
Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Model Checking in Uppaal

Mohammad Mousavi

Halmstad University, Sweden

http://bit.ly/TAV16

Testing and Verification,
February 19, 2016

Mousavi: Model Checking in Uppaal

http://bit.ly/TAV16


Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Dynamic Testing

Dynamic testing: invoking faults and detecting failures through
execution of the program code on an actual execution platform

Pros:

I Quick and scalable techniques

I Natural extension of programming skills

Cons:

I No proof of correctness

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Alternatives to Dynamic Testing

Static Analysis / Abstract Interpretation

1. Approximating the program behavior into a mathematical
structure

2. Using analysis techniques to detect a fixed category of faults

3. Refining the approximation by removing the false negatives

Model Checking

1. Translating program or specification into a behavioral model
on an abstract machine

2. Correctness properties as logical formula

3. Checking whether behavior satisfies formula, producing
counter-example if it does not

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Static Analysis: Division by Zero

Input(x)
Input(y)
...
if x > 20 then

x = x - 1 ;
end if
y = y/x

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Static Analysis: Pros and

Pros

1. Scalable and efficient, often push button (integrated in IDEs)

2. Useful for common faults (e.g., division by zero, null pointer
deref.)

Cons

1. Usually for a fixed property

2. Possibility of false negatives

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Model Checking

Turing Award 2007 (abridged)

A program (i.e., model checker) can exhaustively construct every
possible sequence of actions a system might perform, and for every
action it could evaluate a property in logic. If the program found
the property to be true for every possible sequence, the possible
execution sequences form a model of the specified property.

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Gossiping Girls: Specification

The Scene

1. n girls, each knowing a set of facts,

2. they call each other, and gossip so much
that they know the same facts afterwards

3. continue until everyone knows everything

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Gossiping Girls: Code Snippet

typedef int[1,3] girls;
bool knows[girls][girls];
void share (girls a, girls b) {
for (c : girls) {

knows[a][c] := knows[a][c] or knows[b][c];
knows[b][c] := knows[a][c];
}

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Gossiping Girls: State Space

How about more girls, say 6? 6 trillion possible combinations!

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Gossiping Girls: Property

Eventually every girl will know everything that every other girl
knows.

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Uppaal Tool

http://www.uppaal.org

I Developed at Uppsala and Aalborg (with contributions from
other universities)

I Free for academic and private use

I Java-based implementation, socket-based server

I Toolsets for: simulation, verification, test case generation,
optimization, statistical verification, and scheduling

Mousavi: Model Checking in Uppaal

http://www.uppaal.org


Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Uppaal 101

System Descriptions : Networks of (Communicating) Timed
Automata

Properties: Timed Computational Tree Logic (a sort of temporal
logic)

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Uppaal Templates

Timed Automata:

I Name

I Parameters
I Locations (nodes, states):

I Name
I Invariant
I Initial
I Urgent or Committed: time freezes, in case of committed

state, one of the enabled committed states should be left next

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Uppaal Templates

I Transitions (edges, vertices):
I Select: choice of a parameter (to be read as “for some”)
I Guards: logical conditions on variables and clocks
I Synchronizations: messages sent and received on channels (see

the next slide)
I Updates: change of variable values, resetting clocks

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Uppaal Templates

I Channels:

I Hand-shaking synchronization: receiving and sending
synchronizations must be enabled

I Broadcast: sender always succeeds, as many receiving
synchronizations as possible synchronize

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Timed Computational Tree Logic

I Expressions on variables and location names

I Usual logical connectives (and, or, not, imply)

I path quantifiers: A in every execution vs. E in some execution

I temporal operators: [] globally in every state vs. <>
eventually in some state,

I A[] p invariantly (at every state of every execution) p holds
I E <> p possibly (there exists a state in some execution) p

holds
I A <> p inevitably (there exists a state in every execution) p

holds
I p −− > q “leads to” is an acronym for A[] (p imply A <> q)

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Monitoring behavior

I To check for certain desired / forbidden sequence of state /
transitions:

I Define global variables to expose the state,
I Make a monitor template that checks for a sequence of states

/ transitions using the global variables as guards,
I Give the final state of the desired / forbidden order a name,

e.g., “error”,
I Create an instance of your monitor template with the rest of

the system,
I Check for reachability of “error”.

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Jobshop

The Scene (simplified)

1. two workers at a jobshop, putting pegs into
blocks,

2. one hammer and one mallet available

3. 2 types of jobs:
I easy: requiring either hammer or mallet,
I difficult: requiring both

4. finish after 3 jobs

Due to the late Robin Milner.

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Acknowledgment

The material presented today is based on Frits Vaandrager’s
chapter on Uppaal; see the course page.

Mousavi: Model Checking in Uppaal



Alternatives to Testing Model Checking Specification in Uppaal Verification in Uppaal

Liked It?

Also check out our new book...

Mousavi: Model Checking in Uppaal


	Alternatives to Testing
	Model Checking
	Specification in Uppaal
	Verification in Uppaal

