
.

Unit	testing,	Integration	testing	
TDD	(Test	Driven	Development)	

Mocking

by	Micael	Andersson

TDD	Training

TDD
(Exercise Stack)

Presentation provided by
Combitech JidokaQ

Exercise 5
Use TDD to test, design and implement a Stack class for
integers. You are not allowed to use any of the built-in
collection classes!
• Specification:

– “A stack is a data structure in which you can
access only the item at the top. With a computer,
Stack like a stack of dishes—you add items to the
top and remove them from the top.”

Remember: Every single line of production code written
must be motivated by a failing test!

3

Push operation

4

B

OperationInitial
State

A C

Push

Unbounded
Stack

(isEmpty = false)

C

Final
State

B

Unbounded
Stack

(isEmpty = false)

A

Pop operation

5

A

OperationInitial
State

Pop returns

Unbounded
Stack

(isEmpty = false)

Final
State

Unbounded
Stack

(isEmpty = true)

A

Top operation

6

A

OperationInitial
State

Top returns

Unbounded
Stack

(isEmpty = false)

Final
State

Unbounded
Stack

(isEmpty = false)

A

A

Recap: The TDD process Red/Green/Refactor

7

Write a test for
new capability

Start

Compile

Fix compile
errors

Run the test
And see it failWrite the code

Run the test
And see it pass

Refactor as needed

Exercise 5
• Separate presentation, or demo

8

Solution 5 - Step 1a
• Add test of isEmpty() – see it fail

public class SimpleStackTest {

@Test
public void testNewStackIsEmpty() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());

}
}

public class SimpleStack {
public boolean isEmpty() {

return false; // See it fail!
}

}

9

Solution 5 - Step 1b
• Add test of isEmpty() – make it work

public class SimpleStackTest {

@Test
public void testNewStackIsEmpty() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());

}
}

public class SimpleStack {
public boolean isEmpty() {

return true; // See it work!
}

}

10

Solution 5 - Step 2a
• Add test of push() – see it fail
public class SimpleStackTest {

@Test
public void testNewStackPush() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());
int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!”,
stack.isEmpty());

}
}

public class SimpleStack {
public boolean isEmpty() {

return true;
}
public void push(int item) {

// Pushes to void, but that ok, see it fail.
}

}

11

Solution 5 - Step 2b
• Add test of push() – make it work
public class SimpleStackTest {

@Test
public void testNewStackPush() {

SimpleStack stack = new SimpleStack();
int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!”,
stack.isEmpty());

}
}

public class SimpleStack {
boolean empty = true; // Add variable to keep a state
public boolean isEmpty() {

return empty; // Return the state
}

 public void push(int item) {
 empty = false; // Still pushes to void, but that is ok, see it work.
 }
}

12

Solution 5 - Step 3
• We now have got two tests, refactor (@Before)

public class SimpleStackTest {

@Test
public void testNewStackIsEmpty() {

SimpleStack stack = new SimpleStack();
Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());

}

@Test
public void testNewStackPush() {

SimpleStack stack = new SimpleStack();
int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!", stack.isEmpty());

}
}

13

Solution 5 - Step 4
• We now have got two tests, make it work

public class SimpleStackTest {

SimpleStack stack = null; // Declare for commonalities

@Before
public void setUp() { // Break out commonalities !

stack = new SimpleStack();
}

@Test
public void testNewStackIsEmpty() {

Assert.assertTrue("New stack should be empty!",true == stack.isEmpty());
}

@Test
public void testNewStackPush() {

int item = 1;
stack.push(item);
Assert.assertFalse("Stack should not be empty after an item has been pushed!", stack.isEmpty());

 }
}

14

Solution 5 - Step 5
• Add test of pop() of empty stack, see it fail, make it work

@Test
public void testEmptyStackPop() {

try { // expect an empty stack to throw exception when pop:ed
@SuppressWarnings("unused")
int topItem = stack.pop();
Assert.fail("IllegalStateException expected");

} catch (java.lang.IllegalStateException e) {
// Expected

}
}
// Production code
public int pop() {

if (isEmpty()) {
throw new java.lang.IllegalStateException();

}
return 0; // Don’t think ahead, this works for our tests

}

15

Solution 5 - Step 6a (The test)
• Add test of pop() of stack with content

@Test
public void testPopOfStackWithOneItem() {

int item = 10;
stack.push(item);
int topItem = stack.pop();
Assert.assertEquals("Popped item was expected to be 10.", item, topItem);

}

• Run test, see it fail

16

Solution 5 - Step 6b (The production code)
• Add implementation of pop() of stack with content, run tests, make it work

public class SimpleStack {
boolean empty = true;
int stackValue = 0; // We need a variable to hold the stack

public int pop() {
if (isEmpty()) {

throw new java.lang.IllegalStateException();
}
return stackValue;

}

public void push(int item) {
stackValue = item;
empty = false;

}
}

17

Solution 5 - Step 7a (The test code)
• Add test for multiple push() and pop() – Run tests, see it fail

@Ignore
public void testStackPushTwice() {

int item = 1;
stack.push(item);
item = 2;
stack.push(item);
Assert.assertFalse("New stack should not be empty after an item has been pushed!",
stack.isEmpty());

}
@Test
public void testStackPopTwice() {

int item1 = 1;
 stack.push(item1);

int item2 = 2;
stack.push(item2);
int topItem = stack.pop();
Assert.assertEquals("Popped item was expected to be 2.", item2, topItem);
topItem = stack.pop();

Assert.assertEquals("Popped item was expected to be 1.", item1, topItem);
Assert.assertTrue("Stack should be empty after all items has been pushed!", stack.isEmpty());

}

18

Solution 5 - Step 7b (The production code)
• So far so good. It works, but we need to push our solution to be able to take more push. Time for redesign
public class SimpleStack {

private ListElement stackTop = null;

public boolean isEmpty() {
return stackTop == null;

}

public int pop() {
int returnValue = 0;
if (isEmpty()) {

throw new java.lang.IllegalStateException();
} else {

returnValue = stackTop.value;
stackTop = stackTop.nextElement;

}
return returnValue;

}
public void push(int item) {

ListElement listElement = new ListElement();
listElement.value = item;
listElement.nextElement = stackTop;
stackTop = listElement;

}
}
• And, best of all, the tests will be reuse

19

public class ListElement {

public int value = 0;
public ListElement nextElement = null;

}

Solution 5 - Step 8
• Add tests for top() – make it work

@Test
public void testEmptyStackTop() {

try {
@SuppressWarnings("unused")
int top = stack.top();
Assert.fail("IllegalStateException expected");

} catch (java.lang.IllegalStateException e) {
// Expected

}
}

@Test
public void testStackTopTwice() {

int item1 = 1;
stack.push(item1);
int topItem = stack.top();
Assert.assertEquals("Top item was expected to be 1.", item1, topItem);
topItem = stack.top();

Assert.assertEquals("Top item was expected to be 1.", item1, topItem);
Assert.assertFalse("Stack should not be empty after stack hass beeb topped!", stack.isEmpty());

}

20

public int top() {
int returnValue = 0;
if (isEmpty()) {

throw new java.lang.IllegalStateException();
} else {

returnValue = stackTop.value;
}
return returnValue;

}

TDD	Training

TDD
(Benefits)

Presentation provided by
Combitech JidokaQ

Obvious Effects of Test-Driven Development
• Already automated tests, immediately useful for

– Integration tests
– Regression tests

22

Not so obvious effects of Test-Driven Development
• Testing as we program means we spend less time

debugging. We get our programs done faster.
• Testing as we program means that we don't have long

tedious testing cycles at the end of our projects.
• Our tests are the first users of our code. We

experience what it is like to use our code very quickly.
Hence, design turns out better.

• Testing before coding is more interesting than testing
after we code. Because it's interesting, we find it
easier to maintain what we know is a good practice.

23

Not-so-obvious effects of TDD (Contd.)
• Intentional Design of Interfaces

– Since the code in question is not written yet, we are free to choose the interface

that is most usable.

• Non-speculative Interfaces
– Interfaces provide the functionality which is just enough for right now

• Documented requirements and intended usage
– The tests themselves provide immediately useful documentation of the

Interfaces

• Good OO Design: High Cohesion and Low Coupling
– If you have to write tests first, you'll devise ways of minimizing dependencies in

your system in order to write your tests.

24

Possible weak points of TDD ?
• When test code, very intensively, use production API

then it can impact the ability to refactor.

• Buggy tests – tests that is failing because of bugs in
the test themselves.

• It will simply not be worth it, when cost for maintenance
of the tests will be higher than benefits.

Hey there!
We are developers and should strive to mitigate these
weak points, shouldn’t we?

25

Types of tests
– Unit test: Specify and test one point of the contract of single method of a class. This should have a very narrow

and well defined scope. Complex dependencies and interactions to the outside world are stubbed or mocked.
– Integration test: Test the correct inter-operation of multiple subsystems. There is whole spectrum there, from

testing integration between two classes, to testing integration with the production environment.
– Smoke test: A simple integration test where we just check that when the system under test is invoked it returns

normally and does not blow up. It is an analogy with electronics, where the first test occurs when powering up a
circuit: if it smokes, it's bad.

– Regression test: A test that was written when a bug was fixed. It ensure that this specific bug will not occur
again. The full name is "non-regression test".

– Acceptance test: Test that a feature or use case is correctly implemented. It is similar to an integration test,
but with a focus on the use case to provide rather than on the components involved.

– A Canary test is an automated, non-destructive test that is run on a regular basis in a LIVE environment, such
that if it ever fails, something really bad has happened.

• Examples might be:
• Has data that should only ever be available in DEV/TEST appeared in LIVE.
• Has a background process failed to run
• Can a user logon
• the concept of a canary in a coal mine.

26

Canary Test
• In software testing, a canary (also called a canary test) is a push of

programming code changes to a small number of end users who
have not volunteered to test anything. The goal of a canary test is to
make sure code changes are transparent and work in a real world
environment.

• Canary tests, which are often automated, are run after testing in a
sandbox environment has been completed. Because the canary is
only pushed to a small number of users, its impact is relatively small.
If the new code prove to be buggy then the changes can be
reversed quickly.

• The word canary was selected to describe the code push, because
just like canaries that were once used in coal mining to alert miners
when toxic gases reached dangerous levels, end users selected for
testing are unaware they are being used to provide an early warning.

27

Designing for Testability: Low Coupling
• Minimize dependencies between classes
• Only allow “closely related” classes to interact directly

28

FRIENDS

Designing for Testability: Model-View-Control
• User Interfaces are notoriously difficult to test

• Splitting a complex application into separate,
cohesive parts which separates presentation from

application logic enables testing of the application
logic in isolation

29

Some quotes on Test-Driven Development

• “Test-Driven Development is a powerful way to produce well
designed code with fewer defects” – Martin Fowler

• “The best way that I know to write code is to shape it from the
beginning with tests” – Ron Jeffries

• “Fewer defects, less debugging, more confidence, better design, and
higher productivity in my programming practice” – Kent Beck

30

Code Coverage (Java)
• Which statements of my application are being executed?
• Useful to identify incomplete testing (ECLemma plug-In)
 • Option 1: Install from Eclipse Marketplace Client
 • Option 2: Installation from update site
 • Option 3: Manual download and installation

31

But …
• Focusing only on coverage is not sufficient, you may

miss:
– Missing code
– Incorrect handling of boundary conditions
– Timing problems
– Memory Leaks

• Use coverage sensibly
– Objective, but incomplete
– Too often distorts sensible action

32

TDD enables cheap, early, and frequent tests!
It’s always a bit painful to change your habits, but once

you’ve been there, you’re stuck!
• Enables truly iterative projects
• Improves your design
• Doesn’t cost your project a fortune
• It’s even fun!
Bottom Line:

Automated Testing and Test-Driven Development
is infectious!

33

Integration Tests
• An Integration Test is any test which tests a logical

unit together with other units that it depends on, such as other
software units but more frequently external resources
such as Databases or Message Queues.

• Thus the integration tests share many of the
characteristics of Unit Tests, but the granularity is
much bigger.

• Due to the performance costs in accessing external
resources, the integration tests usually takes much
longer time to execute.

34

Ratio between Unit and Integration Tests
• Unit tests are naturally the most efficient way of

catching defects on the Unit level.
– If a defect can be caught using a Unit Test, it

should therefore be preferred instead of catching
it using an Integration test.

– Hence there will typically be many more Unit
tests than integration tests.

• Integration tests should be used for testing interaction
between units and between units and external
resources.

35

36

Ratio between Unit and Integration Tests

Only
Unit test

37

Only
integration
test

Ratio between Unit and Integration Tests

Test Data, concurrency and repeatability
• Integration tests which have side effects (i.e. which

affects persistent data) are problematic:
– Modifying data which other tests may depend on,

may cause subsequent test failures
– Several instances of tests which uses the same data

may run concurrently, which may cause test failures
• Transaction demarcation is a common idiom to protect

test data from modification:
– Start a transaction in [SetUp]
– Rollback the transaction in [TearDown]

38

sd IntegrationTest Data Mgmt

IntegrationTestCase TxManagerTestFramework

setUp

begin

tearDown

rollback

Test Data, concurrency and repeatability

39

sd IntegrationTest Data Mgmt

IntegrationTestCase TxManagerTestFramework

setUp

begin

tearDown

rollback

Test Data strategies
• Integration tests

– Local test data, owned and managed by test
– Global, common test data, pre-populated via

SQL scripts
• System tests

– All data owned by test script
• Separate Databases

• Primary keys/IDS and Test Data

40

Managing External Test Data Files
• Some test data is most easily kept in a file format (e.g. XML files) which

are read and manipulated by the tests. In order to make the tests
insulated from how and where they are executed, the tests should not
refer to external files via the file system. Both absolute and relative file
names may differ depending on the execution environment.

• Instead, the tests may keep data files as “Embedded Resources” within
the test assembly itself (src/test/resources).

41

DbUnit
• DbUnit is a JUnit extension targeted at database-

driven applications.
• Puts your database into a known state between test

runs.
• DbUnit has the ability to export and import your

database data to and from XML datasets.
• DbUnit is used by JVS.

42

TDD	Training

Designing for
testability

Presentation provided by
Combitech JidokaQ

Designing for Testability : Law of Demeter
(LoD or principle of least knowledge)

• Any method should have limited knowledge about its
surrounding object structure.

• Named in honor of Demeter, “distribution-mother”, Greek
goddess of agriculture

• Hence

public class SomeUnit {
 private IDependee dependee;
 public SomeUnit() {
 this.dependee = new Dependee();
 }
 ...
}

44

Law of Demeter (Contd.)

• becomes

public class SomeUnit {
 private IDependee dependee;
 public SomeUnit() {
 }
 public SetDependee(IDependee dependee) {
 this.dependee = dependee;
 }
 ...
}

45

Designing for Testability: LoD - Don’t Talk To Strangers
• If there are no strong reasons why two classes should

talk to each other directly, they shouldn’t!

46

becomes

<<interface>>	
IDependee

Unit	under	Test	
(UUT) Dependee

Unit	under	Test	
(UUT) Dependee

Designing for Testability: Dependency Injection
• What is it?

• Dependency Management

• Dependency Injection provides a mechanism for managing  
dependencies between components in a decoupled way

• Makes it easier to unit test components in isolation

• Out of container and with mocked dependencies

47

TDD	Training

Breaking
dependencies

Presentation provided by
Combitech JidokaQ

Design properties and Design goals

For Units:
• Modularity
• High cohesion
• Low coupling
For Tests:
• Modularity
• Locality

49

UnitTest
Unit	under	Test	

(UUT)

Side effects

But what about units that
depend on other units (with
potential side effects)?

50

Unit	under	Test	
(UUT)

Data	Access	Object	
(DAO)

- create()	
- update()	
- delete()	
- read()

RDBMS

Strategies for testing Units that depend on other units

• Break the dependency: Let the Test create a synthetic
‘Mock’ context

• Run and test the Unit within it’s natural context (In
Container in the case of Java EE or .NET)

• Let the Test create the real context

51

Test
Unit	under	Test	

(UUT) Dependee

Synthetic context – Mocking
• Implements the same

interface as the resource that
it represents

• Enables configuration of its
behavior from outside (i.e.
from the test class, in order to
achieve locality)

• Enables registering and
verifying expectations on how
the resource is used

52

Unit	under	Test	
(UUT)

<<interface>>	
Data	Access	Object

- create()	
- update()	
- delete()	
- read()

RDBMS

UnitTest creates

DaoImplMockDao

creates

TDD	Training

Mocking
using plain Java

Presentation provided by
Combitech JidokaQ

Why Mock?

Unit tests should act as a safety net and provide quick
feedback. This is the main principle of TDD.

A test may take time to execute due to the following reasons:
 • Sometimes a test acquires a connection from the database that fetches/updates

data

 • It connects to the Internet and downloads files

 • It interacts with an SMTP server to send e-mails

 • It performs I/O operations

54

Why Mock?

Do we really need to acquire a database connection
or download files to unit test code?

The answer is yes.

If it doesn't connect to a database or download the latest stock price, few parts of the
system remain untested. So, DB interaction or network connection is mandatory for a
few parts of the system, and these are integration tests.

But, to unit test these parts, the external dependencies
need to be mocked out.

55

Test Doubles

56

Doubles

Dummy Stub Mock Fake Spy

Dummy
An example of a dummy would be a movie scene where the double doesn't perform
anything but is only present on the screen. They are used when the actual actor is not
present, but their presence is needed for a scene.

Similarly, dummy objects are passed to avoid NullPointerException for
mandatory parameter objects as follows:

@Test
public void aTestMethod() {

Book javaBook = new Book("Java 101", "123456");
Member dummyMember = new DummyMember(); //<-a dummy member
javaBook.issueTo(dummyMember);
assertEquals(javaBook.numberOfTimesIssued(),1);

}

57

Stub
A stub delivers indirect inputs to the caller when the stub's methods are called. Stubs are
programmed only for the test scope. Stubs may record other information such as the
number of times the methods were invoked and so on.

Account transactions should be rolled back if the ATM's money dispenser fails to dispense
money. How can we test this when we don't have the ATM machine, or how can we
simulate a scenario where the dispenser fails? We can do this using the following code:

public interface Dispenser {
 void dispense(BigDecimal amount) throws DispenserFailed;
}

public class AlwaysFailingDispenserStub implements Dispenser {
 public void dispense(BigDecimal amount) throws DispenserFailed {
 throw new DispenserFailed (ErrorType.HARDWARE,
 “Dispenser not responding");
 }
}

58

Stub example

@Test
public void transaction_is_rolledback_when_hardware_fails() {

// Arrange: set up a failing dispenser
Account myAccount = new Account("John", 2000.00);
TransactionManager txMgr = TransactionManager.forAccount(myAccount);
txMgr.registerMoneyDispenser(new AlwaysFailingDispenserStub());

// Act:
WithdrawalResponse response = txMgr.withdraw(500.00);

// Assert: no success and that no change on the account
assertEquals(false, response.wasSuccess());
assertEquals(2000.00, myAccount.remainingAmount());

}

59

Fake
Fake objects are working implementations; mostly, the fake class extends the
original class, but it usually hacks the performance, which makes it unsuitable for
production. The following example demonstrates the fake object:

public class AddressDAO extends SimpleJdbcDaoSupport {

public void batchInsertOrUpdate(List<AddressDTO> addressList, User user) {
List<AddressDTO> insertList = buildListWhereLastChangeTimeMissing(addressList);
List<AddressDTO> updateList = buildListWhereLastChangeTimeValued(addressList);
int rowCount = 0;

if (!insertList.isEmpty()) {
rowCount = getSimpleJdbcTemplate().batchUpdate(INSERT_SQL, "...");

}
if (!updateList.isEmpty()) {

rowCount += getSimpleJdbcTemplate().batchUpdate(UPDATE_SQL, "...");
}
if (addressList.size() != rowCount) {

raiseErrorForDataInconsistency("...");
}

}
public SimpleJdbcTemplate getSimpleJdbcTemplate() { // Fake this method !!!

// Long complicated implementation…
}

}

60

Fake example

public class FakeAddressDAO extends AddressDAO {
private SimpleJdbcTemplate jdbcTemplate = new SimpleJdbcTemplate();

@Override
public SimpleJdbcTemplate getSimpleJdbcTemplate() {

return jdbcTemplate ;
}

}

61

Mock
Mock objects have expectations; a test expects a
value from a mock object, and during execution, a
mock object returns the expected result.
Also, mock objects can keep track of the invocation
count, that is, the number of times a method on a
mock object is invoked.

62

Mock
The following example is a continuation of the ATM example with a mock version.
In the previous example, we stubbed the dispense method of the Dispenser interface
to throw an exception; here, we'll use a mock object to replicate the same behavior.
@RunWith(MockitoJUnitRunner.class)
public class ATMTest {

@Mock
Dispenser failingDispenser;
@Before
public void setUp() throws Exception {

MockitoAnnotations.initMocks(this);
}
@Test
public void transaction_is_rolledback_when_hardware_fails() throws DispenserFailed {

Account myAccount = new Account(2000.00, "John");
TransactionManager txMgr = TransactionManager.forAccount(myAccount);
txMgr.registerMoneyDispenser(failingDispenser);
doThrow(new DispenserFailed()).when(failingDispenser).dispense(isA(BigDecimal.class));

txMgr.withdraw(500.00f);

assertEquals(2000.00, myAccount.getRemainingBalance(), 0.01f);
verify(failingDispenser, new Times(1)).dispense(isA(BigDecimal.class));

}
}

63

Spy
Spy is a variation of a mock/stub, but instead of
only setting expectations, it records the calls made
to the collaborator.
public class ResourceAdapter {

Printer printer;
SecurityService securityService;

public ResourceAdapter(SecurityService securityService, Printer printer) {
this.securityService = securityService;
this.printer = printer; // <—- Supports dependency injection

}
void print(String userId, String document, Object settings) {

if (securityService.canAccess("lanPrinter1", userId)) {
printer.print(document, settings);

}
}

}

public interface Printer { void print(String document, Object settings); }
public interface SecurityService { public boolean canAccess(String name, String id); }

64

Spy Example cont.
public class FakeSecurityService implements SecurityService { // <—- Fake a service

public boolean canAccess(String name, String id) {
return true;

}
}
public class SpyPrinter implements Printer { // <—- Implement a Spy

private int noOfTimescalled = 0;
@Override
public void print(String document, Object settings) {

noOfTimescalled++;
}
public int getInvocationCount() {

return noOfTimescalled;
}

}
@Test
public void verify() throws Exception {

SpyPrinter spyPrinter = new SpyPrinter(); // <—- Arrange
adapter = new ResourceAdapter(new FakeSecurityService(), spyPrinter);
adapter.print("john", "helloWorld.txt", "all pages");
assertEquals(1, spyPrinter.getInvocationCount());

}

65

When to use mocking (and when not to)
• Mocking is great for

– Breaking dependencies between well-architected layers or tiers
– Testing corner cases and exceptional behavior

• Mocking is less ideal for
– Replacing awkward 3rd party APIs
– Responsibilities which involves large amounts of state or data,

which could be more conveniently expressed in a ”native” format
• This is clearly a judgement call: If breaking a dependency using mock

objects cost more effort than living with the dependency, then the mock
strategy is probably not a good idea

66

TDD	Training

Mocking with
Mockito (Intro)

Presentation provided by
Combitech JidokaQ

Frameworks and tools for mocking
• code.google.com/p/mockito/ (Active 2015)

– No expect-run-verify also means that Mockito
mocks are often ready without expensive setup

upfront

• www.easymock.org (Active 2015)
– Class library which generates Mock Objects

dynamically using the Java Proxy class

• www.mockobjects.org (latest update 2010)

– Commonly used assertions refactored into a
number of Expectation classes, which facilitate

writing Mock Objects.

• www.mockmaker.org (latest update 2002)
– Tool which automatically generates a MockObject

from a Class or Interface

68

http://code.google.com/p/mockito/
http://www.easymock.org
http://www.mockobjects.org
http://www.mockmaker.org

Mockito
• Mocks concrete classes as well as interfaces
• Little annotation syntax sugar - @Mock
• Verification errors are clean - click on stack trace to see failed

verification in test; click on exception's cause to navigate to
actual interaction in code. Stack trace is always clean.

• Allows flexible verification in order (e.g: verify in order what
you want, not every single interaction)

• Supports exact-number-of-times and at-least-once verification
• Flexible verification or stubbing using argument matchers

(anyObject(), anyString() or refEq() for reflection-based
equality matching)

• Allows creating custom argument matchers or using existing
hamcrest matchers

69

http://mockito.googlecode.com/svn/branches/1.6/javadoc/org/mockito/Matchers.html

Typical usage scenario for mocking in a test case

1. Instantiate mock objects
2. Set up state in mock objects, which govern their

behavior
3. Set up expectations on mock objects
4. Execute the method(s) on the Unit Under Test,

using the mock objects as resources
5. Verify the results & expectations

70

Mockito - example usage
@Test
public void testNotificationVetoShouldBeHonoured() {
 int amount = AccountImpl.SUPERVISION_TRESHOLD;

 Supervisor mockSupervisor = Mockito.mock(Supervisor.class);

 Mockito.when(mockSupervisor.notify(Mockito.anyString(),
 Mockito.anyString(), (Transaction) Mockito.anyObject())).thenReturn(false);

 account.setSupervisor(mockSupervisor);

 try {
 account.deposit(amount);
 Assert.fail("SupervisorException expected");
 } catch (SupervisorException expected) {
 // expected
 System.err.println(expected);
 }

 Mockito.verify(mockSupervisor).notify(account.getAccountID(), account.getOwnerName(),
 new Transaction(Transaction.DEPOSIT, amount));
}

• Create MockObject
• Let the mock object know how to answer on

an expected call
• Inject the MockObject in the class to be tested
• Run the test
• Verify that the mock object received the

expected calls and parameters

71

Exercise 7
• Extend the tests for AccountImpl to use Mockito for

validating correct usage of the Supervisor
collaborator!

72

TDD	Training

Mocking with Mockito
Presentation provided by

Combitech JidokaQ

How to invoke Mockito
Unit tests should act as a safety net and provide quick feedback; the main principle of TDD.
import org.junit.runner.RunWith;
import static org.mockito.Mockito.mock;

@RunWith(MockitoJUnitRunner.class)
public class StockBrokerTest {

// Alternative !: Static mock
MarketWatcher marketWatcher = mock(MarketWatcher.class);
// Alternative 2: Annotated mock
// Needs a call to MockitoAnnotations.initMocks(this);
@Mock
Portfolio portfolio;

@Before
public void setUp() {

broker = new StockBroker(marketWatcher);
MockitoAnnotations.initMocks(this); // <—- Need to call this

}
@Test
public void sanity() throws Exception {

assertNotNull(marketWatcher); // <—- Needed to check that Mockito initiated properly
assertNotNull(portfolio);

}
}

74

Stubbing with Mockito
The stubbing process defines the behavior of a mock method such as the
value to be returned or the exception to be thrown when the method is
invoked.

The Mockito framework supports stubbing and allows us to return a given
value when a specific method is called. This can be done using
Mockito.when() along with thenReturn().
import static org.mockito.Matchers.anyString;
import static org.mockito.Mockito.when;

@RunWith(MockitoJUnitRunner.class)
public class StockBrokerTest {

// . . . se previous slide
@Test
public void marketWatcher_Returns_current_stock_status() throws Exception {

BigDecimal aBigDecimal = new BigDecimal(100.00);
Stock uvsityCorp = new Stock("UV", "UVSITY Corporation “, aHundred);
when(marketWatcher.getQuote(anyString())).thenReturn(uvsityCorp);
assertNotNull(marketWatcher.getQuote("UV"));

}
}

75

 Mockito.when(…).thenNnnn()

The when() method represents the trigger, that is, when to stub.  
The following methods are used to represent what to do when the trigger is
triggered:

• thenReturn(x): This returns the x value.
• thenThrow(x): This throws an x exception.
• thenAnswer(Answer answer): Unlike returning a hardcoded value,  

a dynamic user-defined logic is executed. It's more like for fake test doubles,
Answer is an interface.

• thenCallRealMethod(): This method calls the real method on the mock object.

76

Verify() with Mockito
The verify() method has an overloaded version that takes Times as an argument. Times is a Mockito framework
class of the org.mockito.internal.verification package, and it takes wantedNumberOfInvocations as an integer argument.

@Test
public void when_ten_percent_gain_then_the_stock_is_sold() { // Arrange Mock

when(portfolio.getAvgPrice(isA(Stock.class))).thenReturn(new BigDecimal("10.00"));
Stock aCorp = new Stock("A", "A Corp", new BigDecimal(11.20));
when(marketWatcher.getQuote(anyString())).thenReturn(aCorp);
broker.perform(portfolio, aCorp); // Act, run business logic
verify(portfolio).sell(aCorp, 10); // Verifies method invocation

}

@Test
public void argument_matcher() { // This example will be more covered under advanced topics

when(portfolio.getAvgPrice(isA(Stock.class))).thenReturn(new BigDecimal("10.00"));
Stock blueChipStock = new Stock("FB", "FB Corp”, new BigDecimal(1000.00));
Stock otherStock = new Stock("XY", "XY Corp", new BigDecimal(5.00));
when(marketWatcher.getQuote(argThat(new BlueChipStockMatcher()))).thenReturn(blueChipStock);
when(marketWatcher.getQuote(argThat(new OtherStockMatcher()))).thenReturn(otherStock);

broker.perform(portfolio, blueChipStock);
verify(portfolio).sell(blueChipStock, 10); // verifies invocation

broker.perform(portfolio, otherStock);
verify(portfolio, new Times(0)).sell(otherStock, 10); // verifies zero invocation

}

77

Methods used in conjunction with verify()
The following methods are used in conjunction with verify:

• times(int wantedNumberOfInvocations): This method is invoked exactly n times; if the method
is not invoked wantedNumberOfInvocations times, then the test fails.

• never(): This method signifies that the stubbed method is never called or you can use times(0) to
represent the same scenario. If the stubbed method is invoked at least once, then the test fails.

• atLeastOnce(): This method is invoked at least once, and it works fine if it is invoked multiple
times. However, the operation fails if the method is not invoked.

• atLeast(int minNumberOfInvocations): This method is called at  
least n times, and it works fine if the method is invoked more than the minNumberOfInvocations
times. However, the operation fails if the method is not called minNumberOfInvocations times.

• atMost(int maxNumberOfInvocations): This method is called at the most n times. However, the
operation fails if the method is called more than minNumberOfInvocations times.

• only(): The only method called on a mock fails if any other method is called on the mock object.
• timeout(int millis): This method is interacted in a specified time range.

Example:
verify(portfolio, new Times(0)).sell(otherStock, 10);

78

Verifying zero and no more interactions

The verifyZeroInteractions(Object... mocks) method verifies whether no interactions happened on the given mocks.

The following test code directly calls verifyZeroInteractions and passes the two mock objects. Since no methods
are invoked on the mock objects, the test passes:

@Test
public void verify_zero_interaction() {

verifyZeroInteractions(marketWatcher, portfolio);
}

The verifyNoMoreInteractions(Object... mocks) method checks whether any of the given mocks has any unverified
interaction. We can use this method after verifying a mock method to make sure that nothing else was
invoked on the mock.

// This test will fail, this is to demonstrate the error
@Test
public void verify_no_more_interaction() {

Stock noStock = null;
portfolio.getAvgPrice(noStock);
portfolio.sell(null, 0);
verify(portfolio).getAvgPrice(eq(noStock));
// this will fail as the sell method was invoked
verifyNoMoreInteractions(portfolio);

}

79

Why do we need wildcard matchers?
Wildcard matchers are used to verify the indirect inputs to the mocked dependencies. The following example
describes the context.

In the following code snippet, an object is passed to a method and then a request object is created and passed to
service. Now, from a test, if we call the someMethod method and service is a mocked object, then from test, we cannot
stub callMethod with a specific request as the request object is local to the someMethod:

public void someMethod(Object object) {
Request request = new Request(); // request is local, hence we can't stub callMethod
request.setValue(object);
Response response = service.callMethod(request);

}

If we are using argument matchers, all arguments have to be provided by matchers.

We're passing three arguments and all of them are passed using matchers:

@Test
public void testSomeOtherMethod() {

verify(mock).someOtherMethod(anyInt(), anyString(), eq("third argument"));

verify(mock).someOtherMethod(1, anyString(), "third argument”); <—— will fail
}

The last row in the example will fail because the first and the third arguments are not passed using matcher:

80

TDD	Training

Mocking
a Realworld Example

(with plain Java)
Presentation provided by

Combitech JidokaQ

Real World Example

82

sensor<Sensor>
actor<Actor>

Regulator

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

TempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

HeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

Sensors

Actors

Regulator

String msg

String msg

Design with interface

83

sensor<Sensor>
actor<Actor>

Regulator

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

TempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

HeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

This interface
enables mocking

These interfaces
enables mocking

This interface
enables mocking

Sensors

Actors

Regulator

String msg

String msg

Replacing real classes with Mock

84

sensor<Sensor>
actor<Actor>

Regulator

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

MockTempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

MockHeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

Sensors

Actors

Regulator

String msg

String msg

Regulator class

85

sensor<Sensor>
actor<Actor>

Regulator

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

MockTempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

MockHeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

public class Regulator {

private Sensor temperatureSensor;
private Actor heaterActor;
private double lowThreshold;

public Regulator(Sensor temperatureSensor, double lowThreshold,
Actor heaterActor) {

this.temperatureSensor = temperatureSensor;
this.lowThreshold = lowThreshold;
this.heaterActor = heaterActor;

}

public void act() {
double temperature = temperatureSensor.getValue();
if (temperature < lowThreshold) {

heaterActor.start();
} else {

heaterActor.stop();
}

}
}

public interface Sensor {
double getValue();

}
public interface Actor {

void start();
void stop();
boolean getState();

}

Regulator

TempSensor class

86

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

TempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

HeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

public class TempSensor implements Sensor {

private Adapter adapter;

public TempSensor(Adapter adapter) {
this.adapter = adapter;

}

@Override
public double getValue() {

String response = adapter.askQuery("TempValue");
double value = Double.parseDouble(response);
return value;

}
}

public interface Sensor {
double getValue();

}

HeaterActor class

87

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

TempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

HeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

public class HeaterActor implements Actor {

private Adapter adapter;

public HeaterActor(Adapter adaptert) {
this.adapter = adaptert;

}
@Override
public void start() {

adapter.sendMessage("start");
}
@Override
public void stop() {

adapter.sendMessage("stop");
}
@Override
public boolean getState() {

String state = adapter.askQuery("state");
return state.equalsIgnoreCase("on");

}
}

public interface Actor {
void start();
void stop();
boolean getState();

}

MockTempSensor class

88

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

MockTempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

MockHeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

public class MockTempSensor implements Sensor {

private double actualTemperature;

public MockTempSensor(double actualTemperature) {
this.actualTemperature = actualTemperature;

}

@Override
public double getValue() {

return actualTemperature;
}

}

public interface Sensor {
double getValue();

}

MockHeaterActor class

89

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

MockTempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

MockHeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

public class MockHeaterActor implements Actor {

private boolean state = false;;

@Override
public void start() {

state = true;
}
@Override
public void stop() {

state = false;
}
@Override
public boolean getState() {

return state;
}

}

public interface Actor {
void start();
void stop();
boolean getState();

}

RegulatorTest class

90

sensor<Sensor>
actor<Actor>

Regulator

getValue()

<Sensor>

start()
stop()
- - - - - - - - -
getState()

<Actor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
getValue()

MockTempSensor<Sensor>

adapter<Adapter>
- - - - - - - - - - - - - - - - -
start()
stop()
getState()

MockHeaterActor<Actor>

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>Uses a

Controls a

sendMessage()
askQuery()

<Adaptor>

sendMessage()
askQuery()

HardwareAdaptor<Adaptor>

Bytestream

Bytestream

A mock instance

These interfaces
enables mocking

A mock instance

Another possible
mock instance

Another possible
mock instance

@Test
public void testTemperatureBelowLowThresholdShouldStartHeater() {

// Arrange: Set up a regulator with a mocked sensor
 // and a mocked heater
double actualTemperature = 0.0f;
Sensor temperatureSensor = new MockTempSensor(actualTemperature);

Actor heaterActor = new MockHeaterActor();

Regulator regulator = new Regulator(temperatureSensor,
lowThreshold, heaterActor);

// Act: Run one round in regulator action
regulator.act();

// Assert that the heater has started
boolean heater = heaterActor.getState();
assertTrue("Expect to have the heater on!", heater);

}

public interface Sensor {
double getValue();

}
public interface Actor {

void start();
void stop();
boolean getState();

}

Regulator

• Project MockingHardwareMockito demo
• Show: RegulatorTest.java
• Show: Mocking on Sensor level and on Adapter

level

91

TDD	Training

Mocking
a Realworld Example

(with Mockito)
Presentation provided by

Combitech JidokaQ

• Project MockingHardwareMockito demo
• Show: RegulatorMockitoTest.java
• Show: RegulatorHysteresisTest.java

• Hysteresis Mock demo, to show arrays of test data-
result vectors

93

