot engage in a resource interaction with a
deadline of less than 2 and thus process 2 can receive its required resources.

This example helps us to realize that although scheduling policies such as
earliest deadline first are assumed to be well-defined scheduling policies, formal-
izing their definition shows that different flavors of them may exist in practice
(especially with respect to multiple resources), some of which may perform better
than others for different systems.

5 Related Work

Several theories of process algebra with resources have been proposed recently.
Our approach is mainly based on dense time ACSR of [3]. ACSR [13,12] is a
process algebra enriched with priorities and specification of resources. Several
extensions to ACSR have been proposed over time for which [13] provides a
summary. The main shortcoming of this process algebra is the absence of an
explicit scheduling concept. In ACSR, scheduling strategy is coded by means
of priorities inside the process specification domain. Due to lack of a resource
provision model, some other restrictions are also imposed on resource demands
of processes. For example, two parallel processes are not allowed to call for one
resource or they deadlock.

Our work has also been inspired by [4]. There, a process algebraic approach to
resource modelling is presented and application of scheduling to process terms
is investigated. This approach has an advantage over that of ACSR in that
scheduling is separated from the process specification domain. However, firstly,
there is no structure or guideline to define schedulers in this language (as [13] puts
it, the approach looks like defining a new language semantics for each scheduling
strategy) and secondly, the scheduling is restricted to a single resource (single
CPU) concept.

Scheduling algebra of [17] defines a process algebra that has processes with
interval timing. Computing the possible start time of tasks (so-called anchor



points) is the only aspect of scheduling that is taken into account and it abstracts
from resource requirements/provisions.

RTSL of [10] defines a discrete-time process algebra for scheduling analysis
of single processor systems. The only shared resource in this process algebra is
the single CPU. The restriction of tasks, in this approach, to sequential pro-
cesses makes the language less expressive than ours (for example, in the process
language a periodic task whose computation time may be larger than its period
cannot be specified). Also, coding the scheduling policy in terms of a priority
function may make specification of scheduling more cumbersome (similar to [4]).

Timed automata, as a well-known specification method for timed systems,
has been extended to cover the notion of resources and scheduling as well (see
[9], for example). Papers [16] and [11] are examples of an extension of untimed
models with resources.

Asynchrony in timed parallel composition (interleaving of relative timed-
transitions) has been of little interest in timed process algebras. Semantics of
parallel composition in ATP [15] and different versions of timed-ACP [2], timed-
CCS [6,7] and timed-CSP [8] all enforce synchronization of timed transitions
such that both parallel components evolve concurrently in time. The cIPA of [1]
is among the few timed process algebras that contain a notion of timed asyn-
chrony. In this process algebra, non-synchronizing actions are forced to make
asynchronous (interleaving) time transitions and synchronizing actions are spec-
ified to perform synchronous (concurrent) time transition. This distinction is not
necessary in our framework, since non-synchronizing actions may find enough re-
sources to execute in true concurrency and synchronizing actions may be forced
to make interleaving time transitions due to the use of shared resources (e.g.,
scheduling two synchronizing actions on a single CPU).

6 Conclusion

In this paper, we propose an approach to integrate the separate specifications of
real-time behavior (including aspects such as duration of actions, causal depen-
dencies, synchronization) and scheduling strategy in an integrated and uniform
process algebraic formalism. This allows for formalizing scheduling algorithms
and benefiting from them in process algebraic design of systems as independent
specification entities that influence the real-time behavior of the system. Our
technical contribution to the current real-time and/or resource-based process
algebraic formalisms can be summarized as defining a dense and asynchronous
timed process algebra for resource consuming processes, providing a (similar)
process algebraic language with basic constructs for defining resource provid-
ing processes (schedulers with multiple resources) and defining application of
schedulers to processes in an algebraic fashion.

The theory presented in this paper can be completed/extended in several
ways. Among those, axiomatizing PARS is one of the most important ones. As
it can be seen in this paper, the three phases of specifications share a major
part of the semantics; thus bringing the three levels of specification closer (for
example, allowing for multi-level scheduling of a resource or allowing resource



consuming schedulers) can be beneficial. Furthermore, applying the proposed
theory in practice calls for simplification (e.g., to discrete time), optimization
for implementation, tooling and experimenting in the future.
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