Rearrangement Optimization Problems: A Computational Perspective

Amin Farjudian

ITE Halmstad University

Thursday, March 30th, 2017

Outline

- Introduction
- Rearrangement Optimization Problems
- Computational Aspects

Historical Background

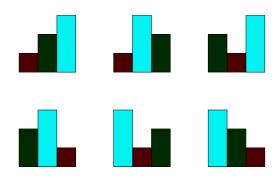
- Rearrangements can be traced back to 1899 in hydrostatics:
 - Carlo Somigliana (1860–1935), the University of Turin (Italy).
 - See (Talenti 2016) for a survey of rearrangements.
- Rearrangement Optimization Problems:
 - Systematically studied by Burton (1987).
 - In the context of fluid dynamics (vortex rings)

Based on a formulation by Benjamin (1976).

Historical Background

- Since Burton's work, ROPs have been studied in other areas, such as:
 - Construction of Robust Membranes (Emamizadeh, Farjudian, Liu, and Marras (2017))
 - Finance (Emamizadeh and Hanai (2009))
 - Free Boundary Problems (Emamizadeh and Marras (2014))
 - Marine Economy (Emamizadeh, Farjudian, and Liu (2017)).
 - ...

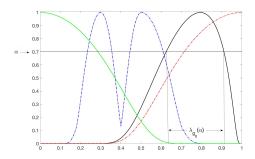
Discrete Rearrangement: Permutation



- In the discrete case, rearrangement becomes permutation.
- Thus, for *n* items, there are at most *n*! rearrangements.

Continuous Rearrangement

• $g_0:[0,1] \to \mathbb{R}$ (in **thick black**), and three of its rearrangements



- Distribution function: $\lambda_q(\alpha) := |\{x \in [0, 1] \mid g(x) \ge \alpha\}|$.
- g is a rearrangement of g_0 iff $\forall \alpha \geq 0 : \lambda_{g_0}(\alpha) = \lambda_g(\alpha)$.

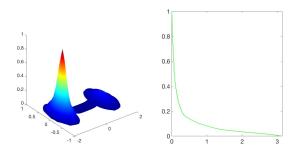
Continuous Rearrangement

- In general, the domains can be different.
- Let (Ω_1, M_1, μ_1) and (Ω_2, M_2, μ_2) be two measure spaces such that $\mu_1(\Omega_1) = \mu_2(\Omega_2)$.
- Two *measurable* functions $f:\Omega_1\to\mathbb{R}$ and $g:\Omega_2\to\mathbb{R}$ are said to be rearrangements of each other, denoted as $f\simeq g$, iff:

$$\forall \alpha \in \mathbb{R} : \mu_1(f^{-1}[\alpha, \infty)) = \mu_2(g^{-1}[\alpha, \infty))$$

Continuous Rearrangement

• A function *f* on a dumbbell shaped domain (left), together with its decreasing rearrangement (right).



• The size of the dumbbell shaped domain is π .

Rearrangement Class

In this talk, we usually have $\Omega_1 = \Omega_2$:

Definition (Rearrangement Class $\mathcal{R}(g_0)$)

The rearrangement class $\mathcal{R}(g_0)$ *generated* by $g_0: \Omega \to \mathbb{R}$ is defined as:

$$\mathcal{R}(g_0) := \{g : \Omega \to \mathbb{R} \mid g \text{ is a rearrangement of } g_0\}.$$

Outline

- Introduction
- 2 Rearrangement Optimization Problems
- Computational Aspects

An Abstract Formulation of ROPs

- Informal: Does there exist an optimal rearrangement of g₀ for the problem at hand?
- More formal: For a given generator $g_0 \in L^p(\Omega)$, and (energy) functional $\Phi: L^p(\Omega) \to \mathbb{R}$, is there an element of $\mathcal{R}(g_0)$ which optimizes Φ ?
- Note:
 - In the finite (discrete) case, the answer is always 'yes'.
 - In the continuous case, even the very existence of solutions is not always guaranteed (See, e.g., (Liu, Emamizadeh, and Farjudian 2016) for a natural example).

Example: Constructing a Robust Membrane

- Goal:
 - constructing a clamped membrane,
 - which is subject to a vertical force f(x) at each point x,
 - such that the membrane is as robust as possible.
- Input:
 - *n* materials of densities $\alpha_1, \alpha_2, \dots, \alpha_n$;
 - These cannot be altered, e.g., reduced, increased, mixed, etc.
- Example: Disc shaped domain, and 2 materials
 - Which arrangement is best? (higher density in magenta)

Robust Membrane: ROP Form

- For a given
 - domain $\Omega \subseteq \mathbb{R}^d$,
 - non-negative force function $f \in L^2(\Omega)$,
 - generator $g_0 \in L^{\infty}(\Omega)$,
- is there a rearrangement $g \in \mathcal{R}(g_0)$ which minimizes:

$$\Phi(g) \coloneqq \int_D f u_g dx,$$

• in which *u_g* is the unique solution of:

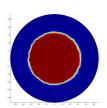
$$\begin{cases}
-\Delta u + g(x)u = f(x) & \text{in } D, \\
u = 0 & \text{on } \partial D.
\end{cases}$$

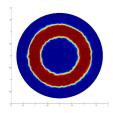
$\mathcal R$ and $\overline{\mathcal R}$

- The main obstacle is that the rearrangement class $\mathcal R$ does not have the usual favorable properties for optimization, i. e.
 - it is neither convex;
 - nor compact.
- The natural candidate would be the weak closure $\overline{\mathcal{R}}$ in $L^2(\Omega)$, which turns out to be:
 - convex and compact;
 - ullet and, to contain $\mathcal R$ as the set of its extremal points.
- General procedure:
 - Relax the original problem from \mathcal{R} to $\overline{\mathcal{R}}$;
 - Show that it is solvable over $\overline{\mathcal{R}}$.
 - Then, use a suitable method to prove that a solution does indeed lie in R.

Back to Robust Membranes

- The robust membrane problem does indeed have a solution in the rearrangement class (Emamizadeh, Farjudian, Liu, and Marras (2017)).
- Disc shaped domain. f(x) := 10 (left) and $\forall x \in D : f(x) := \frac{1}{0.01 + \delta(x)^2}$ (right), in which $\delta(x)$ is the distance of each point x to the boundary of the domain Ω :

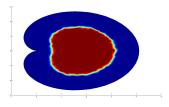


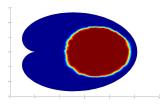


(High density material in red, low density in blue)

Robust Membranes: Cardioid

• Cardioid domain: $f_1(x, y) := 5$ (left), and $f_2(x, y) := 5 + x^3$ (right).

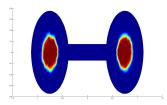




 Note how the higher density material (red) should be used where it matters.

Robust Membranes: Symmetry Preservation

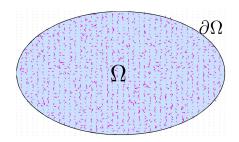
• Dumbbell shaped domain: f(x, y) := 1:



Notice the preservation of Steiner symmetry.

Example: Optimal Harvesting of a Marine Species

- A population of fish in a lake.
- Source of income.
- Sustainability.
- Challenge: balance between harvesting and well-being of the species.

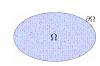


Mathematical modelling (Reaction-Diffusion)

• Dynamics of the population density $u: \Omega \times \mathbb{R} \to \mathbb{R}$

$$\begin{cases} \frac{\partial u}{\partial t} = \underbrace{\epsilon^2 \Delta u}_{\text{diffusion}} + \underbrace{au - bu^2}_{\text{harvesting}} - \underbrace{E(x)u}_{\text{harvesting}} & (x \in \Omega, t \in \mathbb{R}) \\ u(x,t) = 0 & (x \in \partial\Omega, t \in \mathbb{R}) \\ u(x,0) = u_0(x) & (x \in \Omega) \end{cases}$$

• E(x) is harvesting effort, the only parameter we can control.



Assumptions (Kurata and Shi (2008))

• Harvesting effort is bounded:

$$\exists M > 0, \forall x \in \Omega : 0 \le E(x) \le M$$

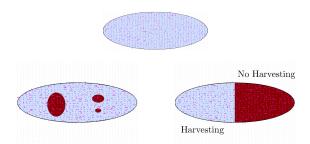
• Among all the admissible choices for E(x), the total effort is constant:

$$\exists \beta > 0 : \int_{\Omega} E(x) \, \mathrm{d}x = \beta \, |\, \Omega \, |,$$

in which $\beta > 0$ is the average effort.

Problem

What is the best harvesting strategy E(x) that *minimizes* harm to the species?



Optimization of energy functional

Let u_E be the solution of the following BVP for a given strategy
 E:

$$\left\{ \begin{array}{ll} \epsilon^2 \Delta u + u - u^2 - {\color{red} E(x)} u = 0, & x \in \Omega, \\ u(x) = 0, & x \in \partial \Omega. \end{array} \right.$$

To minimize harm to the species we need to find a strategy
 E(x) for which the following energy is minimum:

$$\Phi(E) := \underbrace{\frac{\epsilon^2}{2} \int_{\Omega} |\nabla u_E|^2 \, \mathrm{d}x}_{\text{kinetic energy}} - \underbrace{\frac{1}{2} \int_{\Omega} u_E^2 \, \mathrm{d}x + \frac{1}{3} \int_{\Omega} u_E^3 \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} E(x) u_E^2 \, \mathrm{d}x}_{\text{E}}$$

potential energy

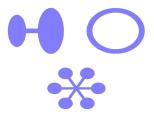
Symmetry preserving of the best strategy

- It turns out that the domain must always be partitioned into a no harvesting zone and a maximum harvesting zone.
- If Ω is a disc, then no harvesting in the center:

• If Ω is an ellipse, the same:

Other Domains

• What if the domain is not convex?



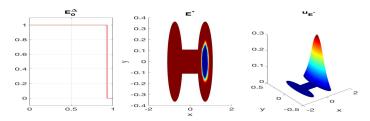
- Analytic methods cannot give us the exact location for every case.
- We need numerical algorithms.

Optimal Harvesting as a ROP (Emamizadeh, Farjudian, and Liu (2017))

- When the generator is a *characteristic function*, we get the result of Kurata and Shi (2008).
- For arbitrary generators—i. e., when the boats in the fleet have various capacities—Emamizadeh, Farjudian, and Liu (2017) prove:
 - Existence of solutions.
 - Preservation of Steiner symmetry.
- and provide a fast numerical method.

Symmetry Breaking (Dumbbell)

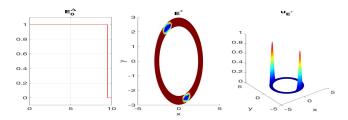
 Steiner symmetry is preserved, but symmetry w. r. t. the y axis is not.



(Left to right: non-increasing rearrangement of the generator E₀, the optimal harvesting strategy E*, the population

density for the optimal strategy)

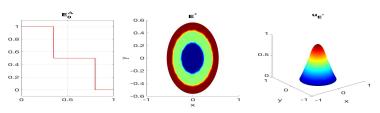
Symmetry Breaking (Annulus)



(Left to right: non-increasing rearrangement of the generator E_0 , the optimal harvesting strategy E^* , the population density for the optimal strategy)

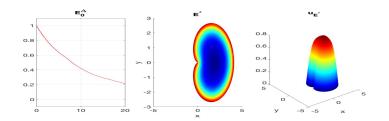
Generator taking 3 Values.

- More aggressive harvesting should be near the boundary (red).
- No harvesting in the center (blue).
- Mid-range boats should be deployed in between (green).



Generator with No Flat Sections.

 Again, the more aggressive harvesting should be carried out near the boundary:



Outline

- 1 Introduction
- 2 Rearrangement Optimization Problems
- Computational Aspects

Computability

Question

For a given ROP, what are the conditions under which the solution(s) is/are computable?

- Computability is to be taken in the sense of Type-II Theory of Effectivity (Weihrauch 2000).
- The answer in the general case is not known yet.

Stability

- Floating-point computations have inherent inaccuracies.
- How numerically stable are our algorithms for solving ROPs?
- We discuss two specific questions:

Question

If a sequence of generators (f_n) converges to f in an appropriate L^p space, does the sequence of optimizers $(\hat{f_n})$ also converge to \hat{f} in the same space?

Question

If f_n converges to f in an appropriate $\underline{L^p}$ space, does the Hausdorff distance between the weak closures $\overline{\mathcal{R}(f_n)}$ and $\overline{\mathcal{R}(f)}$ also tend to zero?

Stability Theorems

- We have proven the answers to both of the questions to be 'yes'. (Liu, Emamizadeh, and Farjudian (2016)).
- Nonetheless, these are just two components of a complicated numerical procedure.

Complexity

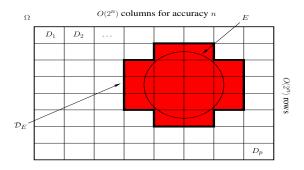
- Rearrangement classes are subsets of infinite-dimensional Banach spaces.
- Numerical methods work on finite dimensional subsets, mostly based on finite element methods.
- Even for modestly refined meshes, the size of the search space becomes very large.

Complexity: 2D Shape Optimization

- Let us consider the simple case of $\Omega \subseteq \mathbb{R}^2$,
- and generator $g_0 = \chi_{E_0}$, where $E_0 \subseteq \Omega$.
 - χ_{E_0} is the characteristic function of E_0 .
- Suppose that we have a mesh $\mathcal{D} = \{D_i \mid 1 \le i \le P\}$ (for some $P \in \mathbb{N}$) over the domain $\Omega \subseteq \mathbb{R}^2$ such that $\Omega = \cup \mathcal{D}$.

Discretization

- Let $\mathcal{D}_E = \{D_{i_j} \mid 1 \leq i_j \leq P\}$ be the best outer approximation of the set $E \subseteq \Omega$, i. e. \mathcal{D}_E is a subgrid of \mathcal{D} with the smallest area for which $E \subseteq \cup \mathcal{D}_E$.
- We define #E as the number of indices k such that $D_k \in \mathcal{D}_E$.



Complexity: 2D Shape Optimization

Using Stirling's formula, for the search space S we get:

$$|\mathbb{S}| \approx \binom{P}{\#E_0} \ge C \frac{\zeta^{2^{2n}}}{2^n}$$

- where:
 - $1 < \zeta \le 2$ depends on $\rho := \frac{|E_0|}{|\Omega|}$;
 - C depends on ρ and Ω ;
 - n denotes the required accuracy (say, the number of correct digits of the result).
- For instance: for $\rho := 0.15$, and (very modest) accuracy n := 5: $\zeta^{2^{2n}}/2^n \ge 3 \times 10^{186}$.
- For $\rho = 0.5$, and n = 5, $\zeta^{2^{2n}}/2^n \ge 5 \times 10^{306}$.

Intractability

- Thus, in general, ROPs are intractable problems.
- In practice, there are sometimes ways of speeding up the computation process.
 - Using a very fast method by Eydeland and Turkington (1988), when applicable. (provides geometric rate of convergence)
 - Failing that, using the derivative of the energy functional, if it exists. (quite slower, but feasible)
- Nonetheless, there are no solid proofs that these methods always get us to the correct answer, even when they are applicable.
- The main problem lies in the presence of local optima and saddle points.

Randomization

- In cases where there are (uncountably many) local optima and saddle points present, randomization is needed to:
 - Escape local optima and saddle points.
 - Avoid brute force search.
- Examples:
 - Optimal harvesting, with appropriate parameters, over non-convex domains (Emamizadeh, Farjudian, and Liu 2017).
 - Nonlocal problems of Kirchhoff type (Emamizadeh, Farjudian, and Zivari-Rezapour 2016).

Summary

- ROPs have a simple abstract formulation.
- As such, they turn up in diverse areas of mathematics and applied sciences.
- There is a great scope for research on computational aspects of ROPs:
 - Computable analysis of ROPs.
 - Stability.
 - Complexity analysis.
 - Connections to discrete computability and complexity.
 - Novel numerical methods for rearrangement optimization problems.
 - Developing interval libraries for ROPs (especially important for the study of symmetry breaking).
 - Finding applications of ROPs in computer science.

References: I

- Benjamin, T. B. "The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics". In: Lecture Notes in Mathematics. Vol. 503. 1976, pp. 8–29.
- ► [Bur87] Burton, G. R. "Rearrangements of functions, maximization of convex functionals, and vortex rings". In: *Math. Ann.* 276.2 (1987), pp. 225–253.
- Emamizadeh, B., Farjudian, A., and Liu, Y. "Optimal Harvesting Strategy Based on Rearrangements of Functions". Under review. 2017.

References: II

- ► [EFLM17] Emamizadeh, B., Farjudian, A., Liu, Y., and Marras, M. "How to construct a robust membrane using multiple materials". Under review. 2017.
- ► [EFZR16] Emamizadeh, B., Farjudian, A., and Zivari-Rezapour, M. "Optimization Related to Some Nonlocal Problems of Kirchhoff Type". In: *Canad. J. Math.* 68.3 (2016), pp. 521–540. doi: 10.4153/CJM-2015-040-9.
- ► [EH09] Emamizadeh, B. and Hanai, M. A. "Rearrangements in real estate investments". In: *Numerical Functional Analysis and Optimization* 30.5–6 (2009), pp. 478–485.

References: III

- Emamizadeh, B. and Marras, M. "Rearrangement optimization problems with free boundary". In: *Numer. Funct. Anal. Optim.* 35.4 (2014), pp. 404–422.
- Eydeland, A. and Turkington, B. "A Computational Method of Solving Free-boundary Problems in Vortex Dynamics". In: *J. Comput. Phys.* 78.1 (1988), pp. 194–214. doi: 10.1016/0021-9991(88)90044-7.
- Kurata, K. and Shi, J. "Optimal spatial harvesting strategy and symmetry-breaking". In: *Applied Mathematics and Optimization* 58.1 (2008), pp. 89–110.

References: IV

- Liu, Y., Emamizadeh, B., and Farjudian, A. "Optimization problems with fixed volume constraints and stability results related to rearrangement classes".

 In: Journal of Mathematical Analysis and Applications 443.2 (2016), pp. 1293–1310. DOI: 10.1016/j.jmaa.2016.06.017.
- ► [Tal16] Talenti, G. "The Art of Rearranging". In: *Milan J. Math.* 84.1 (2016), pp. 105–157. DOI: 10.1007/s00032-016-0253-6.
- ► [Wei00] Weihrauch, K. Computable Analysis, An Introduction. Springer, 2000.

