Inferring Regular Languages & w-Languages

based on joint works with

DANA ANGLUÍN, UDÍ BOKER ER SARAH EISENSTAT

Synthesis

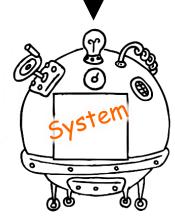
Challenges:

- Hard to characterize using a logical calculous
- Complete bugless spec, really!?

Specification High Level What? Declarative Ex: temporal logic

Synthesizer

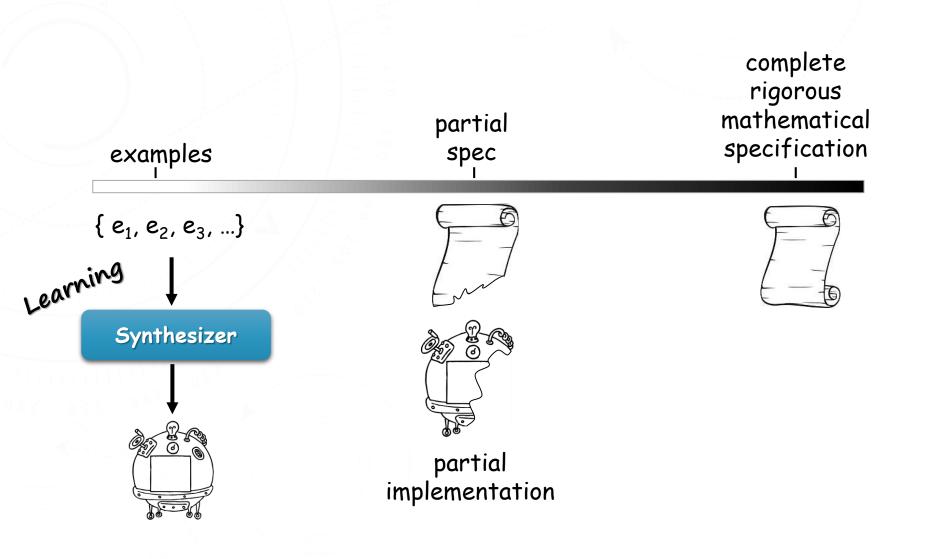
Correct by construction



Implementation

Low Level How? Procedural/Executable Ex: reactive system

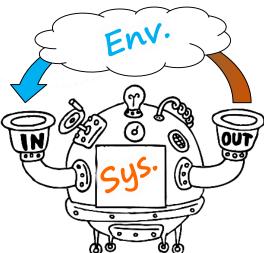
A specification scale



What kind of examples?

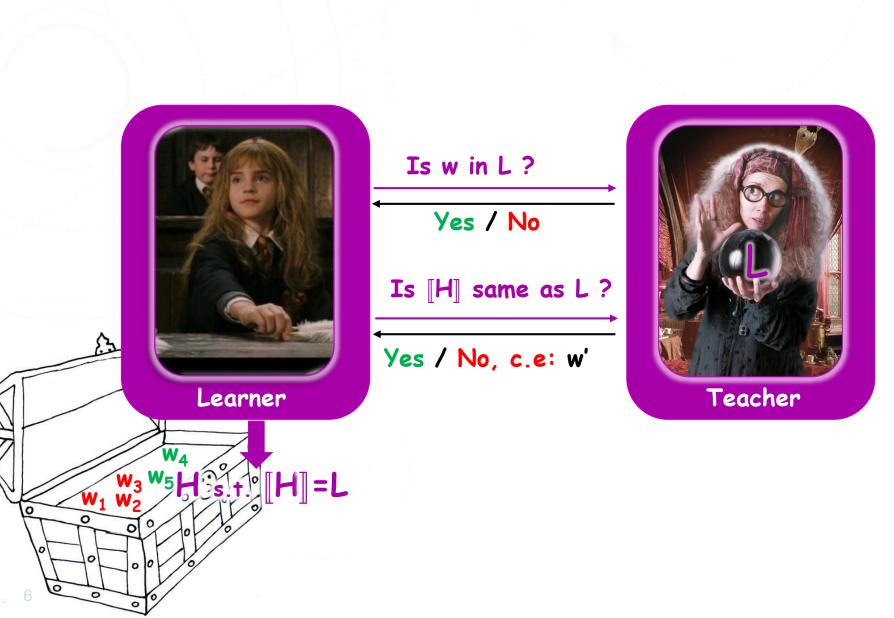
In the context of synthesizing reactive systems:

- The examples are words / strings describing computations / interfaces
- The learned concept is a set of such examples, presumably a regular language.
- For regular languages [Angluin, 1987] suggested L* algorithm.
- L* learns in polynomial time an unknown regular language using membership and equivalence queries.



L* - Active Learning with MQ and EQ

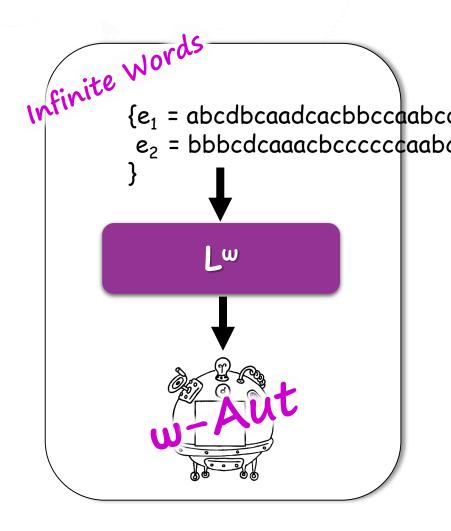
Fism



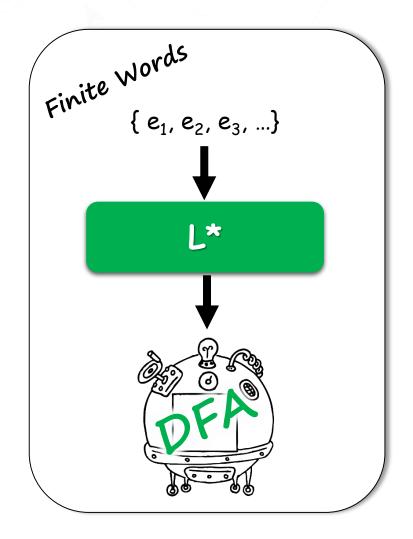
Usages of L*

- -ISMAN
- L* is an extremely popular algorithm. It has applications in many areas including AI, neural networks, geometry, data mining, verification and synthesis.
- Usages of L* in verification and synthesis include:
 - Black-box checking [Peled et al.]
 - Assume-guarantee reasoning [Cobleigh et al.]
 - Specification mining [Ammons et al., Gabel et al., ...]
 - Error localization [Chapman et al.]
 - Learning interfaces [Alur et al.]
 - Regular Model Checking [Habermehl & Vonjar]

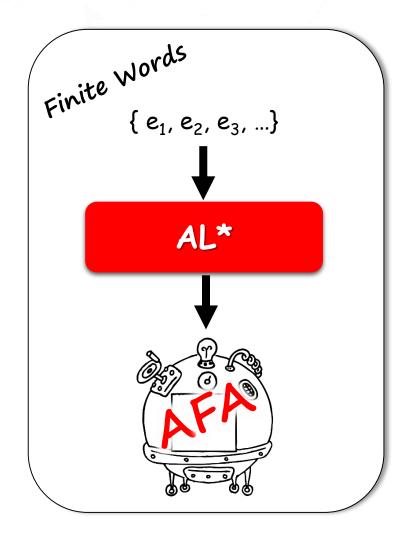
- L* learns a regular language of finite words. Interesting properties of reactive systems e.g. (liveness and fairness) are not expressible by finite words.
- Can we extend L* to L^w, an alg. that learns regular languages of infinite words (w-words)?



- L* produces DFAs (deterministic finite automata), a well behaved representation, yet not a compact one.
- Can we learn more succinct representations, such as non-deterministic finite automata (NFA) or alternating automata (AFA)?



- L* produces DFAs (deterministic finite automata), a well behaved representation, yet not a compact one.
- Can we learn more succinct representations, such as non-deterministic finite automata (NFA) or alternating automata (AFA)?



Learning alternating automata

Finite Words $\{ e_1, e_2, e_3, ... \}$ AL*

[Angluin, Eisenstat & Fisman IJCAI'15]

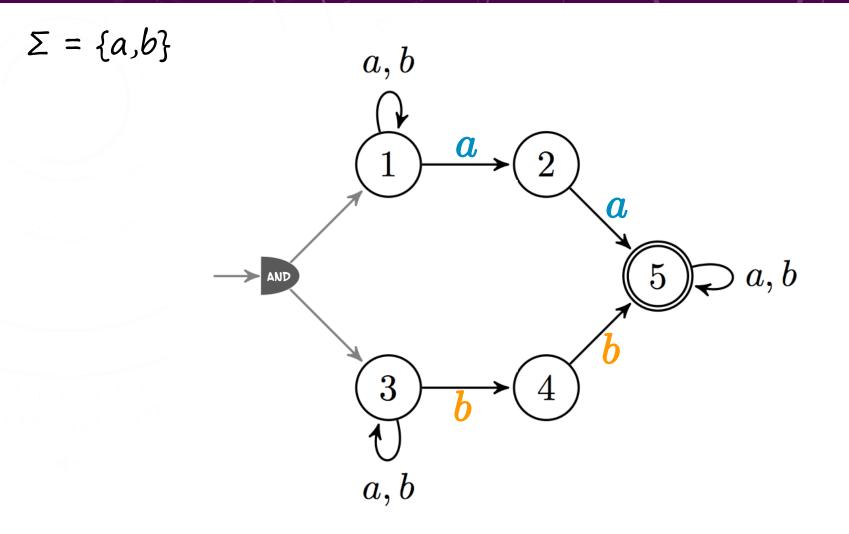
Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	с	s2	<mark>1 ^c →2</mark>

Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	С	s2	
Non- Deterministic	s1	С	s3 or s4	

Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	С	s2	
Non- Deterministic	s1	С	s3 or s4	
Universal	s1	С	s3 and s4	

Transition Type	from state	upon read- ing	to state(s)	
Deterministic	s1	С	s2 1 - C → 2	
Non- Deterministic	s1	С	s3 or s4	
Universal	s1	С	s3 and s4	0
Alternating	s1	C	(s3 or s4) and s2 c AND OR	3 4

Alternating Automaton - Ex.



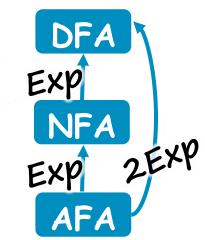
Accepts the language $\Sigma^*aa\Sigma^* \cap \Sigma^*bb\Sigma^*$

What are they good for?

Flema

- AFAs are a succinct representation
- The PSL formula

always (print-to-both ->
 ([*], print-a-start, busy[*3..], print-a-end) &
 ([*], print-b-start, busy[*3..], print-b-end))



can be stated by a 12 state AFA but the minimal DFA requires 115 states.

- Natural means to model conjunctions and disjunctions as well as existential and universal quantification
- 1-to-1 translations from temporal logics
- Working at the alternating level enables better structured algorithms, and is the common practice in industry verification tools.

Foundation of L* - Residuality

The **residual** of language L with respect to word u is the set of all words v such that uv in L

 $u^{-1}L = \{ v \mid uv \in L \}$

If $\mathbf{u}^{-1}\mathbf{L} = \mathbf{v}^{-1}\mathbf{L}$ we say that $\mathbf{u} \sim_L \mathbf{v}$.

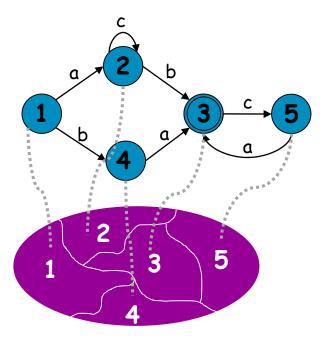
ab
$$\sim_L$$
 abaaa

The residuality index is the number of equivalence classes of \sim_L

Myhill-Nerode THM

Every regular language L has a finite number of residual languages.

The minimal DFA has one state for every residual language of L !!!

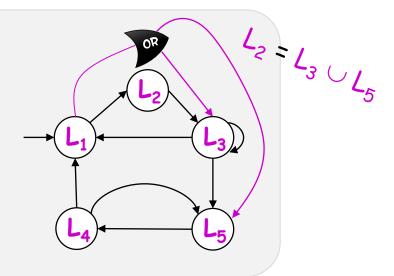


NFAs and AFAs don't have the residually property, in general.

Residual NFAs

- Dennis et al. [STACS' 01] defined residual NFAs (NRFA)
- These are NFAs where each state corresponds to a residual language

Suppose $L_1, L_2, ..., L_n$ are all the residual languages of L If for some L_i , we have $L_i = L_j \cup L_k$ then we can remove the ith state, and use non-determinism to capture it.



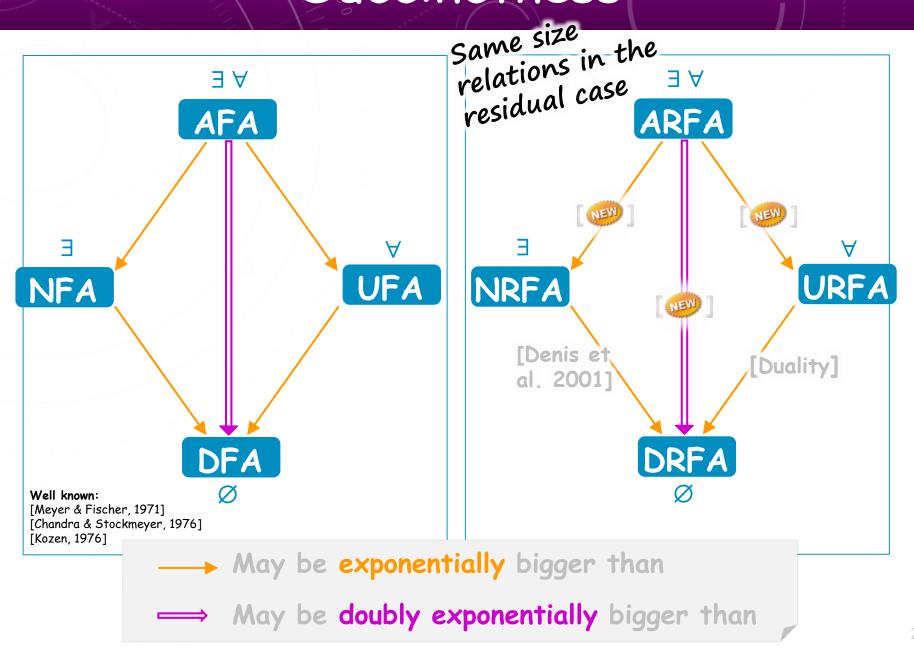
Residual NFAs

- Dennis et al. showed/provided
 - Every regular language is recognized by a unique (canonical)
 NRFA which has a minimal number of states and a maximal number of transitions.
 - There may be exponential gaps between the minimal DFA, the canonical NRFA and the minimal NFA.
- Bollig et al. [IJCAI'09] extended L* to NL* (learns NRFA)

Questions

- Can we extend the notion of residually to AFAs?
- Will exponential gaps remain?
- Can we define a canonical one?
- Can we learn ARFAs?

Succinctness



The learning algorithm

- L* uses a data structure termed an observation table.
- AL* generalizes NL* and L* and the notion of a complete/minimal observation table.
- As shown next...

The table of residual languages

Enumeration of all strings b aa ab ab bb aaa aab aba abb baa \mathbf{O} \mathbf{O} all the suffixes of \mathbf{O} ab that are in L i.e. ab-1L ab \mathbf{O} By Myhill-Nerode the \mathbf{O} number of distinct rows is finite. aba \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} abb baa \mathbf{O} hah $\mathbf{\Lambda}$ $\mathbf{\Lambda}$ \mathbf{n} \mathbf{n} \mathbf{n}

The table of residual languages

The number of distinct columns is also finite.

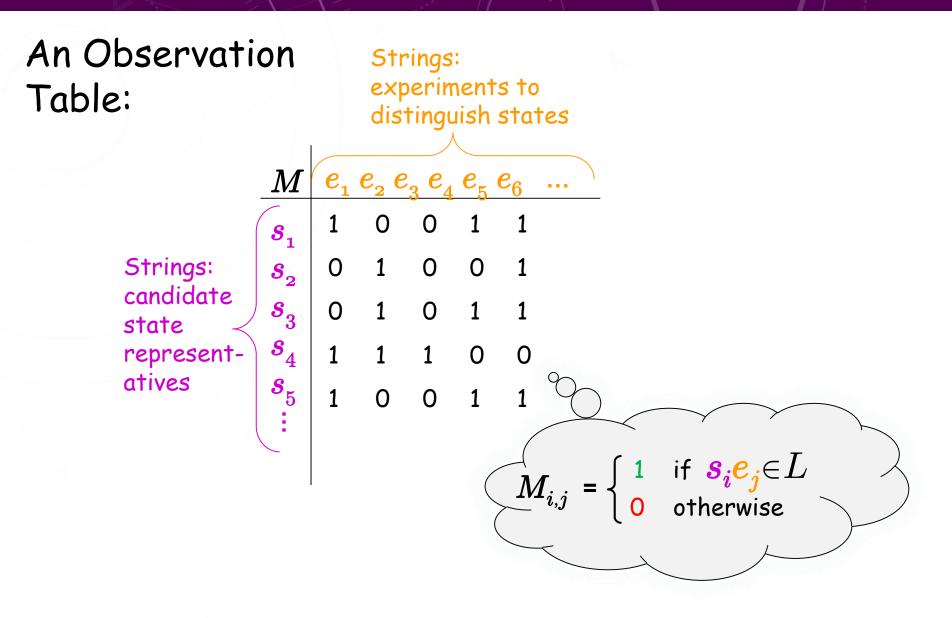
Enumeration of all strings

 We call it the column index.

Enumeration of all strings

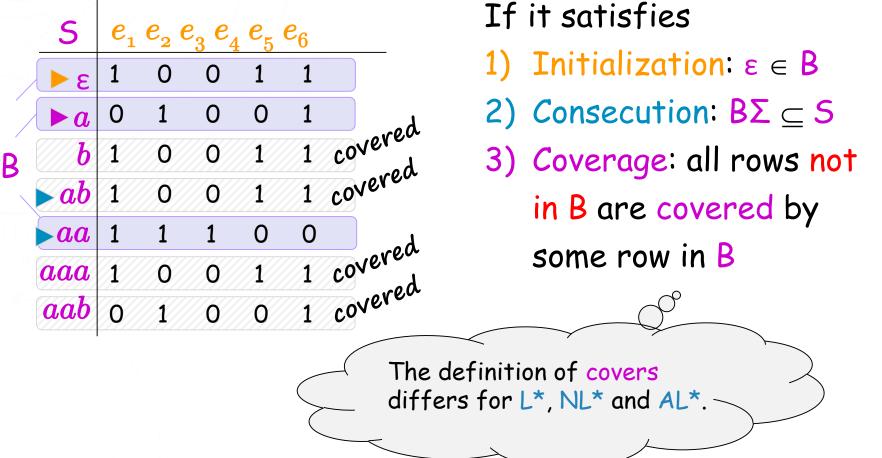
lumn 🔿		a b	a	a a	6	ab	66	aad	a a	ab	aba	a	66	ba	a
,	1	0	0	1	1	0	0	0	1	0	1	0	0	1	С
	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1
6	0	1	0	1	1	0	1	1	1	1	0	1	1	1	1
aa	1	1	1	0	0	1	1	1	0	1	1	1	0	0	С
ab	1	0	0	1	1	0	0	0	1	0	1	0	0	1	С
ba	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1
66	0	0	1	0	1	1	0	0	1	0	1	1	0	0	1
aaa	0	1	1	0	1	1	0	1	1	0	1	1	1	1	1
aab	1	0	0	1	1	1	1	0	0	1	1	1	0	0	С
aba	0	1	1	0	0	0	0	1	1	0	0	0	1	0	1
abb	1	1	0	0	1	1	0	0	1	0	1	0	1	1	С
baa	0	0	1	1	0	0	1	0	0	1	1	0	1	1	С
hah	1			1	\frown	1	\frown	1		1	1	1	\frown	\frown	32

L* Data Structure

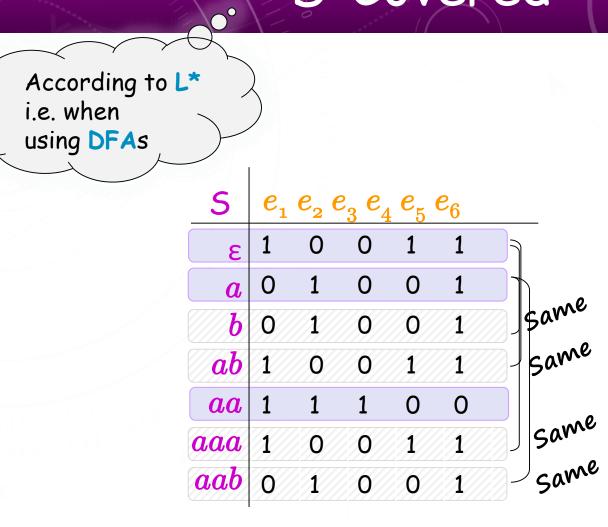


Closed Table

An observation table T = (S,E,M) is closed w.r.t a subset $B \subseteq S$

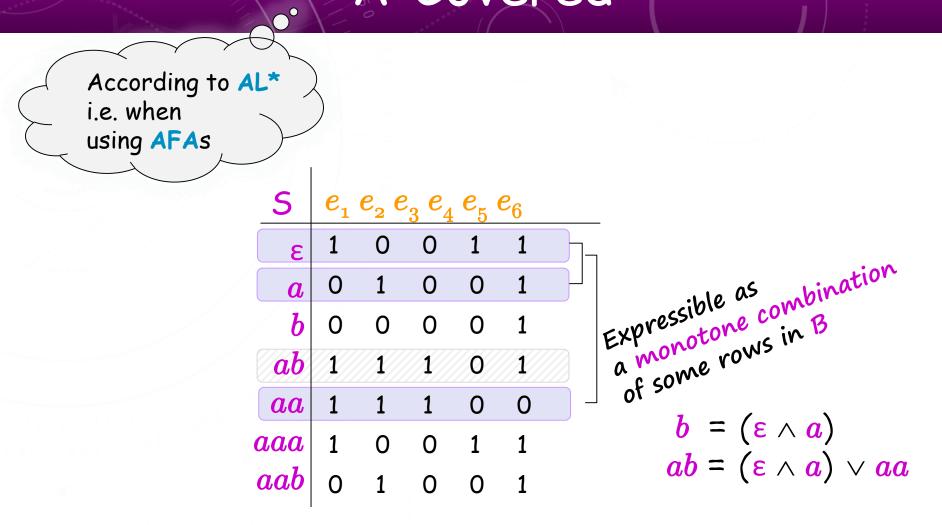


D-Covered



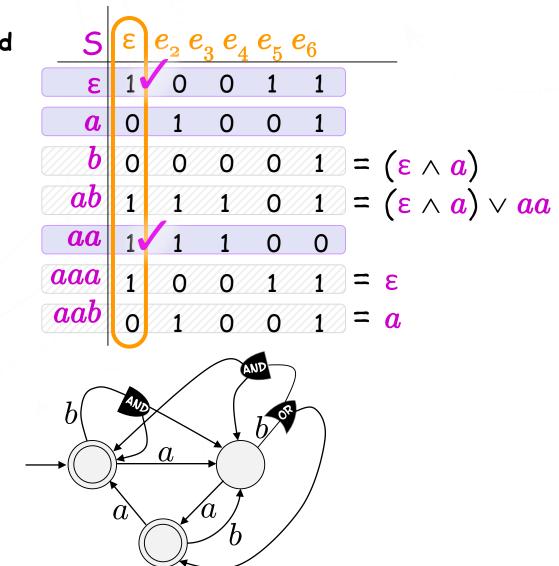
N-Covered

A-Covered



From Tables to Automata

Closed and Minimal

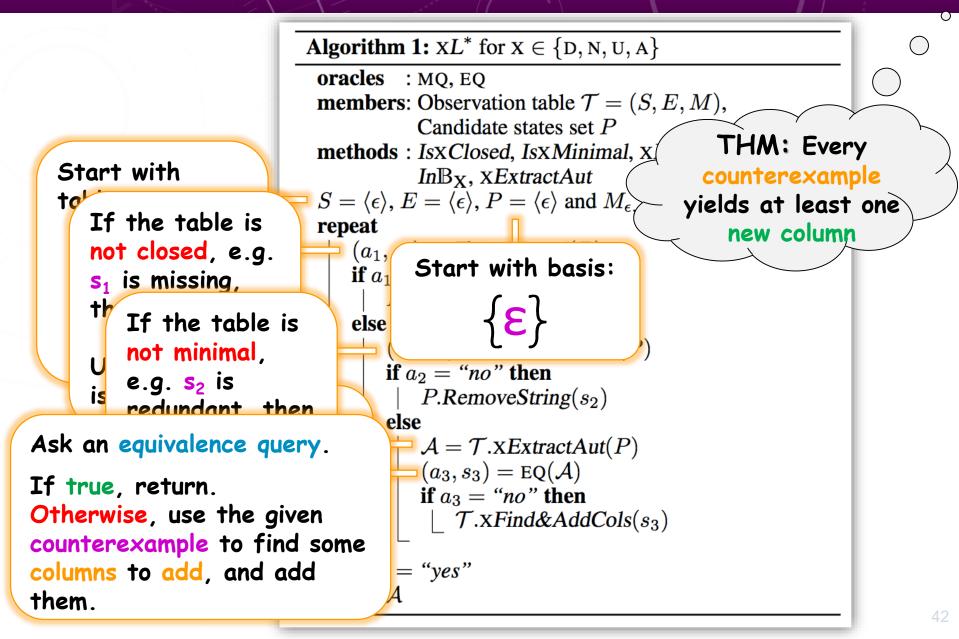


Need to solve

- How to decide
 - Is row s a union of rows in B?
 Poly time [Bollig et al.]
 - Is s a monotone combination of rows in B? Poly time [109]

Given a set of Boolean vectors S, find a minimal unique unique poly time [Bollig et al.]
 Not monotone basis NP-complete [Image Poly time [Bollig et al.]]
 NP-complete [Image Poly

The Learning Alg.



Back to finite words

Theorem

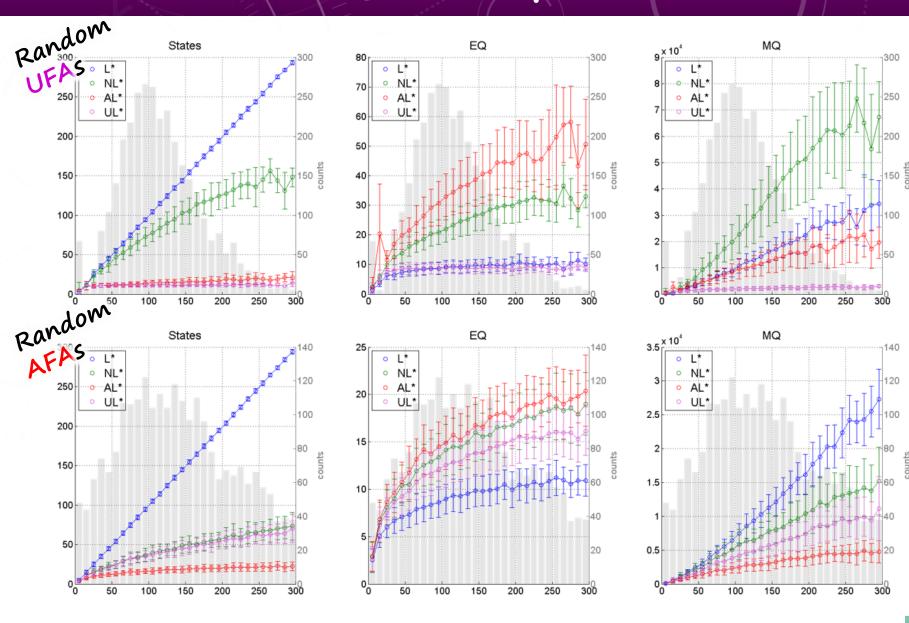
The algorithm AL* returns an AFA for the unknown language after at most

- m equivalence queries
- $O(|\Sigma|mnc)$ membership queries
- poly(m, n, c, $|\Sigma|$) time

	L*	NL*	AL*			
EQ	n	0(n ²)	m			
MQ	$O(\Sigma cn^2)$	$O(\Sigma cn^3)$	O(Σ cnm)			

where n = row index m = column index c = length of longest c.e.

Finite words - Empirical results



Finite words - Empirical results

Rough Summary:

In terms of #states generated,

AL* is always preferable

In terms of #MQ,

 $\times L^*$ outperforms the others when targets are $\times FAs$

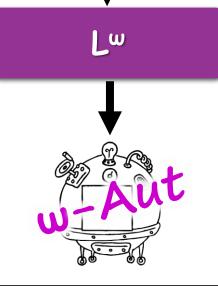
In terms of #EQ,

L* is always preferable

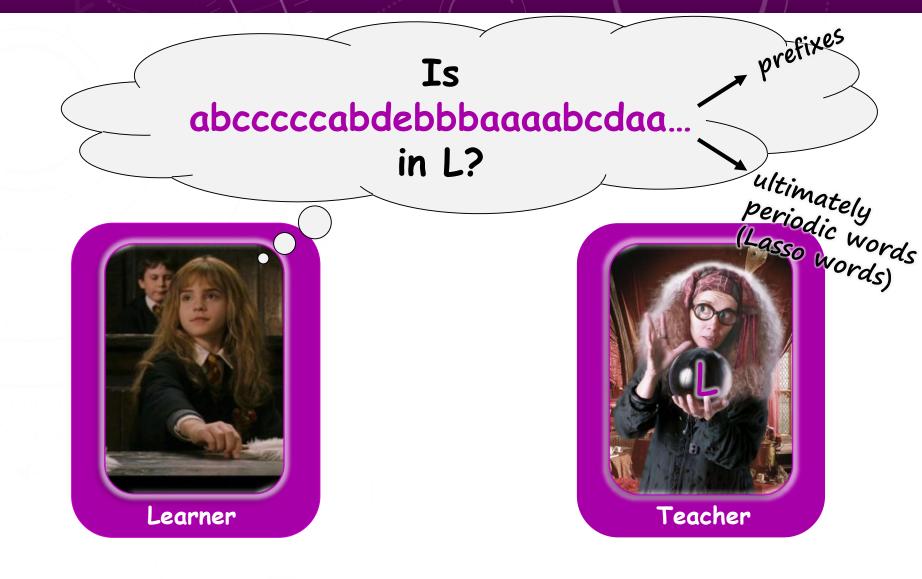
Open questions & further directions

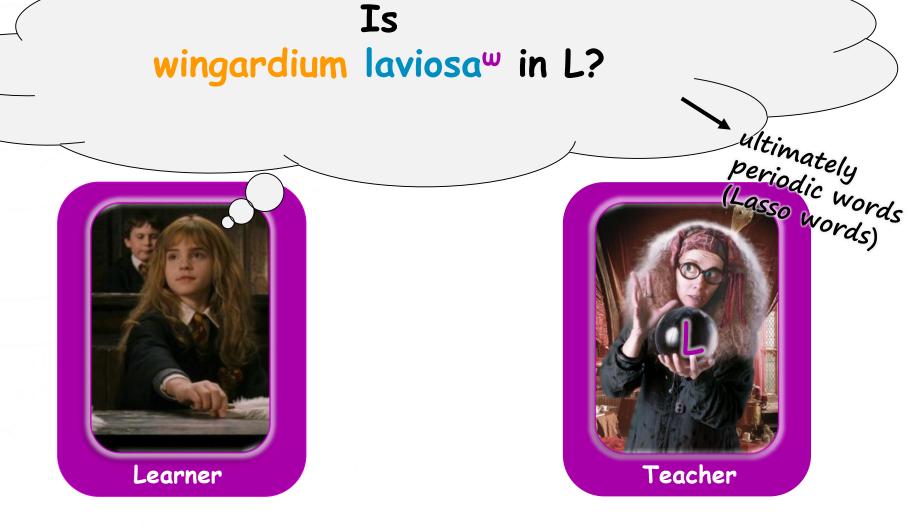
- Generalization to Boolean Automata (^/)
- Heuristics combining xL* s
- Understanding of Residual AFAs
 - Properties of ARFAs
 - **Theorem**: The algorithm AL* returns an AFA for the unknown language
 - Conjecture: The algorithm AL* returns an ARFA for the unknown language

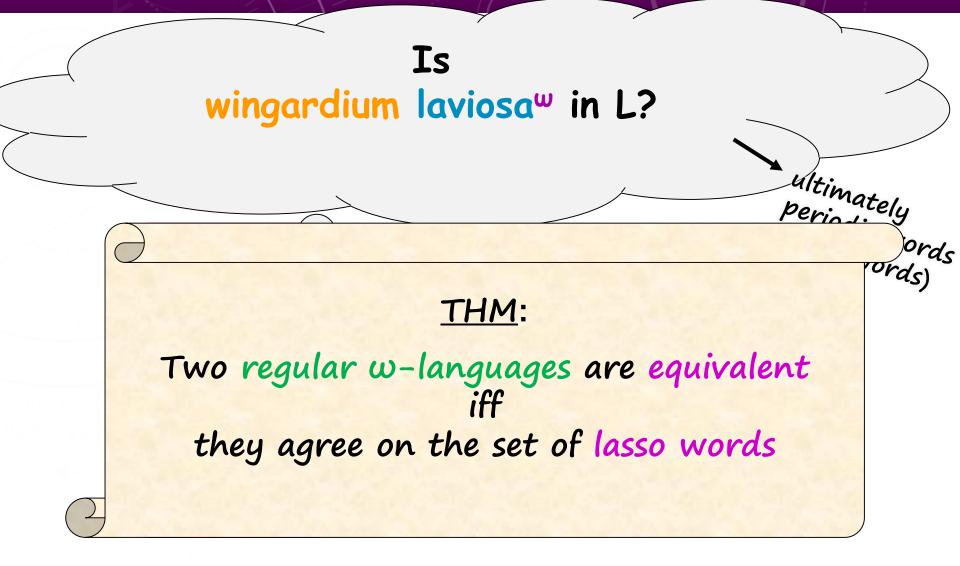
Learning regular w-languages



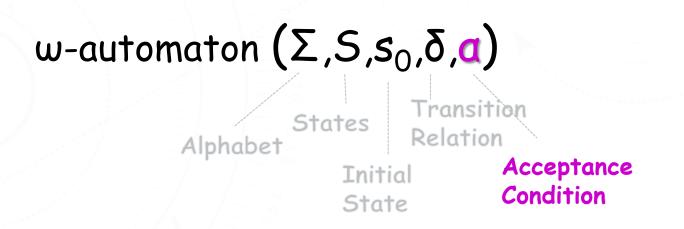
ANGLUÍN & FISMAN ALT'14







w-automata

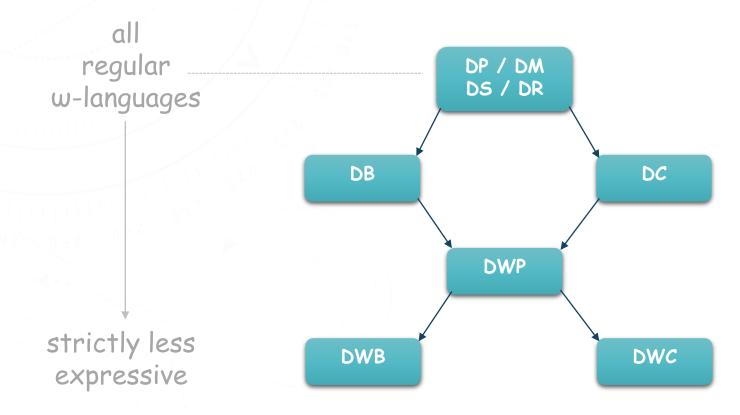


- There are many ways to define acceptance condition for w-Automata
 - Büchi Muller Rabin
 - co-Büchi
 Parity
 Streett
- Roughly speaking, all are defined using the notion of the states visited infinitely often during a run.

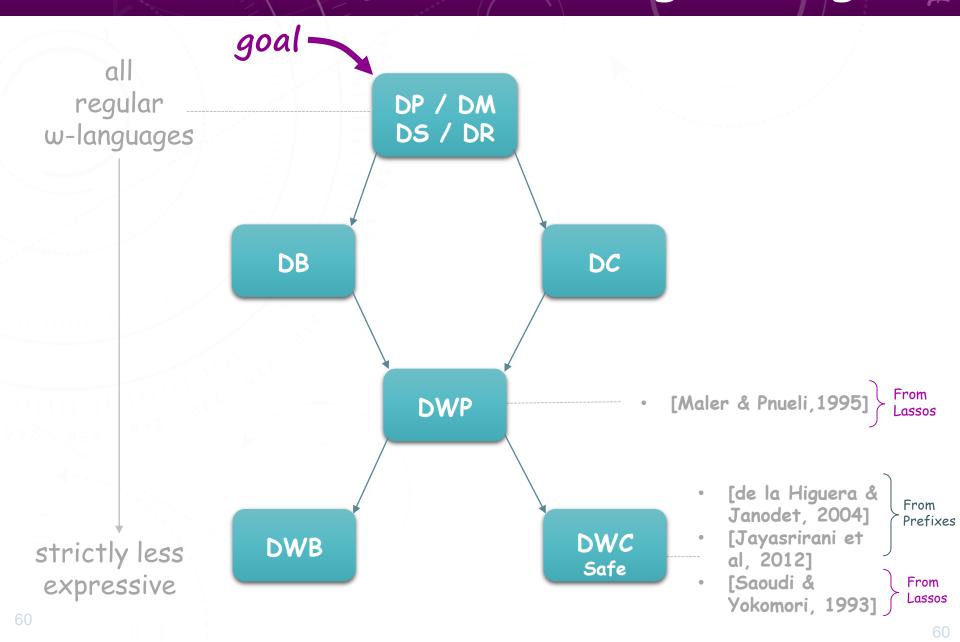
w-automata - Expressiveness

Fisman

- Some acceptance criteria are equally expressive, some are strictly less expressive than others.
- Overall picture looks like this:



Previous work on learning w-langs.



Challenges

L* works due to the Myhill-Nerode thm.	2014	
 The major difficulty in learning w-languages is a lack of a corresponding Myhill-Nerode theorem for w-automata (of all types) 	2012 2008 2005	
riteorem for w-durondird (of durypes)	1994 1993	
	1987	L*
	1962	ω- aut.

-ISMAN

Challenges

- It turns out that an w-regular language can be represented by a regular language L_{\$} of tinite words [Calbrix, Nivat, Podelski 93]
 And thus one can use L* to learn this
 - representation [Farzan et al. 2008]
- However, this representation is quite big: Büchi with n states => DFA for L₅ with 2ⁿ + 2^{2n²+n}

L

1994

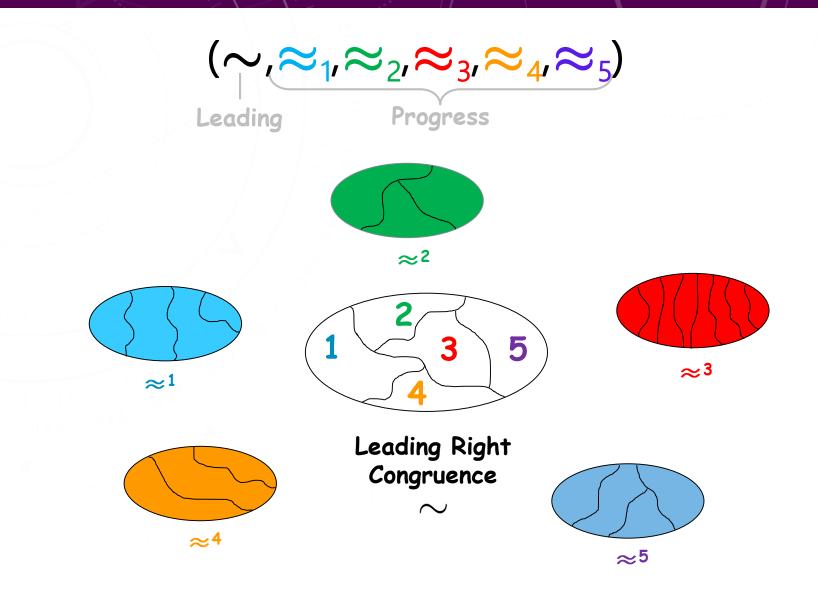
1987

1962

The way out

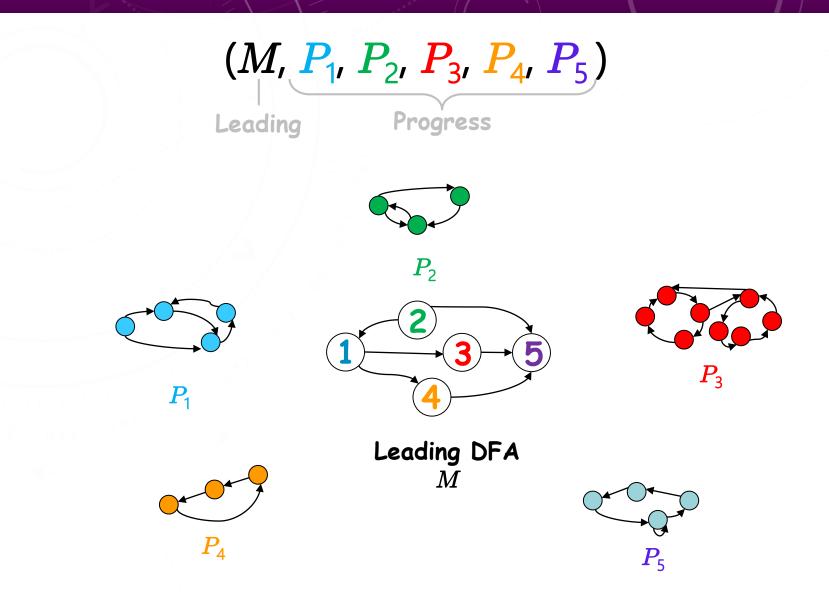
A new representation: Family of DFAs and a new canonical rep Recurrent FDFAs based on families of FORCs [Maler & Staiger, 95] and the syntactic FORC which has a Myhill-Nerode theorem

Family of Right Congruences [MS97]



Plus some restriction (details omitted)

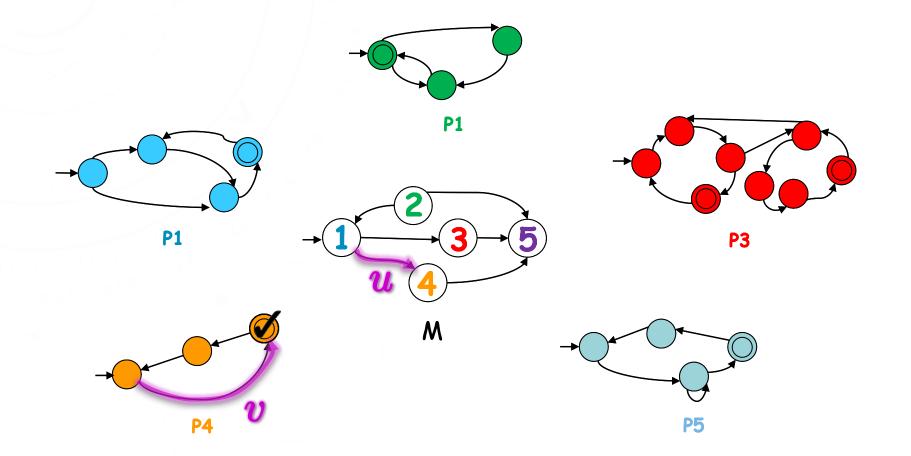
Family of DFAs (FDFA)



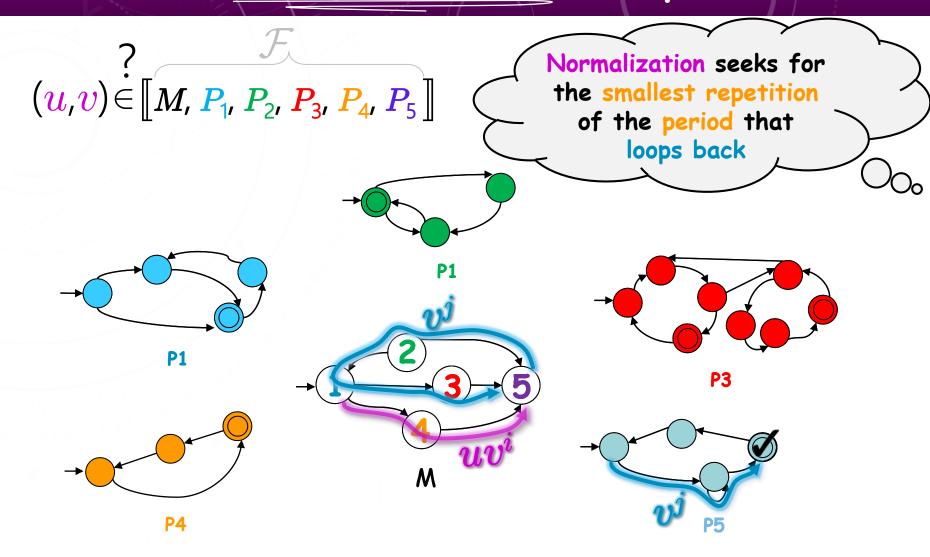
That restriction is removed

FDFA Acceptance

 $(u,v) \in [\![M, P_1, P_2, P_3, P_4, P_5]\!]$

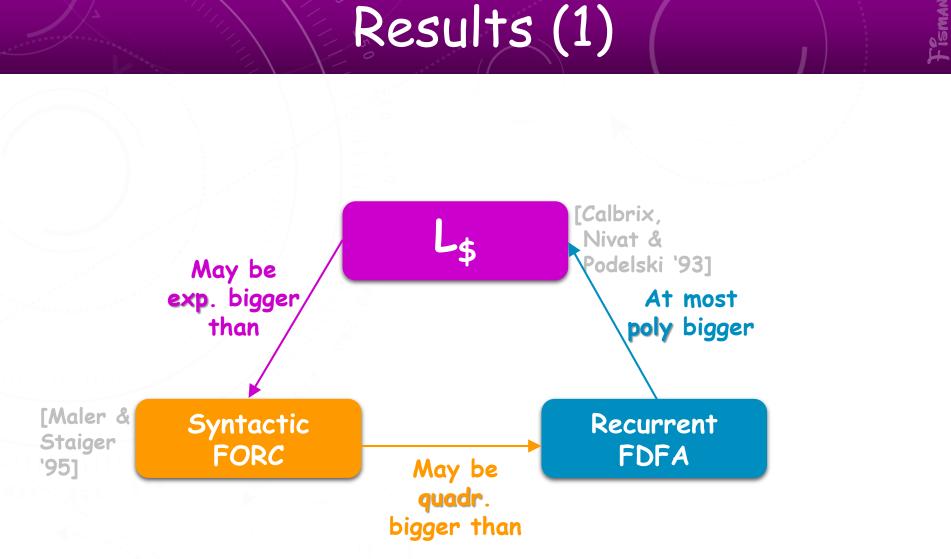


FDFA Normalized Acceptance



We term **Recurrent FDFA** the FDFA where progress DFA recognize only periods that loop back.

Results (1)



Results (2)

DC

DWC

goal

DB

DWB

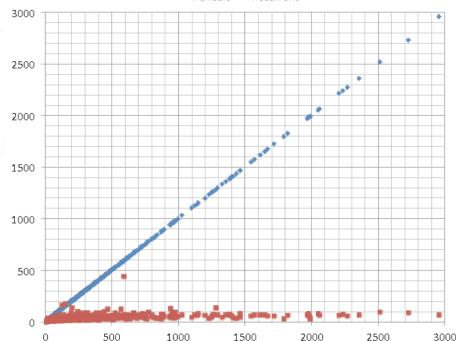
DP

DWP

A learning algorithm L^w that learns the full class of regular w-languages using recurrent FDFAs

Worst-case time complexity polynomial in $\mathsf{L}_{\$}$

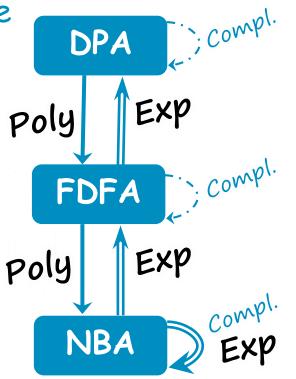
Preforms very well on random targets



Periodic
 Recurrent

FDFAS as Acceptors of w-Langs [ANGLUEN, BOKER & FESMAN FMC516]

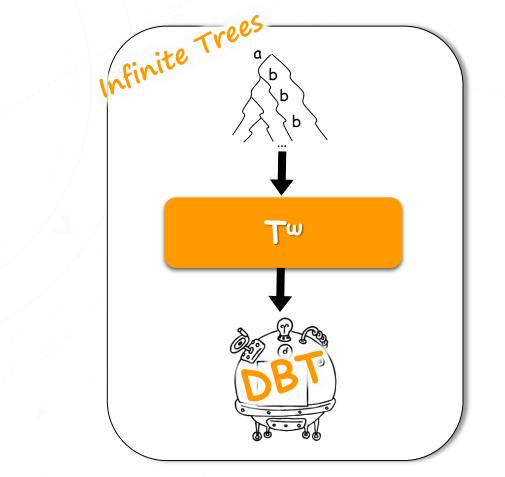
- Have a Myhill-Nerode characterization
- Boolean operations are in LOGSPACE
- Decision problems are in NLOGSPACE
- Succinctness-wise



Some open questions

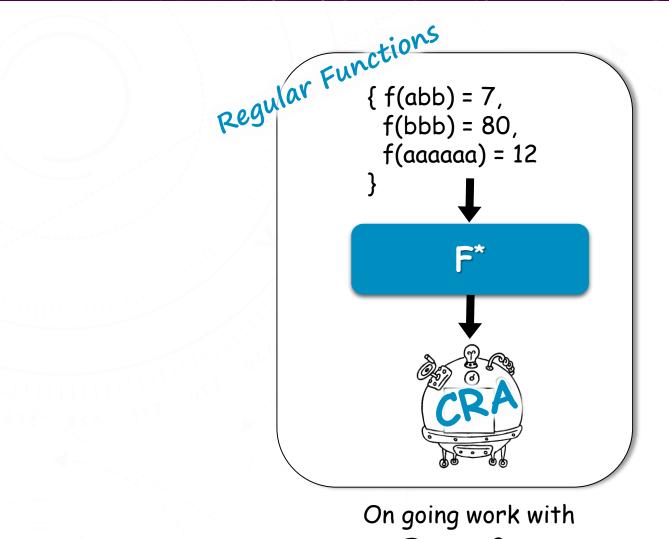
- Polytime learning of a class of w-Langs more expressive than DWP
- Saturation of FDFA is in PSPACE; currently no lower bound
- Find smaller canonical representations

Further Directions



On going work with Dana Angluin & Cimos Anronopulos

Further Directions



RAJEEV ALUR

