
Embedded Systems Programming - PA8001
http://goo.gl/YdEcZU

Lecture 3

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering



A simple embedded system

Follow an object using sonar echoes. Control parameters sent over
wireless. The servo controls wheels.

data signals
Servo

Radio
packets

Input Output

Input

Object

Distance

Sonar

Params

Controller

Decoder

Control



The view from the processor

Servo output portSensor input port

read write

read

Radio input port

Program



The program

Our order of business:
Concurrency matters!

Even with a single processor, and
more so in current parallel
architectures.

If time allows...
How to implement threads.



The program: busy waiting input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

Functions creating an
illusion to the rest of the
program!

Assuming that status is
automatically reset when
data is read.



The program: output

void servo_write(int sig){

SERVO_DATA = sig;

}



The program: algorithms

Control

void control(int dist, int *sig, struct Params *p);

Calculates the servo signal.

Decode

void decode(struct Packet *pkt, struct Params *p)

Decodes a packet and calculates new control parameters



The program: a first attempt

main(){

struct Params params;

struct Packet packet;

int dist, signal;

while(1){

dist = sonar_read();

control(dist, &signal, &params);

servo_write(signal);

radio_read(&packet);

decode(&packet,&params);

}

}



Problems?

radio

echoes
sonar

packets

Problem: Unknown and unrelated frequencies of events

Ignoring the other event while busy waiting!



The problem explained

RAM and files vs. external input

I Data is already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, sensors may
provide no (useful) content!

I They produce data only because they are asked to (. . . remote
transmitters act autonomously!)

Memory-mapped I/O may give the wrong illusion!



The program: a second attempt

while(1){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,&params);

servo_write(signal);

}

if(RADIO_STATUS & READY){

packet->v1 = RADIO_DATA1;

...;

packet->vn = RADIO_DATAn;

decode(&packet,&params);

}

}

Destroy the functions for
reading and have only
one busy waiting loop!



Centralized busy waiting

Breaking modularity:

I Checking both events in one big busy-waiting loop

I Complicating the simple read operations

100% CPU usage, no matter how frequent input data arrives.

Try to make the main loop run less often!



The program: a third attempt

The cyclic executive

while(1){

sleep_until_next_timer_interrupt();

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,&params);

servo_write(signal);

}

if(RADIO_STATUS & READY){

packet->v1 = RADIO_DATA1;

...;

packet->vn = RADIO_DATAn;

decode(&packet,&params);

}

}

Compromise: power
consumption vs.
response time



Problems?

echoes

radio
packets

sonar

Issue: different duration (processing time) of tasks



Concurrent execution

I Hitherto: a solution for different frequencies (and the waiting
time)

I Challenge: concurrent execution

Possible solution
Seizing control and allowing for other tasks to take over:
interleaving task fragments



Interleaving by hand

void decode(struct Packet *pkt, struct Params p){

phase1(pkt,p);

try_sonar_task();

phase2(pkt,p);

try_sonar_task();

phase3(pkt,p);

}

void try_sonar_task(){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,&params);

servo_write(signal);

}

}

Again, breaking
modularity in an ad-hoc
way. How many phases
of decode are sufficient?



Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

while(expr){

try_sonar_task();

phase21(pkt,p);

}

}



Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

int i = 0;

while(expr){

if(i%800==0)try_sonar_task();

i++;

phase21(pkt,p);

}

}

Unstructured and ad-hoc; any better alternative?



About practical 1

In lab 1 you will program 3 functions

I Test-Driven Development of a square root algorithm,

I Porting square root to write on (the HDMI) display,

I Interleaving the blinker with the square root, and

I Modify the interleaving to keep the blinking period intact.



Automatic interleaving?

There are 2 tasks, driven by independent input sources.

Handle sonar echoes running the
control algorithm and updating
the servo.

Handle radio packets by running
the decoder.

Had we had access to 2 CPUs we could place one task in each. We
can imagine some construct that allows us to express this in our
program.



Two CPUs

Servo output portSensor input port

Radio input port

parameters

read write

read

CPU1
Controller

RAM

CPU2
Controller



Two CPU’s program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

&params);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,&params);

}

}

We need some way of making one program of this! We will deal
with it next lecture!



Concurrent Programming

Concurrent programming is the name given to programming
notation and techniques for expressing potential parallelism and
solving the resulting synchronization and communication problems.

A system supporting seemingly concurrent execution is called
multi-threaded.

A thread is a unique execution of a sequence of machine
instructions, that can be interleaved with other threads executing
on the same machine.



Where should threads belong?

A programming language?

As in Java or Ada. Programs are well organized and are
independent of the OS.

Libs and OS?
Like C with POSIX threads? Good for multilanguage composition
given that OS standards are followed.

This course - first part

For pedagogical purposes we choose to work with C and a small
kernel.



Our first multithreaded program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

&params);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,&params);

}

}

main(){

spawn(decoder_main);

controller_main();

}



The critical section problem

What will happen if the params struct is read (by the controller)
at the same time it is written (by the decoder)?

I.e., what if the scheduler happens to insert some decoder
instructions while some, but not all, of the controller’s reads have
been done?

This problem is central to concurrent programming where there is
any ammount of sharing!



Critical sections in real life

Car dealer Car buyer
Displays used car
Puts up price tag

Displays luxury car
Becomes interested,sells her old
car

Updates price tag
Gets angry!



Critical sections in real life

Car dealer Car buyer
Displays used car
Puts up price tag

Displays luxury car
Updates price tag

Chooses to keep her old car
All good!



Critical sections in programs

Imagine uppdating the same bank account from two places at
approximately the same time (e.g. your employer deposits your
salary at more or less the same time as you are making a small
deposit).

int account = 0;

account = account + 500; account = account + 10000;

When this is compiled there might be several instructions for each
update!



Critical sections in programs

load account,r1

add 500,r1

store r1, account

load account, r2

add 10000, r2

store r2, account

Final balance is 10500



Critical sections in programs

load account, r2

add 10000, r2

store r2, account

load account,r1

add 500,r1

store r1, account

Final balance is 10500



Critical sections in programs

load account,r1

load account, r2

add 10000, r2

add 500,r1

store r2, account

store r1, account

Final balance is 500



Critical sections in programs

Testing and setting

int shopper;

if(shopper == NONE) if(shopper==NONE)

shopper = HUSBAND shopper = WIFE

Possible interleaving

if(shopper == NONE)

if(shopper==NONE)

shopper = HUSBAND

shopper = WIFE



Our embedded system

Exchanging parameters

struct Params p;

while(1){ while(1){

... local_minD = p.minDistance;

p.minDistance = e1; local_maxS = p.maxSpeed;

p.maxSpeed = e2; ...

} }

Possible interleaving

p.minDistance = 1;

p.maxSpeed = 1;

local_minD = 1;

p.minDistance = 200;

p.maxSpeed = 150;

local_maxS = 150



The classical solution

Apply an access protocol to the critical sections that ensures
mutual exclusion

Require that all parties follow the protocol

Access protocols are realized by means of a shared datastructure
known as amutex or a lock.



Mutual exclusion

Exchanging parameters

struct Params p;

mutex m;

while(1){ while(1){

... lock (&m)

lock (&m); local_minD = p.minDistance;

p.minDistance = e1; local_maxS = p.maxSpeed;

p.maxSpeed = e2; unlock (&m)

unlock (&m); ...

}

}



Classic Example

Bonus Question
Explain briefly the FPeterson’s algorithm and describe how it
achieves mutual exclusion.

Deadline
Friday 18/09/2015 at 13:00.


	 
	The need for threads
	Mutual exclusion

