
Real-Time Embedded Systems

DT8025, Fall 2016

http://goo.gl/AZfc9l

Lecture 8

Masoumeh Taromirad
m.taromirad@hh.se

Center for Research on Embedded Systems
School of Information Technology

1 / 51

Smart phones actors

Google

I Platform:
Android

I Language:
Java

I Development:
Eclipse

Apple

I Platform:
iOS

I Language:
Objective C

I Development:
Xcode

Microsoft

I Platform:
Windows
Phone

I Language:
C#

I Development:
Visual Studio

We choose Android because it is more open, it is easier to
distribute apps and most of you are familiar with Java and Eclipse.
Java libraries are available. Swing is not available, UIs are done in
a different way.

2 / 51

A paradigm shift

Before
Large teams of programmers
involved in large pieces of
software following a software
engineering process.

Now
One (or a few) programmers
developing apps that do very
specific things and make use of
other apps for standard things.

Before
Big releases, including
distributing to customers or
retailers.

Now
Just distribute online or use
some app market.

3 / 51

The Platform Architecture

4 / 51

Linux kernel

I Device drivers

I Process management (process
creation, memory management)

I Interprocess communication

We will not use this directly but it is
important to know that each
application that is started is a Linux
user! So: applications run in
isolation from other apps!

5 / 51

Hardware Abstraction Layer (HAL)

I standard interfaces that expose
device hardware capabilities to
the higher-level.

I to access device hardware, the
Android system loads the library
module for that hardware
component.

6 / 51

Android Runtime (ART)

I Every Android application runs
in its own process, with its own
instance of the Android Runtime
(ART).

I ART has been written so that a
device can run multiple VMs on
low-memory devices efficiently.

7 / 51

Android Runtime (ART)

I The ART VM executes DEX
files, a bytecode format which is
optimized for minimal memory
footprint.

I The ART relies on the Linux
kernel for underlying
functionality such as threading
and low-level memory
management.

8 / 51

Native C/C++ Libraries

Many core Android system
components and services, such as
ART and HAL, are built from native
code that require native libraries
written in C and C++.

9 / 51

Java API Framework

I The entire feature-set of the
Android OS is available to you
through APIs written in the
Java language.

View System, Resource Manager,
Notification Manager, Activity
Manager, Content Providers, ...

10 / 51

System Apps

I Android applications

I Android comes with a set of
core apps for email, messaging,
calendars, internet browsing,
contacts, and

Apps included with the platform
have no special status among the
apps the user chooses to install.

11 / 51

Hello World!

What could an Android hello world application be like?

12 / 51

Android 101

Download and install Android SDK (ADT Bundle) from:
http://developer.android.com/sdk/

13 / 51

http://developer.android.com/sdk/

Android 101

In order to run your Hello World! app:

1. connect your Android cell-phone and enable USB debug on
your device, or

2. install a virtual device.

14 / 51

Hello World!

1. Create a new Android Virtual Device (AVD)

2. Create a new Android application project

3. Run and see the behavior

4. Check out the res/layout and res/values

15 / 51

What did we see?

A screen: this will be reflected in the program as an Activity.

UI components: in the program these are Views.

16 / 51

Applications

The AndroidManifest puts together

Activities Services

There is no main!

BroadcastReceivers ResourceProviders

Intents
to build an application.

Layouts Drawables Values

17 / 51

Some code

void onClick(View view) {

try{

String address = addressfield.getText().toString();

address = address.replace(’ ’, ’+’);

Intent geoIntent

= new Intent(android.content.Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=" + address));

startActivity(geoIntent);

} catch (Exception e)

}

This is something a button can do when clicked! We just have to
associate this function with the right button!

18 / 51

Some code

void onClick(View view){

try{

String address = addressfield.getText() .toString();

address = address.replace(’ ’, ’+’);

Intent geoIntent

= new Intent(android.content.Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=" + address));

startActivity(geoIntent);

} catch (Exception e)

}

A kind of View called an EditText can be used this way!

19 / 51

Some code

void onClick(View view){

try{

String address = addressfield.getText().toString();

address = address.replace(’ ’, ’+’);

Intent geoIntent

= new Intent(android.content.Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=" + address));

startActivity(geoIntent);

} catch (Exception e)

}

An Intent has an action and some data. It is something the
program can ask the OS to deliver to some app that can do this!

20 / 51

Some code

void onClick(View view){

try{

String address = addressfield.getText().toString();

address = address.replace(’ ’, ’+’);

Intent geoIntent

= new Intent(android.content.Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=" + address));

startActivity(geoIntent) ;

} catch (Exception e)

}

This is where the program asks the OS to deliver the Intent.

21 / 51

Activities

Each activity has a window to display its UI. It typically fills the
screen.

An application usually consists of multiple activities that are
loosely bound to each other.

Typically, one activity in an application is specified as the ”main”
activity, which is presented to the user when launching the
application for the first time.

22 / 51

Activities

Activities can start each other, as a result:

I Started activity pushed on top of the stack, taking user focus,

I Starting activity stopped and remains in the stack.

The Skype app

I Main

I Contacts

I Profile

I Latest

23 / 51

Life cycle

24 / 51

An application with one activity

public class Quiter extends Activity{

public void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button q = (Button)findViewById(R.id.quitButton);

q.setOnClickListener(

new Button.OnClickListener(){

public void onClick(View view){

finish();

}});

}

}

25 / 51

The AndroidManifest (generated automatically!)

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="...>
<application android:label="@string/app_name"

android:icon="@drawable/icon">

<activity android:name="Quiter"

android:label="@string/app_name">

<intent-filter>

<action android:name=

"android.intent.action.MAIN" />

<category android:name=

"android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

26 / 51

The resources: main layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="...

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<Button

android:id="@+id/quitButton"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:text="@string/quitText"

/>

</LinearLayout>

27 / 51

The resources: string values

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Quitter</string>

<string name="quitText">Stop this!</string>

</resources>

28 / 51

The resources: drawables

res/drawable-hdpi/icon.png

29 / 51

Exploring the life cycle

We implement all the methods that are called by the system:

public class Quitter extends Activity{

public void onCreate(Bundle savedInstanceState){...}

public void onPause(){...}

public void onStop(){...}

public void onDestroy(){...}

public void onResume(){...}

public void onStart(){...}

public void onRestart(){...}

}

Don’t forget to call super.onSomething before doing other stuff
when you override these methods!

30 / 51

Exploring the life cycle

We can use android.util.Log to produce debugging messages in
the development terminal.

public void onResume(){

super.onResume();

Log.d("quitter", "onResume");

}

public void onStart(){

super.onStart();

Log.d("quitter", "onStart");

}

public void onRestart(){

super.onRestart();

Log.d("quitter", "onRestart");

}

31 / 51

Processes in Android

Upon starting an application: a new Linux process with a single
thread of execution.

By default, all components in the same process and thread (called
the ”main” thread).

Upon starting a component within an existing application:
component is started within that process and uses the same thread
of execution.

32 / 51

Keeping the UI reactive

Single thread model: challenge for reactivity.
Time consuming operations: separate threads (”background” or
”worker” threads).

Note: the Android UI toolkit should not be accessed from outside
the UI thread (not thread-safe UI methods)

33 / 51

The main thread

Run event listener and rest otherwise!

Posting runnables

To ask the UI thread to run some code:

public boolean post (Runnable action)

public boolean postDelayed (Runnable action,

long delayMillis)

34 / 51

Runnable

The interface java.lang.Runnable represents a command that
can be executed.
A class that implements Runnable has to provide a method

public void run()

Threads in Java
Also used to start new threads in a Java program. This is how:

I Create a Thread passing a Runnable in the constructor.

I To start the thread use the method start(); it calls the
run() method in the runnable.

35 / 51

Example

See the ManyThreads program to illustrate the constructs.

36 / 51

Another example

The prime calculator

We input a number N and get the prime number of order N. We
use an extra button to test whether the UI is reactive even when
calculating large prime numbers.

37 / 51

Calculating in the same thread

What we want to do when a number is given

int nr = Integer.parseInt(edittext.getText().toString());

long prime = primeNr(nr);

showtext.setText(""+ prime);

Place this code in the OnKeyListener for the EditText.

For large values it will make the UI unusable: the calculation takes
a long time and the main thread cannot take care of other events.

38 / 51

Starting another thread to calculate

What we could do when a number is given

new Thread(new Runnable() {

public void run() {

int nr = Integer.parseInt(edittext.getText().toString());

final long prime = primeNr(nr);

showtext.setText(""+prime);

}

}).start();

Place this code in the OnKeyListener for the EditText.

The main UI thread and this new worker thread take turns to
execute.

39 / 51

Starting another thread to calculate

But it does not work!
We are not allowed to update the UI from other threads!

What we could do when a number is given

new Thread(new Runnable() {

public void run() {

int nr = Integer.parseInt(edittext.getText().toString());

final long prime = primeNr(nr);

showtext.setText(""+prime) ;

}

}).start();

40 / 51

Posting to the UI thread

Posting runnables

Views have a couple of methods that allow you to ask the UI
thread to run some code:

public boolean post (Runnable action)

public boolean postDelayed (Runnable action,

long delayMillis)

41 / 51

The prime calculator again

What we do when a number is given

new Thread(new Runnable() {

public void run() {

int nr = Integer.parseInt(edittext.getText().toString());

final long prime = primeNr(nr);

showtext.post(new Runnable() {

public void run() {

showtext.setText(""+ prime);

}

});

}

}).start();

42 / 51

Services

Applications might need to do work even when the user is not
interacting with the app.

Services: to be created and started from other components by
passing Intents.
Run in the background and do not provide a UI.
May generate Notifications to start an Activity (with a UI)

43 / 51

Services or worker threads?

If you need to perform work outside your main thread, but only
while the user is interacting with your application, then you should
probably instead create a new thread

44 / 51

The echo client app

The launcher Activity

1. A button to start a
Service to handle a
TCP connection.

2. The Activity
finishes directly
after calling the
Service.

3. An Intent is passed
to the method that
starts the service.

4. All this is done in
the listener for the
button.

The Service

1. Runs in the main thread.

2. We have to define the methods that
are used by the system:

I void onCreate()
I int onStartCommand(Intent i,

int flags, int id)
I void onDestroy()

3. Must be terminated explicitely
I stopSelf
I or stopService(Intent i)

45 / 51

Services and threads

Activities and Services of an app run in the same main thread. If
we want to do things in other threads we have to do it explicitly.

We would also like the worker thread of a Service to be very much
like the main thread: doing nothing but waiting for messages to
work on.

Loopers, Handlers, HandlerThreads

1. Every thread in android can be associated with a Looper
(listens to messages)

2. We can associate Handlers to Loopers: they can receive
messages that are put in a queue and dealt with in order.

3. HandlerThreads are already associated to a looper.

46 / 51

A Service with a ServiceHandler

The following is the program structure we suggest for a Service
that can be asked to do several things.

Define a ServiceHandler inside your Service class

private final class ServiceHandler extends Handler{

public ServiceHandler(Looper looper){

super(looper);

}

// override handleMessage:

public void handleMessage(Message msg){

// Normally we would do some work here!

// switch on msg.what (integer)

// to distinguish between different things to do!

}

}

47 / 51

A Service with a ServiceHandler (ctd.)

onCreate starts a HandlerThread and associates a ServiceHandler to
its Looper

public class TheService extends Service{

private Looper mServiceLooper;

private ServiceHandler mServiceHandler;

public void onCreate() {

HandlerThread thread =

new HandlerThread("TheServiceWorkerThread",

Process.THREAD_PRIORITY_BACKGROUND);

thread.start();

mServiceLooper = thread.getLooper();

mServiceHandler = new ServiceHandler(mServiceLooper);

}

48 / 51

A Service with a ServiceHandler (ctd.)

onStartCommand just sends messages to the ServiceHandler

public class TheService extends Service{

public int onStartCommand(Intent intent,

int flags,

int startId) {

Message msg = mServiceHandler.obtainMessage();

msg.what = intent.getExtras().getString("WhatToDo"));

mServiceHandler.sendMessage(msg);

return START_STICKY;

}

}

49 / 51

How does a Service start an Activity?

Services that have done what was required of them and want the
app to start an Activity to interact with the user should not start
the Activity themselves! (the user might be using some other
app!).

Instead they should produce a Notification that the user can select
in order to start an Activity.

50 / 51

An application with two Activities and a Service

Check the code we distribute with this lecture!

51 / 51

	
	What's Android?
	Activities
	Threads, loopers, handlers
	Services
	Notifications

