
Reducing Concretization Effort in FSM-Based
Testing of Software Product Lines

Vanderson Hafemann Fragal1, Adenilso Simão1, André Takeshi Endo2, and
Mohammad Reza Mousavi3

1 Institute of Math. and Computer Sciences (ICMC), University of São Paulo, Brazil
2 Federal Technological University of Paraná (UTFPR-CP), Brazil

3 Centre for Research on Embedded Systems (CERES), Halmstad University, Sweden

Abstract. In order to test a Software Product Line (SPL), the test
artifacts and the test techniques have to be extended to support variability.
When new SPL products are developed, new tests are generated to cover
new or modified features. According to several case studies, a dominant
source of extra effort for such tests is concretization of newly generated
test cases. Thus, minimizing the amount of new non-concretized tests
required to perform conformance testing on new products reduces the
overall test effort significantly. In this paper, we propose a new test reuse
strategy for conformance testing of SPL products that aims at reducing
test effort. To this end, we use incremental test generation methods
based on finite state machine models to maximize test reuse. We combine
these methods with our selection algorithm used to select non-redundant
concretized tests. We demonstrate our strategy using examples and a
case study with an embedded mobile SPL. The results indicate that
our strategy can save at least 36% test effort for our case study with
typical concretization effort estimated from the literature and compared
to current test reuse strategies for the same fault detection capability.

Keywords: Conformance Testing, Test Case Reuse, Model-Based Test-
ing, Finite State Machine.

1 Introduction

Software Product Lines (SPL) address variability in software in terms of its
features. For example, developing SPL products using the delta-oriented ap-
proach[13] involves designing a core module and a set of delta modules. The core
module is a set of features of a basic product and the delta modules add, remove,
or modify features from the core module to design new products. Changing the
specification of a product or deploying a similar product may require substantial
effort for conformance testing. We study this problem in the context of Model-
Based Testing (MBT), where models are used to steer the test process effort with
the goal of making it more structured and more efficient.

One important step in the MBT test process is concretization [20]. Generated
abstract tests are augmented with concrete implementation-specific data turning
them executable in the system under test. Checking the conformance of an SPL

2

product requires extra effort for each new test that needs to be concretized for
execution. According to case studies [20, 12] the cost of concretizing a test cases
exceeds with two orders of magnitude the cost of executing the same concretized
test. To solve this problem adapters are developed to automate the concretization
process. The adapters often need to be modified for new products. For example,
systems that evolve constantly (e.g. graphical user interface systems) cannot
afford updating adapters of each new version of the system, which often take
more time than manually testing the system in the first place [7].

In this paper, we propose a new test reuse strategy named Incremental
Regression-based Testing for Software Product Lines (IRT-SPL) that aims at
reducing the test effort of newly designed SPL products by reducing the number
of new tests that need to be concretized for conformance testing. To this end, we
maximize the reuse of tests by processing concretized tests of all old products
and incrementing some of them to obtain a small set of tests to concretize. We
use finite state machines (FSMs) as test models, which are fundamental semantic
models for reactive systems [2].

The contributions of this paper are: (i) the novel test reuse strategy; and
(ii) the novel test case selection algorithm. Figure 1 (b) presents an overview of
contributions, where our strategy improves the reuse of tests. This is achieved
by incrementing existing concretized tests from all old products for the new
behavior. On Figure 1 (a) note that on Product 5 only the brown behavior is new
compared to other products. Reusing only the last derived product may result in
more redundant tests to concretize. Then, we implemented a selection algorithm
to obtain non-redundant tests to retest the unchanged parts of the product.

Conformance testing

Product 1
 (core)

Product 3

Product 2

Product 4

Product 5

Unchanged Behavior

Changed Behavior

Tested Products

Product to test

(a)

Repository of
concretized tests

Derives
Requires

Delta 1

Delta 2

Delta 3

Delta 4

Test Model
FSM

Test Reuse Strategy
(Contribution)

Selection Algorithm

(b)

All tests to execute

Retest New Not Concretized

Fig. 1. (a) Derivation of SPL products; and (b) Overview of our contributions.

3

The effort to test a new product is the sum of the concretization and the
execution costs. Reusing all old tests to get a small set of new tests may result
in a large accumulated retest set. Thus, selecting non-redundant tests also helps
reduce test effort. An experimental evaluation of the proposed strategy was
conducted using a case study for the embedded Mobile Media SPL [11]. Initial
results show that our strategy can save at least 36% test effort for 24 products
with typical concretization effort estimated from the literature.

The remainder of this paper is organized as follows. Section 2 presents some
preliminary notions and concepts regarding FSMs, test properties, and effort on
SPL testing. Section 3 presents our test reuse strategy, the selection algorithm,
and some examples. Section 4 provides results of our experimental study for the
embedded Mobile Media SPL. Section 5 discuss the related works, and finally,
Section 6 concludes the paper and presents the directions of our future work.

2 Background

In this section, we present basic definitions regarding finite state machines, test
properties, and software product line testing.

2.1 Finite State Machine

A finite-state machine (FSM) in our context, is a deterministic Mealy machine,
which can be defined as follows.

Definition 1. An FSM M is a 7-tuple (S, s0, I, O,D, δ, λ), where S is a finite
set of states with the initial state s0, I is a finite set of inputs, O is a finite set of
outputs, D ⊆ S × I is a specification domain, δ : D → S is a transition function,
and λ : D → O is an output function.

If D = S×I , then M is a complete FSM; otherwise, it is a partial FSM. As M
is deterministic, a tuple (s, x) ∈ D determines uniquely a defined transition

of M. A transition from state s to s′ with input x and output o is represented by
quadruple (s, x, o, s′) ∈ D → O × S, or alternatively by s

x→
o
s′.

A sequence α = x1, ..., xk, α ∈ I∗ is a defined input sequence at state
s ∈ S, if there exist states s1, ..., sk+1 ∈ S, where s = s1 such that (si, xi) ∈ D
and δ(si, xi) = si+1, for all 1 ≤ i ≤ k. Notation Ω(s) is used to denote all defined
input sequences for state s ∈ S and ΩM denotes Ω(s0). We extend the transition
and output functions from input symbols to defined input sequences, including
the empty sequence ε, as usual, assuming δ(s, ε) = s and λ(s, ε) = ε for s ∈ S.

Given sequences α, β, γ ∈ I∗, a sequence α is prefix of a sequence β, denoted
by α ≤ β, if β = αγ, for some sequence γ, and γ is a suffix of β. A sequence α
is proper prefix of β, α < β, if β = αω for some ω 6= ε. We denote by pref(β)
the set of prefixes of β, i.e. pref(β) = {α|α ≤ β}. For a set of sequences A,
pref(A) is the union of pref(β) for all β ∈ A. If A = pref(A), then we say that
A is prefix-closed. Moreover, we say that a sequence α ∈ A is maximal in
A if there is no sequence β ∈ A such that α is a proper prefix of β. Given a
sequence α and k ≥ 0, we define αk recursively as follows: α0 = ε; αk = ααk−1,

4

if k > 0. The common extensions of two sequences are the sequences obtained
by appending a common sequence to them.

An FSM M is said to be initially connected, if for each state s ∈ S,
there exists an input sequence α ∈ ΩM , such that δ(s0, α) = s, called a
transfer sequence for state s. Given a set C ⊆ Ω(s) ∩ Ω(s′), states s and
s′ are C-equivalent if λ(s, γ) = λ(s′, γ) for all γ ∈ C. Otherwise, if there exists
a γ ∈ C such that λ(s, γ) 6= λ(s′, γ), then s and s′ are C-distinguishable.
An FSM M is minimal (or reduced), if every pair of states s, s′ ∈ S are C-
distinguishable. In this paper, only minimal and initially connected machines are
considered, since it is a pre-requisite for the P test case generation method[19]
used to execute our strategy.

A set C ⊆ ΩM is a state cover for an FSM M if, for each state s ∈ S,
there exists α ∈ C such that δ(s0, α) = s. The set C ⊆ ΩM covers a transition
(s, x) if there exists α ∈ C such that δ(s0, α) = s and αx ∈ C. The set C is a
transition cover (for M) if it covers every defined transition of M . A set of
sequences is initialized if it contains the empty sequence.

2.2 Test Properties

In this paper, we use the full fault coverage criteria for FSMs from the P
method[19]. We use the notion of test suite completeness with respect to a given
fault domain and sufficiency conditions based on convergence and divergence
properties introduced in [19].

Throughout this paper, we assume that M = (S, s0, I, O,D, δ, λ) and N =
(Q, q0, I, O

′, D′, ∆,Λ) are a specification FSM and an implementation FSM,
respectively. Moreover, n is the number of states of M . We denote by = the
set of all deterministic FSMs with the same input alphabet as M for which
all sequences in ΩM are defined, i.e. for each N ∈ = it holds that ΩM ⊆ ΩN .
The set = is called a fault domain for M and =n is the set of FSMs with n
states. Faults can be detected by tests, which are input sequences defined in the
specification FSM M .

Definition 2 ([19]). A defined input sequence of FSM M is called a test case

(or simply a test) of M . A test suite of M is a finite prefix-closed set of tests
of M .

The size of a test α ∈ I∗ denoted by |α| is calculated by the number of inputs
that it contains, i.e., |α| = k, α = (x1...xk). Similarly, |T | is the size of a test suite
T calculated by the sum of all tests plus the reset operation for each maximal
test, i.e., |T | =

∑
(|α|+ 1), α ∈ T, @β∈T • β = αγ ∧ γ 6= ε.

The distinguishability of FSMs is defined as the corresponding relation of their
initial states, thus, tests are assumed to be applied in the initial state. Given a test
suite T , FSMs are T-equivalent if their initial states are T -equivalent. Similarly,
FSMs are T-distinguishable if their initial states are T -distinguishable.

Given two tests α, β ∈ ΩM they converge if when applied to the initial
state they take the FSM into the same state, and they diverge if they take the
FSM from the initial state to different states. Given a non-empty set of FSMs

5

Σ ⊆ = and two tests α, β ∈ ΩM , we say that α and β are Σ-convergent if
they converge in each FSM of the set Σ. Similarly, we say that α and β are
Σ-divergent if they diverge in each FSM of Σ.

Two tests α and β in a given test suite T are T-separated if there exist
common extensions αγ, βγ ∈ T , such that λ(δ(s0, α), γ) 6= λ(δ(s0, β), γ). T -
separated tests are divergent in all FSMs that are T -equivalent to M . Given
a test suite T , let =(T) be the set of all N ∈ =, such that N and M are
T -equivalent.

Lemma 1 ([19]). Given a test suite T of an FSM M , T -separated tests are
=(T)-divergent.

We refer to [19] for detailed proofs of the results presented in this section.
Divergence of two tests can be identified by different outputs produced by the

tests, while the convergence of two tests cannot be directly ascertained. However,
it can be shown that if the maximal number of states of FSMs in the fault domain
is known, and the two tests are =(T)-divergent with tests reaching all but one
state of the FSM M , these two tests must also converge in the same state in any
FSM in the fault domain that is T -equivalent to M . Given a test suite T , let
=n(T) = =n ∩ =(T), i.e. the set of FSMs in which are T -equivalent to M and
have at most n states.

Lemma 2 ([19]). Given a test suite T and α ∈ T , let K be an =n(T)-divergent
set with n tests and β ∈ K be a test M -convergent with α. If α is =n(T)-divergent
with each test in K\{β}, then α and β are =n(T)-convergent.

The condition for n-completeness of a test suite T uses the notion of
convergence-preserving set, for which the M -convergence implies the =n(T)-
convergence.

Definition 3 ([19]). Given a test suite T of an FSM M , a set of tests is
=n(T)-convergence-preserving (or, simply, convergence-preserving) if all
its M -convergent tests are =n(T)-convergent.

Any M -divergent set is by definition convergence-preserving, and M ∈ =n,
then =n(T) is by definition not empty.

The following theorem summarize the main results from [19] where the
full fault coverage criteria is established based on convergence and divergence
properties.

Theorem 1 ([19]). Let T be a test suite for an FSM M with n states. We have
that T is an n-complete test suite for M if T contains an =n(T)-convergence-
preserving initialized transition cover set for M .

When a test suite T is n-complete for an FSM M (attend the full fault

coverage criteria), then, by executing T we are capable of detecting any fault in
all FSM implementations N ∈ =n(T).

There exist several methods to generate n-complete test suites [6, 15, 19]. For
example, the P method [19] uses two input parameters: a deterministic, initially

6

connected, and minimal FSM M ; and an initial test suite T . The initial set
T can be empty, and new tests are added/incremented (if necessary) until an
n-complete test suite for M is produced. Therefore, the P method checks if all
implementations N ∈ =n can be distinguished from M using T , and decides if
more sequences need to be added to T . Experimental evaluation indicates that
the P method often results in smaller n-complete test suites compared with other
methods [9].

The reuse of test cases is important to save test effort in several domains that
develop similar systems. In this paper, we demonstrate how this can be exploited
in the testing of software product lines.

2.3 Concretization Effort

Our approach to exploiting old test cases in conformance testing for new SPL
products is inspired by regression testing. Given a new product, we first check
the changed behavior to ensure that it conforms to the intended behavior by
concretizing and executing a set of new test cases. Then, to ensure that the
unchanged behavior was not affected by modifications we execute a set of tests
to retest the old behavior.

Without a proper reuse strategy, new tests may be generated not considering
old products and increasing the number of new tests to concretize, or even
concretize redundant tests. For example, Figure 1 (a) shows the evolution of
products and their components. Note that the colored boxes denote the new
features added to products.

We calculate the effort to test a new product by the sum of tests that have to
be executed plus those that have to be concretized times a value x (concretization
value over execution), i.e., effort= (concrete ∗ x) + execution. Execution cost is
calculated based on the number of tests that have to be executed for both changed
and unchanged behavior. For example, to execute a prefix-closed test suite T ,
the execution cost is equivalent to its size |T |, i.e., execution = |T |. Given a set
of new tests NT ⊆ T , the concretization cost is calculated for each and every
new tests α ∈ NT that have to be concretized. Namely, if a prefix β ∈ T\{NT}
of a new test α = βγ, γ 6= ε was already concretized before, then we can reuse β
and the cost is the sum of the size of all suffixes γ, i.e., concrete =

∑
|γ|.

In the next section, we present our test reuse strategy to obtain a small
number of new tests cases for concretization and to remove redundant tests of
an n-complete test suite.

3 Testing Products Incrementally

In this section, we present our test reuse strategy, the selection algorithm, and
some examples.

3.1 Test Reuse Strategy

The Incremental Regression-based Testing for Software Product Lines (IRT-
SPL) strategy is inspired by earlier approaches in this domain [19, 21, 3, 14] and

7

developed to improve the reuse of tests case prefixes to reduce concretization
effort. We use incremental test generation methods (to increment concretized
tests) for full fault coverage criteria explained in Section 2.2. Figure 3 presents
the main abstract steps of IRT-SPL.1 Given a new product to check conformance
we design the test model as an FSM M , identify all defined tests D ⊆ ΩM that
were concretized in old products, and execute the following sequence of steps and
conditions:

Step 1 Process all defined tests of D to find divergent, convergent, and
convergence-preserving tests from Lemmas 1, 2, and Definition 3, respectively.
Also, initialize the set of new tests that need to be concretized NT = {∅}.

Condition 1 Is the D set n-complete for M? When the answer is true, move to
Step 2; otherwise, copy D to set T and move to Step 3.

Step 2 Increment tests using a test generation method. Incremental test genera-
tion methods have a local cost calculation that decides which new test gives
a small increment based on tests of D. Thus, we used the P method [19] for
this step. New tests are incremented from D and put in NT , resulting in an
n-complete test suite T = D ∪NT .

Step 3 Select tests using our algorithm (described next, depicted in Figure
3.(b)). Execute the selection algorithm using M and T as parameters, obtain
the n-complete test suite S and return R = S −NT as the set of selected
concretized tests and NT as the set of non-concretized tests.

Our Test Reuse Strategy

Select tests using our algorithm

All concretized
tests D for M

FSM M

Process all defined tests

Step 1

Small set of
nonconcretized
 tests for M

Selected
concretized
 tests for M

No

Yes
Step 3

Increment tests
using a test
generation method

Selection algorithm

Identify all redundant tests in
the convergencepreserving set O
S={}; G={};

Select one transition t of M;
Select test a in O that covers t;

Step 2

Step 1

Step 2

Step 3

(a) (b)

Is set
S ncomplete

 for M?

Is set
D ncomplete

 for M?

Given one test a identify the set of
related tests E required to cover t
S=S+{E}; G=G+{a}

Yes

Condition 1

Condition 1

Fig. 2. (a) IRT-SPL test reuse strategy, and (b) selection algorithm.

This strategy can be adapted to other non-incremental test generation methods
and other test coverage criteria, however, it may have weaker reuse efficiency. In

1 The detailed algorithm can be found in http://ceres.hh.se/mediawiki/Vanderson_

Hafemann

8

Section 4, we provide results of experimental evaluation for IRT-SPL compared
to other reuse strategies.

3.2 Selection Algorithm

The proposed selection algorithm is developed as the last step of our IRT-
SPL strategy. Given an FSM M , an n-complete test suite T , and an initialized
convergence-preserving transition cover set O ⊆ T for M , we select non-redundant
tests of O resulting in an n-complete test suite S ⊆ T . The main steps are:

Step 1 Identify all redundant tests. All tests of O that cover each transition of
M are identified. Also, the resulting set S and G ⊆ O (coverage check) are
initialized.

Condition 1 Is the S set n-complete for M? The set G ⊆ S has to be
convergence-preserving for M according to Theorem 1. When the answer is
true, return S; otherwise, move to Step 2.

Step 2 Select a transition t of M that is not yet covered. Select a test a ∈ O
that covers t as follows: Among the redundant tests in O that cover t, select
the test that gives the smallest increment of tests for S.

Step 3 Given a test a identify the set of related tests E required to cover t.
Every test a ∈ O may be linked to several tests that were used to build the
convergence-preserving property. Update S and G by incrementing them
with E and a, respectively.

Test sets The relations C and D represent subsets of =n(T)-convergent and
=n(T)-divergent, respectively. The relation D is initially the set of all pairs of
T -separated tests according to Definition 1. Next, a M -divergent state cover set K
with n tests is identified. The relation C is the set of all pairs of =n(T)-convergent
tests according to Definition 2 (including the identity set where (α, α) ∈ C). We
used 10 rules that were introduced in [19] to identify extra pairs of convergent
and divergent test pairs in C and D, respectively. The ten rules are [19]:

1. If (α, β) is added to C, for each (α, χ) ∈ C, add (β, χ) to C.
2. If (α, β) is added to C, then, for all their common extensions αϕ, βϕ ∈ T ,

add (αϕ, βϕ) to C.
3. If (α, β) is added to D, and they are common extensions of tests α′ and β′,

then add (α′, β′) to D.
4. If (α, β) is added to C, then, for each χ ∈ T if (α, χ) ∈ D, add (β, χ) to D;

if (β, χ) ∈ D, add (α, χ) to D.
5. If (α, β) is added to D, then, for each χ ∈ T if (α, χ) ∈ C, add (β, χ) to D;

if (β, χ) ∈ C, add (α, χ) to D.
6. If (α, β), with α ≤ β, is added to D and there exists sequence ϕ and k > 1,

such that β = αϕk, then add (α, αϕ) to D.
7. If (α, αβγ) is added to C, and (α, αγ) ∈ D, then add (α, αβ) to D.
8. If (α, αγ) is added to D, then, for each sequence β such that (α, αβγ) ∈ C,

add (α, αβ) to D.

9

9. If (α, αγ) is added to C, then, for each sequence β such that (β, βγ) ∈ D,
add (α, β) to D.

10. If (β, βγ) is added to D, then, for each sequence α such that (α, αγ) ∈ C,
add (α, β) to D.

The relation C∪(K) = {β|(α, β) ∈ C,α ∈ K} is an =n(T)-convergence-preserving
set for M according to Definition 3. Moreover, we define sets V ⊆ C ∪ D for
verified pairs of tests of C and D, G ⊆ C∪(K) for goal coverage, and S ⊆ T to
store the selected tests of T . To identify convergent and divergent pairs that were
added to C and D by rules 1-10, we use designed inverse rules to trace tests back
to T -separated pairs where they originally came from.

11. If (β, χ) ∈ C was added by rule 1, then check (α, β), (α, χ) ∈ C
12. If (αϕ, βϕ) ∈ C was added by rule 2, then check (α, β) ∈ C
13. If (α, β) ∈ D was added by rule 3, then check (αγ, βγ) ∈ D.
14. If (α, χ) ∈ D was added by rule 4, then check (β, χ) ∈ D, (α, β) ∈ C.
15. If (α, χ) ∈ D was added by rule 5, then check (β, χ) ∈ C, (α, β) ∈ D.
16. If (α, αϕ) ∈ D was added by rule 6, then check (α, β) ∈ D, with α ≤ β, β =

αϕk, k > 1.
17. If (α, αβ) ∈ D was added by rule 7, then check (α, αγ) ∈ D, (α, αβγ) ∈ C.
18. If (α, αβ) ∈ D was added by rule 8, then check (α, αγ) ∈ D, (α, αβγ) ∈ C.
19. If (α, β) ∈ D was added by rule 9, then check (β, βγ) ∈ D, (α, αγ) ∈ C.
20. If (α, β) ∈ D was added by rule 10, then check (β, βγ) ∈ D, (α, αγ) ∈ C.

Detailed Selection Algorithm The main detailed steps of the selection algo-
rithm are presented in Figure 3.

Given an FSM M and n-complete test suite T for M , initially the algorithm
processes T and identify sets D, K, C, and C∪(K). Some tests may be added in
those sets (except K) by rules 1-10. The verification set V start empty, coverage
set G initialized, and the resulting selected set S empty.

Condition 1 checks whether G meets the condition of a n-complete test suite,
and since it is initially empty Step 2 is executed. To populate G first select a
transition t not covered by G and select a test α ∈ C∪(K) such that α covers
t, χ ∈ K, (α, χ) ∈ C, and (α, χ) /∈ V . Then, we check whether the pair (α, χ)
was added to C by some rule or by Lemma 2. Let Condition 2 be true for (α, χ),
then on Condition 3 no pair (α, υ) is true as V is empty at this point. Moving to
Condition 4, let it be true, then tests αγ, υγ are added to S and (α, υ) added
to V marking this pair as visited and checked. Back to Condition 3, assuming
that every other pair (α, υ) make Condition 4 true, then after verifying them
Condition 3 turns true, (α, χ) is added to V , α is added to S and G finishing the
basic cycle for t.

Let Step 2 select a test pair not verified (β, χ) ∈ C that was added to C by
rule 1. If Condition 2 turn false, then Step 5 identify pairs e.g., (α, β), (α, χ) ∈ C
by rule 11 that were used to add (β, χ) in C, then, add β and χ to S and put
(β, χ) in S to mark as verified. First, if (α, β) /∈ V then the execution continues
on Condition 2 for (α, β) instead of (β, χ) and (α, χ) enters in a waiting state. If
(α, β) ∈ V , then (α, β) is ignored, and if (α, χ) /∈ V then the execution continues

10

D := T -separated Tests pairs
Find a M -divergent state cover set K with n tests
C := =n(T)-convergent test pairs
Apply Rules 1-10
C∪(K) := init. convergent-preserving tran. cover set
V := {}; G := {}; S := {}

n-complete Test Suite T
for FSM M

n-complete Test Suite S
for FSM M

Step 1

Step 2

Condition 1

Condition 2

Yes

Yes

Yes

No

No

Is G
an init. convergent-

preserving tran. cover set
for M?

Select a transition t not covered by G
and select a test α ∈ C∪(K) s.t. α covers
t, χ ∈ K, (α, χ) ∈ C, and (α, χ) /∈ V

For every υ ∈ K\{χ},
(α, υ) ∈ V ?

∃γ∈I∗ s.t.
α and υ are T -separated and

αγ, υγ ∈ T?

S := S ∪ {αγ, υγ}
V := V ∪ {(α, υ)}

Identify Rule 13-20
S := S ∪ {α, υ}
V := V ∪ {(α, υ)}

If (α′, υ′) /∈ V
(α, υ) := (α′, υ′) (α, υ)

For every υ ∈ K\{χ},
(α, υ) ∈ D?

If (α′, χ′) /∈ V
(α, χ) := (α′, χ′)

(α, υ) /∈ V

Identify Rule 11-12
S := S ∪ {α, χ}
V := V ∪ {(α, χ)}

(α, χ)

If (α′, χ′) /∈ V
(α, χ) := (α′, χ′)

Condition 3

Condition 4

Yes

NoNo
Step 3.3

Step 3.1

Step 3.2

S := S ∪ {α}
V := V ∪ {(α, χ)}
G := G ∪ {α}

Step 3

Fig. 3. Algorithm for reducing an n-complete test suite.

11

on Condition 2 for (α, χ) instead of (β, χ). However, if (α, β), (α, χ) ∈ V then
the execution returns to the last waiting state. If there is no waiting point to
return, then the execution stops with a failure, and T is not n-complete.

On Condition 3 for every pair (α, υ) /∈ V select one and use as input for
Condition 4 and put the rest in a waiting state. If Condition 4 is false, then
identify which pairs of tests were responsible on the addition of (α, υ) to D,
then add α and υ to S, and (α, υ) to V to mark as verified. For example, if
(α, υ) was triggered by Rule 14, then (β, υ) ∈ D, (α, β) ∈ C. If (β, υ) /∈ V
then the execution continues on Condition 4 for (β, υ) and (α, β) enters in a
waiting state. If (β, υ) ∈ V , then (β, υ) is ignored, and if (α, β) /∈ V then the
execution continues on Condition 2 for (α, β). However, if (β, υ), (α, β) ∈ V then
the execution returns to the last waiting state. If there is no waiting point to
return, then the execution stops with a failure, and T is not n-complete.

3.3 Example

In this section we present an example of the IRT-SPL strategy to test new SPL
products.

Example 1. The Arcade Game Maker (AGM) [18] is able to produce up to six
arcade games with different game rules. All games are played by a single player,
aiming to get more points. Figure 4 (a) shows the feature model of AGM. There
are three alternative features for the game rule (Brickles, Pong and Bowling)
and one optional feature (Save) to save the game. A new product p3 is designed
for configuration Pong rule without the Save option that is represented by a
deterministic, complete, initially connected and minimal FSM M3 illustrated by
Figure 4 (b).

(b)(a)

Pause Game

Pong GameStart Game

Legend
 Mandatory Feature
 Optional Feature
 Alternative Feature Colision[l]

Movement[m]

Bowling[w]

Play[y]

Services[v]

Action[a]

Rules[r] Pong[n]

Brickles[b]

Save[s]

Pause[p]

Configuration[c]Arcade Game Maker
 AGM[g] Start/1

Exit/1

Pause/1

Start/1

 Exit/1

Exit/0
Save/0

Pause/0

Start/0
Save/0

Pause/0
Save/0

Fig. 4. (a) AGM Feature Model (adapted from [18]) and (b) FSM of the new product
for Pong rule.

Assume that two products were already tested for Brickles with and without
the Save option. Figure 5 shows four test sets generated by IRT-SPL: (a) defined

12

tests D for M3 that were already concretized before; (b) n-complete test suite
T for M3 generated by P method by incrementing D; (c) a selected n-complete
test suite S ⊆ T for M3 generated by our selection algorithm; and (d) test set R
for retesting the unchanged behavior. Test cases were simplified for readability
and each input is abbreciated as follows: (i) SG - Start, (ii) PS - Pause, (iii) EX -
Exit, and (iv) SV - Save.

1 SG,PS,PS,EX
2 PS,EX
3 EX,PS,EX
4 SV,PS,EX
5 PS,PS,EX
6 SG,PS,EX,PS,EX
7 SG,PS,SV,EX
8 SG,SV,PS,EX
9 SG,SG,PS,EX
10 SG,EX,PS,EX
11 SG,PS,SG,PS,EX
12 SG,SV,SV,SV,PS,EX
13 SG,SV,SV,PS,EX,PS,EX,SG,PS,EX

1 SG,PS,PS,EX
2 PS,EX
3 EX,PS,EX
4 SV,PS,EX
5 PS,PS,EX
6 SG,PS,EX,PS,EX
7 SG,PS,SV,EX
8 SG,SV,PS,EX
9 SG,SG,PS,EX
10 SG,EX,PS,EX
11 SG,PS,SG,PS,EX
12 SG,SV,SV,SV,PS,EX
13 SG,SV,SV,PS,EX,PS,EX,SG,PS,EX
14 SG,PS,SV,PS,SG

(a) (b)

1 EX,PS,EX
2 SG,PS,PS,EX
3 SV,PS,EX
4 SG,SG,PS
5 PS,EX
6 SG,EX,PS,EX
7 SG,SV,PS
8 SG,PS,SG,PS
9 SG,PS,EX,PS,EX
10 SG,PS,SV,EX
11 SG,PS,SV,PS,SG

1 EX,PS,EX
2 SG,PS,PS,EX
3 SV,PS,EX
4 SG,SG,PS
5 PS,EX
6 SG,EX,PS,EX
7 SG,SV,PS
8 SG,PS,SG,PS
9 SG,PS,EX,PS,EX
10 SG,PS,SV,EX

(c) (d)

Fig. 5. Test sets: (a) defined tests D for M3; (b) n-complete test suite T for M3; (c)
selected n-complete test suite S for M3; and (d) test set R for retest unchanged behavior.

Note that the difference between (a) and (b) is the addition of Line 14 on
(b), as well as the inputs designated in bold. As explained in Section 2.3, we
only count the concretization cost using suffixes of tests that were incremented
from another test already present in D. Since all four sets are prefix-closed, every
prefix is also a test to be counted. Notice that the prefix (SG,PS, SV) of Line
14 (b) is already present on Line 7 as a prefix that can be reused. In column
(c), the algorithm to select concretized tests is executed using as input M3 and
column (b), such that it keeps new tests; subsequently, it reduces tests that were
originally from column (a), because some of them are redundant to cover the
unchanged behavior. Then, the set of new tests is defined in Line 11 (c) and the
retest set is given in column (d).

The effort to test p3 using M3 and IRT-SPL is effort= (2 ∗ x) + 51. Assuming
that x = 10, the suffix PS, SG count 2 and |TR| (c) 51, resulting in effort= 71.

4 Experimental Study

To evaluate the applicability of IRT-SPL and measure the reuse efficiency of our
selection algorithm, we conducted an experiment. We measured the efficiency
of our algorithm and compared it to a few alternative approaches reported in
the literature. Our research question is: How much test effort can be saved using
IRT-SPL to test a set of new SPL products compared to existing test case reuse
strategies?

13

4.1 Experimental Setup

The setup of our experiment consists of designing several SPL products in different
orders and compare the total effort required to test all products. We compare
the effort of IRT-SPL to other reuse strategies found in the literature. A survey
on some approaches [8, 17, 4, 5, 21, 3, 13, 14, 1, 22] indicated two reuse strategies,
which are described bellow:

1. The first reuse strategy (henceforth called TSPL) was proposed by Capellari
et al. [3]. In their approach, only test cases from the last product are used to
increment tests in conformance testing of a new product.

2. The second reuse strategy (henceforce referred to as DIATP) was a delta-
oriented incremental testing process proposed by Lochau et al. [14]. They
reuse test cases of all previous products to test the unchanged behavior of the
new product, but they generate new tests for the changed behavior without
incrementing based on the (test prefixes from the) old tests.

To obtain a fair comparison among our strategy, TSPL, and DIATP, we setup
similar environments also using the P method for TSPL and DIATP. Figure 6 (a)
shows the environment for TSPL to get the required sets for conformance testing
and calculate the effort required. Defined tests for a new product are reused from
the last derived product and incremented without any selection/reduction. Figure
6 (b) shows the environment for DIATP to get required sets for conformance
testing and calculate the effort required. In the existing approaches (TSPL and
DIAIP), all defined tests for a new product are reused without increment.

FSMTSPL Test Reuse Strategy

Concretized
tests for M

FSM M

Process defined tests
of the last derived product

Step 1

Nonconcretized
 tests for M

Concretized
 tests for M

Do we need
to generate more

tests for M?
No Yes Increment tests

using a test
generation method

DIATP Test Reuse Strategy

Concretized
tests for M

FSM M

Select concretized tests
to retest unchanged behavior

Step 1

Nonconcretized
 tests for M

Selected
concretized
 tests for M

Do we need
to generate more

tests for M?
No Yes

Generate new tests
for the changed
behavior using a
test generation
method

(a) (b)

Step 2 Step 2

Fig. 6. Adapted reuse strategies for (a) TSPL and (b) DIATP.

The implementation of our experiments was executed in Java. The running
environment used Ubuntu 14.04 LTS (64 bit) on an Intel processor i5-5300U at
2.30GHz2.

2 The experiment package for Eclipse IDE can be found in http://ceres.hh.se/

mediawiki/Vanderson_Hafemann

14

4.2 Case Study

The embedded camera Mobile Media SPL [11] was used to compare all three reuse
strategies. The Mobile Media SPL contains several features, such as photo ma-
nipulation, music, and videos on mobile devices. Figure 7 (a) presents the feature
diagram with three alternative features (Photo(MP), Music(MM), and Video(MV))
and three optional (Favourites(F), Copy Media(CM), and SMS Transfer(SMS))
used to characterize all possible configurations of the SPL. Figure 7 (b) presents
24 configurations of Mobile Media used to design corresponding products. Note
that each product of the order 1 to 24 increases the number of features compared
to the previous products. Thus, we designed those products in three orders: (i)
increasing features (1 to 24); (ii) decreasing features (24 to 1); and (iii) random
derivation.

(b)
(a)

X
X
X
X
X
X
X
X
X

X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X

X

X

X

X

X

X

X

X

X

X

X

2 4
2 3
2 2
2 1
2 0
1 9

X
SMSCMFMVMM

1 8
1 7
1 6
1 5
1 4

MP
1 3

Products

X

X

X

X

X

X

X

X

X

X
X
X

X

X
X
X

X

X
X
X

1 2
1 1
1 0
9
8
7

X
SMSCMFMVMM

6
5
4
3
2

MP
1

Products

View/Play Media

Label Media

Legend
 Mandatory Feature
 Optional Feature
 Alternative Feature

Create/Delete

Video
Favourites

Media Management

Media Music

Photo

SMS Transfer

Copy MediaMobile
Media

Fig. 7. (a) Mobile Media feature model; and (b) derived products from Mobile Media
SPL.

For each product, an FSM was modeled with varying number of states from
three to six, and with fixed eight inputs and two outputs. All FSMs share the same
basic properties for test case generation, namely, they are complete, deterministic,
reduced, and initially connected.

4.3 Analysis and Threats to Validity

The collected data after running our experiments is visualized in Figure 8. The
variable x is the concretization value from the effort formula effort= (concrete ∗
x) + execution presented in Section 2.3. On (a) and (b) we have the derivation
of products with an increasing number of features when x = 10 and x = 100,
respectively. On (c) and (d) we have the derivation of products with decreasing
number of features when x = 10 and x = 100, respectively. Finally, on (e) and
(f) we have the derivation of products with a random number of features when
x = 10 and x = 100, respectively.

As an immediate observation, we noticed that the total effort required to test
the Mobile Media SPL in any order vary according to the value of x. Also, the
number of newly designed products should be considered as for few products
there is no significant difference of effort.

15

Effort by Product when x=10

TSPL
DIATP
Our Strategy

1 3 5 7 9 11 13 15 17 19 21 23

0

5000

10000

15000

20000

25000

(a) Design Product Order

Ac
cu

m
ul

at
ed

 E
ffo

rt

Effort by Product when x=100

TSPL
DIATP
Our Strategy

1 3 5 7 9 11 13 15 17 19 21 23

0

50000

100000

150000

200000

(b) Design Product Order

Ac
cu

m
ul

at
ed

 E
ffo

rt
Effort by Product when x=10

TSPL
DIATP
Our Strategy

24 22 20 18 16 14 12 10 8 6 4 2

0

5000

10000

15000

20000

25000

(c) Design Product Order

Ac
cu

m
ul

at
ed

 E
ffo

rt

Effort by Product when x=100

TSPL
DIATP
Our Strategy

24 22 20 18 16 14 12 10 8 6 4 2

0

50000

100000

150000

200000

(d) Design Product Order

Ac
cu

m
ul

at
ed

 E
ffo

rt

Effort by Product when x=10

TSPL
DIATP
Our Strategy

1 16 22 19 12 9 4 23 7 15 10 11

0

5000

10000

15000

20000

25000

(e) Design Product Order

Ac
cu

m
ul

at
ed

 E
ffo

rt

Effort by Product when x=100

TSPL
DIATP
Our Strategy

1 16 22 19 12 9 4 23 7 15 10 11

0

50000

100000

150000

200000

(f) Design Product Order

Ac
cu

m
ul

at
ed

 E
ffo

rt

Fig. 8. Accumulated effort per designed product when concretization cost is x times the
cost of execution. (a) the increment of features for x = 10 (b) the increment of features
for x = 100; (c) the decrement of features for x = 10; (d) the decrement of features for
x = 100; (e) random features for x = 10; and (f) random features for x = 100.

16

To summarize, we conclude that if the concretization cost is over 100 times
the execution, then for our case study IRT-SPL can save at least 36% of the total
effort required to test all SPL products in any order compared to other test reuse
strategies. (Currently available case studies [20, 12] suggest that concretization
time for each test case is about 200 times its execution time.) However, the time
to execute every strategy depends on the complexity of the P method. Traditional
test generation methods for the full fault coverage that use FSMs as test models
(e.g. W [6], HSI [15]) are not incremental. Thus, they cannot increment test
cases for new specifications based on old test cases to improve reuse. However,
generated new tests can be compared to old tests for reuse resulting in a weaker
reuse strategy as some of these new tests may be equivalent to existing old tests.

Our experiment has been limited mostly to non-hierarchical FSMs with few
states and few new products. One of the issues regarding the P method is the
increasing time required to generate tests based on the number of states, inputs
and input test set. Both of these issues (few subjects and limiting time) are
threats to the validity of our results for real-world cases. We plan to mitigate
these threats by analyzing a number of realistic case studies as a benchmark for
our future research. Realistic FSMs use hierarchy to sustain scalability. Hence,
an extension of FSM-based test generation methods for full fault coverage to
hierarchical FSMs is required. We plan to investigate this further in the near
future.

5 Related Work

Much recent research has been devoted to developing efficient testing techniques
for SPLs by exploiting variability in a systematic manner; we refer to [10, 16] for
recent surveys of the field.

There are several incremental test approaches [8, 17, 21, 3, 1] devoted to gener-
ating, reusing, and optimizing test suites for SPLs. El-Fakih et al. [8] presented an
incremental algorithm to automatically re-generate tests in response to changes
to a system specification. Pap et al. [17] extended their work and designed an
algorithm that maintains two sets incrementally based on the HSI method [15].
Capellari et al. [3] explored the FSM-based Testing of SPLs (FSM-TSPL) testing
strategy where the P method is used to design new tests based on the last product
derived. Uzuncaova et al. [21] developed an incremental test generation approach,
while Baller and Lochau [1] focused on test suite optimization. Moreover, recent
delta-oriented approaches [13, 14, 22] developed regression-based SPL approaches
to design and reuse test artifacts.

In contrast to current approaches, our work introduces a test reuse strategy
focused on reducing concretization effort for the set of new SPL products. We
analyze the already concretized tests of derived products to generate a small set
of new tests to-be-concretize for conformance testing. To our knowledge, there is
no proposal that reuse tests from all previous products to reduce concretization
effort for new SPL products using incremental test generation methods.

17

6 Conclusions

This paper proposes a test reuse strategy named Incremental Regression-based
Testing for Software Product Lines (IRT-SPL) that aims at reducing test effort
on checking conformance of several SPL products. Tests of previously designed
products can be efficiently reused for a newly designed product using incremental
test generation methods to reduce the number of required tests for concretization.
We assume that concretization of tests (as seen in some case studies [20, 12])
is several times more expensive than executing the same test. Thus, the effort
required to test such new product is directly related to concretization costs.

Finite State Machines were used to represent the abstract behavior of the
products as test models. To maximize reuse of tests all concretized tests are
analyzed and some of them are selected to retest the unchanged behavior of the
new product under test. Thus, our strategy also contains a selection algorithm
to perform the selection of non-redundant concretized tests.

To illustrate our strategy, we used examples and a case study of an embedded
Mobile Media SPL [11]. The results indicate that our approach can save at least
36% test effort for 24 products when the concretization cost is 100 times more
expensive than execution compared to current test reuse strategies for the same
fault detection capability.

The problem and the approach described above are very much inspired by a
similar problem and approach in regression testing. Regression testing concerns
testing software evolution in time (in versions) while SPL testing is about testing
software evolution in space (in features) [10]. Hence, we believe our approaches
and the obtained results will be also applicable to the regression testing setting.

As future work, we plan to investigate test models with hierarchy and adapt
test generation methods for such models to handle scalability problems. Also, we
intend to investigate more studies regarding formal representations of SPLs in
order to perform incremental reuse of test artifacts.

References

1. Baller, H., Lochau, M.: Towards incremental test suite optimization for software
product lines. In: Proc. of FOSD 2014. pp. 30–36. ACM (2014)

2. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems, Advanced Lectures, Lecture Notes in Computer
Science, vol. 3472. Springer-Verlag, Berlin (2005)

3. Capellari, M.L., Gimenes, I.M.S., Simao, A., Endo, A.T.: Towards Incremental
FSM-based Testing of Software Product Lines. In: Proc. of SBQS 2012. pp. 9–23
(2012)

4. Chen, Y., Probert, R.L., Ural, H.: Model-based regression test suite generation
using dependence analysis. In: Proc. of A-MOST 2007. pp. 54–62. ACM Press
(2007)

5. Chen, Y., Probert, R.L., Ural, H.: Regression test suite reduction based on SDL
models of system requirements. Journal of Software Maintenance and Evolution:
Research and Practice 21(6), 379–405 (2009)

6. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE
Transactions on Software Engineering SE-4(3), 178–187 (1978)

18

7. Dev, R., Jääskeläinen, A., M., K.: Advances in Computers, vol. 85. Elsevier (2012)
8. EI-Fakih, K., Yevtushenko, N., Bochmann, G.: FSM-based incremental conformance

testing methods. IEEE Transactions on Software Engineering 30(7), 425–436 (2004)
9. Endo, A.T., Simao, A.: Evaluating test suite characteristics, cost, and effectiveness of

FSM-based testing methods. Information and Software Technology 55(6), 1045–1062
(2013)

10. Engström, E.: Exploring Regression Testing and Software Product Line Testing
-Research and State of Practice. Ph.D. thesis, Lund University (2010)

11. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia,
A., Soares, S., Ferrari, F., Khan, S., Filho, F., Dantas, F.: Evolving software
product lines with aspects. ACM/IEEE 30th International Conference on Software
Engineering pp. 261–270 (2008)

12. Graham D., F.M.: Experiences of Test Automation: Case Studies of Software Test
Automation, vol. 1. Addison-Wesley Professional (2012)

13. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental Model-Based Testing
of Delta-Oriented Software Product Lines. In: Proc. of TAP 2012. pp. 67–82 (2012)

14. Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U.: Delta-oriented model-
based integration testing of large-scale systems. Journal of Systems and Software
91, 63–84 (may 2014)

15. Luo, G., Petrenko, A., Petrenko, R., Bochmann, G.V.: Selecting Test Sequences
For Partially-Specified Nondeterministic Finite State Machines. In: Proc. of IFIP
1994. pp. 91–106 (1994)

16. Oster, S., Wubbeke, A., Engels, G., Schurr, A.: A Survey of Model-Based Software
Product Lines Testing. In: Model-Based Testing for Embedded Systems, pp. 338–381.
CRC Press (2012)

17. Pap, Z., Subramaniam, M., Kovács, G., Németh, G.Á.: A Bounded Incremental
Test Generation Algorithm for Finite State Machines. In: Proc. of IFIP 2007. pp.
244–259. Springer (2007)

18. SEI: A framework for software product line practice (2011), http://www.sei.cmu.
edu/productlines/tools/framework/

19. Simao, A., Petrenko, A.: Fault Coverage-Driven Incremental Test Generation. The
Computer Journal 53(9), 1508–1522 (2010)

20. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach, vol. 1.
Morgan Kaufmann (2006)

21. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental Test Generation for Software
Product Lines. IEEE Transactions on Software Engineering 36(3), 309–322 (2010)

22. Varshosaz, M., Beohar, H., Mousavi, M.: Delta-oriented fsm-based testing. In: Proc.
of ICFEM 2015 LNCS. pp. 366–381. Springer (2015)

