
Efficient U-Prove Implementation for
Anonymous Credentials on Smart Cards

Wojciech Mostowski? and Pim Vullers??

Institute for Computing and Information Sciences,
Digital Security group, Radboud University Nijmegen, The Netherlands

{woj,pim}@cs.ru.nl, http://www.ru.nl/ds/

Summary. In this paper we discuss an efficient implementation of an-
onymous credentials on smart cards. In general, privacy-preserving pro-
tocols are computationally intensive and require the use of advanced
cryptography. Implementing such protocols for smart cards involves a
trade-off between the requirements of the protocol and the capabilities
of the smart card. In this context we concentrate on the implementation
of Microsoft’s U-Prove technology on the MULTOS smart card platform.
Our implementation aims at making the smart card independent of any
other resources, either computational or storage. In contrast, Microsoft
suggests an alternative approach based on device-protected tokens which
only uses the smart card as a security add-on. Given our very good per-
formance results we argue that our approach should be considered in
favour of Microsoft’s one. Furthermore we provide a brief comparison
between Java Card and MULTOS which illustrates our choice to imple-
ment this technology on the latter more flexible and low-level platform
rather than the former.

Key words: anonymous credentials, smart cards, U-Prove, MULTOS,
Java Card

1 Introduction

An effort to provide citizens with electronic signature (e-signature) capable iden-
tity cards is currently in progress in many European Union countries. The first
countries to introduce such cards were Belgium and Estonia. More recently
(November 2010) Germany introduced a new generation identity card [8] for
their citizens, which also provides a limited form of anonymous attributes for
improved privacy. Although Dutch identity cards already contain a chip with per-
sonal data, like in the e-passport, there is no e-signature functionality available
yet. The Dutch government is currently working on adding e-signature capability,
and possibly support for attributes, to such a card.

The e-signature application on the identity cards serves two major purposes.
First, what is in the name, they can be used to digitally sign documents, for

? Sponsored by the NL-Net Foundation through the OV-chipkaart project.
?? Sponsored by Trans Link Systems/Open Ticketing.

c© Springer-Verlag

2 W. Mostowski and P. Vullers

example tax return forms. Next, and probably most, they are used to provide
strong authentication of the owner of the card, mainly for logging into govern-
mental web services. But this use of signing or authentication certificates also
involves a restriction of this use case. In the Netherlands the use of the social
security number, which is integrated in the identity card, is by law only allowed
within the government domain.

Therefore we study methods of authentication and authorisation which pre-
serve the privacy of the card holder and restrict linkability of card uses. For
example, the card holder may wish to prove his age category (an adult over
18 or a senior over 65) without revealing his actual date of birth. One way
to achieve this is to use attributes instead of identities. A number of technolo-
gies [2, 6, 9] have been developed based on this idea, but the main focus has been
on the cryptography and less on (efficient) implementations. The implementa-
tions which have been made are mainly for ordinary computers. Our research
focuses on implementing and using such technologies on smart cards. This ap-
proach offers various new use cases, but also faces difficulties due to the limited
capabilities of smart card platforms and hardware.

The work that we present here targets the U-Prove technology developed by
Brands [6] and now owned and marketed by Microsoft [5]. Out of the existing
privacy-aware protocols [5, 7, 11], this one has not yet been implemented on a
smart card in its current specification. The current U-Prove specification [22]
does support the use of a smart card as an additional protection device. In this
scenario the card performs only a fraction of the protocol run. This is motiv-
ated by the constrained resources of smart cards and was already described by
Brands in 2000 [6]. In Table 1 this approach is compared with our approach
which offers the full protocol implementation on a smart card. We provide the
full implementation of the U-Prove protocols to solve the main disadvantage of
Microsoft’s approach: the smart card cannot be used independently, since it is
tied to computational (and storage) resources external to the card. This means
that it requires a specific, card matching terminal, like the card owner’s PC, to
run the protocols.

Table 1. Comparison between Microsoft’s device-protected U-Prove token approach
and our U-Prove token on a smart card approach.

Microsoft’s approach our approach

characteristics add-on security measure full protocol implementation

card stores single device-protection attribute all attributes, other token values

card computes short zero-knowledge proof for
the device-protection attribute

complete presentation proof

advantages fast, lightweight, protect any
number of dynamically issued
tokens using pre-issued devices

independent use of the card, no
need to trust the terminal

disadvantages trusted terminal required requires more card resources (?)

Anonymous Credentials on Smart Cards 3

For performance our primary goal was to keep the running times of the pro-
tocol on the card sufficient for on-line use.3 Despite the obvious efficiency concern
caused by our choice to implement the full U-Prove protocols on a smart card, we
managed to provide a very efficient implementation. Our worst-case execution
time of the protocol on the card (with five attributes) is 0.87 seconds. Configur-
ing the implementation for a smaller number of attributes improves this running
time considerably. This makes our implementation efficient enough to be pos-
sibly considered also for the use in e-ticketing, where transactions with a card
should be at or below 0.3 seconds.4 This discards the disadvantage of our ap-
proach mentioned in Table 1, offering an overall better solution than Microsoft’s
approach. Thus, Microsoft is advised to change its approach to smart card sup-
port for U-Prove. Our good result is mostly due to the choice of the smart card
implementation platform. Because of its more convenient API, we used a MUL-
TOS smart card [16] in favour of the more popular Java Card platform [14].
The former has been overlooked as a prototyping platform whereas the latter
exhibited questionable efficiency in some previous privacy-friendly protocol im-
plementations [4, 25, 28].

The rest of this paper is organised as follows. Section 2 provides the neces-
sary background on privacy-preserving protocols, related work, and open smart
card platforms. We describe our MULTOS U-Prove implementation in Section 3,
focusing on the implementation challenges without explaining the U-Prove pro-
tocols in detail.5 Section 4 discusses the results of our work and compares Java
Card with MULTOS. Further steps in our research on privacy-preserving proto-
cols are presented in Section 5, and finally Section 6 concludes the paper.

2 Background

Before diving into our implementation of U-Prove we first introduce anonymous
credentials and some alternatives for the U-Prove technology. Furthermore we
provide some background information on smart cards and explain why we opted
for the MULTOS platform instead of the more popular Java Card platform.

2.1 Anonymous Credentials

A credential is an attestation of qualification, competence, or authority issued
by a third party, the issuer, to an individual. This individual, the prover, can
subsequently use this credential to prove/demonstrate his qualification, compet-
ence, or authority to another party, the verifier. Examples of credentials are

3 The proving scenario should be fast (less then a second) whereas the less frequently
run issuance scenario can take a few seconds to complete a transaction.

4 http://www.smartcardalliance.org/resources/lib/Transit_Financial_

Linkages_WP.pdf
5 A detailed description of the protocols can be found in the U-Prove cryptographic

specification [5] and the mathematical background is addressed in Brands’ book [6].

4 W. Mostowski and P. Vullers

a membership certificate, such as a passport or employee card, or some kind
of ticket to obtain some service, such as a cinema ticket or a public transport
ticket. These credentials are often bound to a specific person, by means of a
name and/or picture (e.g. for a passport or public transport year pass), but this
is not necessarily the case (e.g. for a paper train ticket).

Anonymous credentials have the same properties as any other credentials,
except that they do not reveal the identity of the prover, i.e. they provide au-
thorisation without identification. In the real world this is fairly common, think
of coins or public transport tickets, but in the digital world this concept is rare.
This is mostly because the authenticity of a credential is usually achieved by
using digital signatures which uniquely identify the issuer and prover. It is how-
ever possible to achieve anonymous digital credentials by using more advanced
cryptography, as described for the first time by Chaum [13] in 1984. In the re-
mainder of this section we will introduce a number of recent technologies which
provide anonymous credentials.

U-Prove Stefan Brands provided the first integral description of the U-Prove
technology in his thesis [6] in 2000, after which he founded the company Cre-
dentica in 2002 to implement and sell this technology. Microsoft acquired Cre-
dentica in 2008 and published the U-Prove protocol specification [5] in 2010
under the Open Specification Promise6 together with open source reference soft-
ware development kits (SDKs) in C# and Java.

The U-Prove technology is centred around a so-called U-Prove token. This
token serves as a pseudonym for the prover. It contains a number of attributes
which can be selectively disclosed to a verifier. Hence the prover decides which
attributes to show and which to withhold (e.g. one can reveal the birth date,
but not the residence address). Besides the attributes the token contains two
information fields, one defined by the issuer, and one by the prover. These fields
are always disclosed and can be used to provide some meta data such as a validity
date of the token. Finally there is the token’s public-key, which aggregates all
information in the token, and a signature from the issuer over this public-key to
ensure the authenticity.

A previous attempt to implement this technology on a smart card by Tews
and Jacobs [28], based on Brands’ description [6], resulted in a highly involved
application with running times in the order of 5–10 seconds which make it not
really usable in practice. Our implementation, which we describe in Section 3,
not only has a much better performance but is also, except from some minimal
limitations, compatible with the development kits released recently by Microsoft.

Idemix and DAA Identity mixer (Idemix) is an anonymous credential system,
based on the Camenisch-Lysyanskaya anonymous credentials scheme [9, 10, 19]
developed at IBM Research in Zürich that enables strong authentication and
privacy at the same time. The first prototype [11] was developed in 2002 and

6 http://www.microsoft.com/interop/osp/

Anonymous Credentials on Smart Cards 5

has been improved over the years. An open source Java implementation of Idemix
was released in 2010 as part of the Open Innovation Initiative.7

Direct anonymous attestation (DAA) [7] is a technology based on Idemix. It
allows a user to convince a verifier that she uses a platform that has embedded
a certified hardware module.8 The protocol protects the user’s privacy: if she
talks to the same verifier twice, the verifier is not able to tell whether or not he
communicates with the same user as before or with a different one.

In 2009 Bichsel et al. [4] implemented Idemix on a Java Card whereas Sterckx
et al. [25] did the same for DAA. They provide the first proper implementations
of anonymous credentials on smart cards. The major drawback of these imple-
mentations is the running time of several seconds which is still too much for
being really practical.

Self-blindable Credentials The idea behind the self-blindable credentials by
Verheul [29] is that every time a credential is used it is blinded such that two
occurrences of the same credential cannot be recognised. This in contrast to
the U-Prove token which is the same in each transaction, and hence serves as a
pseudonym. The benefit of this approach is that the use of such credentials is
untraceable. Furthermore they can be efficiently implemented on a smart card [2,
17] using elliptic curve cryptography (ECC), providing the best performance
results thus far.

The drawback is that, due to the untraceable nature of this technology, in-
corporating revocation is hard and very costly [18]. Furthermore, ECC support
on smart cards is very limited making prototyping very hard. Finally, the tech-
nology is fairly new compared to U-Prove and Idemix, and not backed by a big
company which offers support for it.

German Identity Card The protocols that we have described so far are (to the
best of our knowledge) the only candidates providing anonymity by design and
ones that could be implemented on a smart card. However, we should also shortly
mention an approach of the German identity card that is actually implemented
and being rolled out since November 2010, where a limited form of anonymous
attribute use is achieved by altering the existing ECC based electronic identity
protocols by sharing private ECC keys across large batches of cards [3]. The
protocol itself provides restricted access to the card by means of the so-called
card verifiable certificate mechanism [8] and allows for selective disclosure of
attributes, depending on the rights specified in the certificate (e.g. an alcohol
shop is only authorised to check for the “over 18” attribute). Signed attributes
are partly anonymous because of the sharing of the signing keys between batches
of cards, such that a signature cannot be linked to a single card.

7 http://www.zurich.ibm.com/news/10/innovation.html
8 DAA has been adopted in 2004 by the Trusted Computing Group in the Trusted

Platform Module specification as the method for remote authentication of a hard-
ware module.

6 W. Mostowski and P. Vullers

2.2 Smart Cards

One of the goals of our research is to assess how fast privacy-friendly protocols are
when run on a smart card. Hence implementing our prototypes requires an open
smart card platform that also provides the necessary cryptographic hardware
support – previous research [28] clearly shows that, in terms of performance,
purely software based prototypes are not sufficient for realistic use. In practice
that leaves us with two possible smart card platforms, Java Card and MULTOS,
described below. We motivate the use of the latter one for the work presented
in this paper.

Regardless of the programming technology, all smart cards provide the same
external functionality. A smart card is an embedded device that communicates
with the environment through Application Protocol Data Units (APDUs) – byte
arrays formatted according to the ISO7816 specification. Most notably, the AP-
DUs constrain the communication payload to roughly 256 bytes in each direc-
tion for a single APDU exchange. The permanent storage of the card (E2PROM
memory) is considered highly secure, accessible only through the APDU com-
mands offered by the application, which in turn are subject to any authentication
and secure messaging requirements that the card application may impose.

Java Card Java Card is a now well-established smart card platform based on
a tailored, cut-down version of Java (hence the name) [14]. One of the main
features of Java Card is software interoperability. On top of the operating sys-
tem of the card resides a Java Card virtual machine, compliant with the official
specification [27], that executes Java byte code. In parallel, the platform defines
the Java Card API [26] that provides the developer an interface to the hardware
of the smart card. In terms of the programming and deployment of applications
Java Cards are (almost) fully independent of the underlying hardware and op-
erating system of the card. Large numbers of actual smart card products are
implemented on Java Cards based on a variety of chips coming from different
manufactures. Precise data on the number of deployed Java Cards or MULTOS
cards are hard to find, but the Java Card Forum9 claims there are already over
a billion Java Cards in use.

The Java Card API is carefully designed to support the smart card en-
vironment and has several built-in security features. For example, it provides
predefined Java classes for hardware supported cryptographic key storage (with
possible internal encryption). To account for different hardware profiles of a card,
parts of the Java Card API implementation are made optional. For example, one
card may support both RSA and ECC in hardware and expose this functional-
ity through the API, while another card may only support RSA, in which case
all API calls related to ECC are not available and report a corresponding Java
exception instead.

This brings us to the main shortcoming of the Java Card platform from
our point of view. The Java Card API is predefined and closed. Any hardware

9 http://www.javacardforum.org/

Anonymous Credentials on Smart Cards 7

functionality that is not exposed through the imposed Java Card API, is not
accessible to the developer by any other means. For example, for RSA based
cryptography it is only possible to generate public and private keys of pre-
defined RSA lengths (512, 1024 bits, etc.) and perform full RSA de-/encryption
or signing with these keys according to standard protocols, such as RSA-PKCS.
The more primitive operations that build up RSA operations, such as modulo
prime inverse or exponentiation, are not available. Since all of the protocols that
we are interested in require access to such cryptographic operations (in large
modulo prime and/or EC domains), this is a practical show stopper. We are
not the only ones to note this. For example, in [25] similar problems regarding
the development of DAA on a Java Card are reported. Even more, an efficient
implementation of the e-passport standard [8] on a Java Card also requires cryp-
tographic routines not anticipated by the standard Java Card API. In this case,
due to high demand, Java Card producers decided to enrich the Java Card API
with proprietary extensions to support e-passport standards [21]. But this only
solves the problem for one application type and, moreover, makes the platform
non-interoperable.

MULTOS The design principles of the MULTOS platform [16, 20] are similar
to those of Java Card. A hardware independent execution platform is run on
top of the operating system of the card. Similarly to Java Card byte-code, a
MULTOS card executes specific op-codes of the MULTOS Execution Language
(MEL) and exposes smart card specific interfaces to the developers through
dedicated MEL op-codes. These op-codes already provide a full and detailed API
to the card’s hardware. Most of the primitive operations that the hardware can
possibly support are reflected in the corresponding MEL op-codes. Thus, MEL
provides the full base for programming MULTOS cards, and a skilled developer
can easily write programs for the card already in the MEL assembly. However,
the MULTOS development tools also provide programming interfaces to C and
Java. Applications in these languages are translated/compiled by the tools into
MEL op-codes and can then be run on a card.

Similar to the Java Card API routines, some of the MEL op-codes are spe-
cified to be optional, mostly ones responsible for cryptographic operations. A
particular MULTOS card may or may not support the optional op-codes. For
our implementation we used development cards based on the SLE66 chip from
Infineon. This particular MULTOS implementation [1] supports a wide range of
modulo arithmetic operations, a range which is sufficient to fully support all of
the U-Prove calculations. This is the main reason to choose MULTOS in the
context of this work – its more low-level and flexible API as opposed to less
flexible and more high level Java Card API.

Our choice is to use the MULTOS C interface to do our prototype imple-
mentation of U-Prove. For simple smart card applications the C interface seems
to provide an easier programming environment than Java, and although C pro-
gramming platforms are not type safe by definition (as opposed to Java), per
application memory safety is guaranteed by the MULTOS platform, regardless
of the high-level language used during development.

8 W. Mostowski and P. Vullers

3 Implementing U-Prove for Smart Cards

U-Prove consists of two protocols. We briefly introduce these protocols here.
A detailed description of the protocols and the necessary computations can be
found in the U-Prove cryptographic specification [5].

During the first protocol, the issuing protocol, the U-Prove token is construc-
ted by combining the public key of the issuer with the attributes. To authenticate
this token it is signed by the issuer. However, just signing the token would allow
the issuer to later recognise the resulting signed token. Therefore a blind signa-
ture scheme [12] is applied such that the issuer does not learn the exact value of
the resulting signature. As a result of this protocol the prover now has a signed
token containing his attributes.

The second protocol, the presenting or proving protocol, is used to present
a number of attributes from the token. During this protocol the prover presents
his token to a verifier together with a selection of its attributes. To verify the
authenticity of the token the verifier checks the signature of the issuer. Finally the
prover needs to prove that the presented attributes are actually the attributes
contained in the token (and thus the signed attributes). For this purpose the
prover constructs a zero-knowledge proof [15] in which he proves that he knows
all the attributes contained in the token, including those not disclosed to the
verifier. Due to the zero-knowledge properties of the proof the verifier does not
learn anything about the attributes not disclosed to him. He is, however, able to
verify, using the proof and the disclosed attributes, that the attributes actually
correspond to those stored in the token.

3.1 U-Prove and Smart Cards

The use of U-Prove in combination with a smart card was already envisioned
by Brands [6] and published by Microsoft in the latest release of the U-Prove
cryptographic specification [22]. Their idea is to use a smart card (or even any
trusted computing device) as a manner of protecting U-Prove tokens, which
they then call device-protected tokens. This is achieved by having the device
contribute one attribute to the token. The actual value of this attribute is, like
a private key, only known by the device and will always be hidden. Therefore
the device is required during the proving protocol, since a prover has to prove
knowledge of all attributes contained in a token.

Besides adding an additional layer of protection the U-Prove technology over-
view [24] describes a number of other benefits gained when using device-protected
tokens. For example, a device can be used to enforce dynamic policies or pre-
vent the use of a token at a blacklisted website. It also helps to enforce non-
transferability of tokens by having the prover authenticate to the device before
allowing it to be used in a protocol interaction. Another option, especially inter-
esting for smart cards, is to use the device as a carrier, or secure roaming store,
for entire U-Prove tokens and not one attribute. This way the U-Prove token is
always available when needed.

Anonymous Credentials on Smart Cards 9

This last feature of a device-protected U-Prove token has one major draw-
back, namely one will need to trust the device that is used to perform the proving
protocol. This is because the actual attribute values are used during the com-
putation steps of this protocol. Hence the device must release all information,
except its own special attribute, during a protocol run. When using a personal
computer this might be acceptable, but in scenarios where the device should
be used directly with a verifier, for example at a public transport gate, or at a
vending machine for cigarettes, this turns out to be problematic. Since these are
the areas of use which are most interesting for us, we decided to develop our own
implementation of the full prover protocol specification on a smart card instead
of using Microsoft’s more limited approach.

3.2 U-Prove on MULTOS

A very general view of our implementation of the U-Prove technology is that
it provides storage for preloaded (e.g. cryptographic domain parameters) and
calculated (e.g. generated keys) values of the protocols, as well as attribute
storage, and, more importantly, a sequence of hash and modulo prime arithmetic
operations to execute the corresponding stages of the protocols. These arithmetic
operations are the core of the performance considerations of our implementation.
A few hashing operations are executed and multiple exponents over numbers in
a large prime field have to be calculated during a proving protocol run. For
example, the commitment a to blinding values wi is calculated according to the
following formula.

a = H(hw0

∏
i∈U

gwi
i mod p) (1)

Here U is the set of attributes not to be disclosed, hence disclosing less attrib-
utes requires more exponentiation and multiplications modulo prime number p.
The range of these calculations is also restricted by the limits of our MULTOS
implementation platform. Namely, on our development cards we are limited to a
modulus size of 1024 bits for modulo arithmetic,10 and SHA-1 is the only built-in
hashing algorithm available. Although this may sound restrictive, it also makes
the choice of the U-Prove protocol configuration (protocol parameters) for our
implementation easy. We have simply chosen to implement the protocols using
the domain parameters fixed to the same ones as in the default configuration
of the official U-Prove SDK reference implementation and official U-Prove test
vectors [23], that is 1024 bits for modulus size and SHA-1 for hashing to match
with the capabilities of the card.

To make the U-Prove protocol calculations efficient the smart card memory
issues have be to taken into account. The first and most important aspect of
developing any smart card application is the allocation of memory. The two
rules of thumb are:

10 The card actually supports up to 2048 bits, but then during exponentiation only
small enough exponents can be used, a requirement which the U-Prove operations
do not satisfy.

10 W. Mostowski and P. Vullers

1. the total memory allocation should be optimised, and
2. to prevent memory exhaustion during operation there should be no dynamic

memory allocation.

Furthermore, for any smart card platform the developer is usually offered a
few kilobytes of RAM memory, which is normally used for fast “scratch-pad”
computations and whose contents disappear on every power down (in MULTOS
this is called session memory). The other kind of memory is the E2PROM, which
provides the permanent storage for the card (in MULTOS called static memory).
Substantially more E2PROM than RAM is usually available on a card, in the
range of tens of kilobytes. However, it is slower than RAM, especially during
writing. Moreover, on the hardware level E2PROM is updated in block mode,
hence repeated updating of single bytes of this memory (e.g. with a for loop)
further hinders efficiency.

Considering the size of the U-Prove data that is used in the protocols and
the requirements of the MULTOS cryptographic routines (all data for a cryp-
tographic operation needs to be in one continuous array) the first thing to take
care of is a careful split of the card data between E2PROM and RAM. Only 960
bytes of RAM are available on our development cards, compared to 36 kilobytes
of E2PROM. The most frequent use case of the card is the execution of the
proving protocol, hence this is where good use of RAM is highly desirable. For
that we limited the maximum number of stored attributes to 5 and then we
ensured that all data participating in the proving protocol is allocated in RAM,
as shown in Listing 1. After this the total RAM requirement for this protocol is
756 bytes, which just safely fits within the RAM available on the card.

Listing 1. Declaration of the variables residing in RAM.

#pragma melsession // These vars will sit in RAM

union {
... // Overlapping temporary storage for other parts of the protocol
unsigned char array[328];

} temp ram; // Temporary storage, 328 bytes needed in the worst case

unsigned char UD[MAX ATTR]; // Attribute disclosure selection, 5 bytes

NUMBER QSIZE w i[MAX ATTR + 1]; // w0, . . . , wn (total 6*21 bytes)
NUMBER QSIZE r i[MAX ATTR + 1]; // r0, . . . , rn (total 6*21 bytes)

NUMBER QSIZE a, c; // a and c values (2*21 bytes)
NUMBER PSIZE t; // Another temporary storage (129 bytes)

#pragma melstatic // The following will sit in E2PROM
...

Anonymous Credentials on Smart Cards 11

Listing 2. The function to compute commitment a from (1).

void computeCommitmentA(void) {
ModularExponentiation(QSIZE BYTES, PSIZE BYTES,

w i[0].number, p.number, h.number, t.number);
for(int i = 0; i < MAX ATTR; i++) {

if(UD[i]) continue; // i is in D, not interested
ModularExponentiation(QSIZE BYTES, PSIZE BYTES,

w i[i+1].number, p.number, g i[i+1].number, temp ram.vars.a.number);
ModularMultiplication(PSIZE BYTES,

t.number, temp ram.vars.a.number, p.number);
}

// t now contains hw0
∏

i∈U
gwi
i mod p

int len = putNumberIntoArray(PSIZE BYTES, t.number, temp ram.array);

// a = H(t) (mod q)
SHA1(len, a.number, temp ram.array);
ModularReduction(QSIZE BYTES, QSIZE BYTES, a.number, q.number);

}

The initialisation and issuance protocol require more scratch-pad memory
than the available RAM, hence we were forced to use E2PROM there. Moreover,
the issuance protocol makes use of E2PROM for permanent storage of the issued
U-Prove token and other permanent protocol parameters (prime numbers p, q,
etc.). Because of the block mode characteristics of E2PROM updates mentioned
before, it is particularly important to use predefined MEL functionality for block
operations (e.g. ADDN, COPYN, etc.). This way the E2PROM memory is up-
dated in block mode by the platform and execution speed can be maintained. In
contrast, updating E2PROM one byte at a time with a for loop causes dramatic
performance loss – for updates of kilobytes of memory execution time is counted
in seconds. The size of E2PROM is not an issue – 36kB is more than sufficient
to store the static data of a U-Prove token with 5 attributes each sized at the
maximum of 255 bytes.

This completes the efficiency considerations for our implementation. Other-
wise the implementation of the U-Prove protocols is rather straightforward in
the MULTOS environment and mostly entails direct calls to the MULTOS API.
An example is given in Listing 2, which computes formula (1).

3.3 Integration into the Microsoft U-Prove SDK

The previous section described the implementation of the U-Prove protocols
which mainly concerns storage and the mathematical computations. This is,
however, not sufficient to use it in combination with Microsoft’s U-Prove SDK.
We need to bridge between the high-level Java interfaces defined in this SDK
and the low-level APDU interface of the smart card.

12 W. Mostowski and P. Vullers

We designed the low-level APDU interface to be as simple as possible. Essen-
tially it has to provide three types of functionality: (1) sending data to the card,
(2) ask the card to perform the necessary computations, and (3) retrieve the
results from the card. The second type of the interface functionality is easiest,
we just defined an APDU instruction for each of the steps in the protocols. For
transferring data to and from the card we restricted the values to the maximum
amount of data that can be transferred in one APDU (255 bytes). This allows
us to just define one APDU instruction per variable, parametrised only with the
index if needed (for example gi), for setting or getting a value.

Finally we need to bind this low level APDU API to the interfaces and data
types provided by the U-Prove SDK. Luckily the SDK just uses byte arrays
for the external access to the data types such that no additional conversion
is needed. The only thing that needs to be done for a data type, for example
IssuerParameters, is that the setter and getter have to be divided into the indi-
vidual APDU instructions, for example the setPublicKey and setEncodingBytes
instructions.

All this functionality has been combined into a single Java class which
provides setters and getters for the data stored on the card as well as meth-
ods for the protocol steps. Using the Java built-in smart card library it serves
as an interface between our MULTOS implementation and the Microsoft SDK.

4 Results and Performance Analysis

The two most important factors for us to test in our U-Prove implementation
were correctness of the protocol calculations (obviously) and the speed. Testing
the correctness was fairly easy. Since we interfaced our card to Microsoft’s U-
Prove SDK we could simply test it by invoking the protocol runs from the
SDK and check the results. During the first stages of the development partial
protocol calculations were verified with the test vectors provided with the U-
Prove SDK [23]. In the whole process a few corner case problems with our
calculations surfaced that required minor corrections.

As we stated in the previous section, for speed we concentrated our imple-
mentation efforts on the every day use case of the application, i.e. the attribute
proving protocol. However, we also strived to optimise the rest of the protocols
to maintain speed also during the initialisation and issuance parts. For the per-
formance analysis, we executed a number of full protocol runs (initialisation,
issuance, proving) on the card in various configurations. First of all we varied
the number of stored attributes on the card, then within this attribute range we
varied the number of (un)disclosed attributes. As shown in Figure 1 this resulted
in a running time of 3.6 and 5.5 seconds for the issuance of a U-Prove token with
respectively 2 and 5 attributes. The dark grey area on the graph indicates the
core running time of the protocol calculations on the card, whereas light grey
indicates the remaining overhead. This overhead consists of transferring data to
the card and communicating the results of the protocol run between the card
and PC.

Anonymous Credentials on Smart Cards 13

3095
3623

4181

4808

5489

2281 2521
2784 2933 3131

1 2 3 4 5

#
a
tt
ri
b
u
te
s

0

6000

time (ms)

Fig. 1. U-Prove token issuance times (: computation, : overhead).

Correspondingly, the cumulative results for the attribute proving protocol
are shown in Figure 2. What can be seen in these graphs is that under “full
load” our implementation executes the complete proving protocol in just under
0.9 seconds (graph 2(b)). In this worst-case scenario 5 attributes are stored on
the card, none of which are disclosed during the protocol run. In other words,
the U-Prove token is only validated for its authenticity without revealing any
attribute data. Such a scenario is not very likely to occur in reality. In a more
likely scenario at least one or two attributes are going to be disclosed and we
can also assume that a U-Prove token will contain less attributes (or, that a
large number of attributes can be split into several separate U-Prove tokens). As
the graphs show, reducing the number of stored attributes improves the running
time at a rate of 100 milliseconds per attribute, and also that the performance
increases along with increasing the number of disclosed attributes, roughly 50
milliseconds per each extra disclosed attribute. Overall, this brings the total
execution time for a two attribute token disclosing one attribute to under 0.5
seconds (graph 2(a)).

550
487

433
372

304
245

0 1 2

#
d
is
cl
o
se
d

0

1000

time (ms)

(a) 2 stored attributes

869
814

764
708

651
594

648
586

530
469

406
343

0 1 2 3 4 5

#
d
is
cl
o
se
d

0

1000

time (ms)

(b) 5 stored attributes

Fig. 2. Attribute proving times for different configurations (/ : same as in Fig. 1).

14 W. Mostowski and P. Vullers

One of the reasons to justify the Microsoft’s device protected approach as
described in Section 3.1 are possible resource issues with smart cards (limited
storage space and limited speed). Our performance results undermine this argu-
ment. The worst case execution time of the proving part is 0.87 seconds. This
not only makes the card implementation fast enough to be usable in general,
it also makes it usable for “field” applications, e.g. dispensing machines. Even
more, for smaller numbers of smaller attributes the running times become almost
acceptable for use in public transport/e-ticketing, where the commonly required
card transaction times should stay below 0.3 seconds. We also see a potential to
improve the running times using faster smart card hardware, we elaborate on
this in the upcoming section. Overall, these good results strongly justify the idea
to use U-Prove standalone on a smart card rather than to use Microsoft’s device-
protected token approach, which now has no obvious functional or performance
advantages over our approach.

Furthermore, excluding our own previous work on implementing ECC-based
self-blindable signatures on a smart card [2, 17] our performance results are by far
better than all the previously reported results for anonymous credentials imple-
mented on smart cards. One of the first attempts within our group to implement
a U-Prove like protocol on a Java Card [28] resulted in running times closing to
10 seconds for a setup closely corresponding to ours. The DAA protocol was also
implemented on a Java Card by Sterckx et al. [25] with the running times of close
to 4 seconds for the DAA signing protocol. In [4] yet another implementation of
anonymous credentials on a Java Card is reported with running times of around
7–10 seconds. Our MULTOS U-Prove implementation is simply way faster.

The only limitations of our implementation are imposed by the limited re-
sources of the MULTOS smart card. We had to limit the prime modulus size to
1024 bits, use only SHA-1 hashing, and because of the available RAM (<1kB) on
the card we could only allow for the maximum of 5 attributes, each one up to 255
bytes in size. Otherwise our implementation is fully flexible and provides full U-
Prove functionality, including the smart card features described in Section 3.1.
However, it is not uncommon for modern smart cards to support up to 2048
bits for modulus size and 2 kilobytes of RAM, only no such MULTOS cards
were available to us. In the following we make some speculative performance
estimations based on tests performed with Java Cards that we have.

4.1 MULTOS vs. Java Card

As we already stated in Section 2.2 providing an efficient implementation of U-
Prove on a Java Card is currently not possible, mainly because of the inflexible
Java Card API. However, we can use Java Card to do further (speculative)
performance analysis.

Our Java Cards are implemented on the SmartMX hardware platform from
NXP, which provides excellent hardware cryptographic support (2048 bit RSA
and 320 bit ECC), and is considered state of the art when it comes to speed.
By running comparative speed tests between our Infineon SLE66 MULTOS card
and a brand new NXP SmartMX (JCOP31) Java Card we estimate two things:

Anonymous Credentials on Smart Cards 15

1. How fast a sibling implementation, equal in terms of the supported protocol
parameters, would be on the SmartMX chip?

2. How fast would an implementation supporting greater modulus size and
more attributes would be on the SmartMX chip?

For this we simply compared the speed of raw SHA-1 and RSA operations
between the two platforms, operating both on RAM and E2PROM. The results
are shown in Table 2, the running times are expressed in milliseconds for 100
iterations of each test, for example a single SHA-1 execution storing the results
in RAM for the first case (MULTOS card on a contact interface) takes 51.2 mil-
liseconds on average. More generally and roughly speaking, the JCOP31 card is
4 times faster for SHA-1, and 1.3 to 1.5 times faster for RSA-1024, depending
on the target memory. Although exact estimations are not possible, we specu-
late that the attribute proving part with the same protocol parameters as our
MULTOS implementation could be improved by a factor of 2 making the worst
execution time for 5 attributes stay below 0.5 seconds. We also estimate that
for the 2 attribute configuration the running times would drop below the 0.3
seconds required for public transport and e-ticketing applications. As for the im-
plementation supporting larger modulus size and more attributes, the JCOP31
card drops its performance going from RSA-1024 to RSA-2048 by the factor of
2 to 2.5. Based on this we believe that the proving part of the protocol would be
within 2 seconds realm for 2048 bit modulus size and 10 attributes. This would
still be faster than any of the existing Java Card anonymous credentials imple-
mentations that only support modulus sizes smaller than 2048 with reasonable
efficiency.

Yet again this stresses the Java Card shortcoming of the limited hardware
interface provided by the API – had the API been more flexible, our speculative
figures above would probably be factual. Although this issue has been brought
up before and we know that the smart card industry is very well aware of this
problem, we see hardly any improvements in this respect. The MULTOS plat-
form proved itself very strong here with its flexible API design. What MULTOS
is lacking from our point of view is wider hardware support for cryptography

Table 2. Performance comparison between MULTOS on an Infineon SLE66 chip and
JCOP31 on a NXP SmartMX chip (time in milliseconds for 100 successive operations).

MULTOS JCOP31

contact wireless contact wireless

SHA-1 RAM 5120 5274 1110 1136

SHA-1 E2PROM 6125 6308 1442 1466

RSA-1024 RAM 1016 1060 772 777

RSA-1024 E2PROM 2936 3041 1941 1952

RSA-2048 RAM 14289 14898 1926 1950

RSA-2048 E2PROM 17237 17956 3838 3865

16 W. Mostowski and P. Vullers

other than RSA and DES. In our own privacy-friendly protocol designs we rely
heavily on ECC, and although the MULTOS API specification supports ECC,
no MULTOS cards with hardware ECC support are currently available to us
for small scale development. Finally, we find the size of the RAM (960 bytes)
available on the MULTOS development cards a little bit of a limiting factor to
fully commit to MULTOS as our prototyping framework.

5 Ongoing Research

In our research we continue to look for efficient solutions for privacy-friendly
smart card applications. For this we develop our own protocols as well as explore
the existing ones. Both require prototypes for feasibility and efficiency analysis.
One of the by-products of the work presented in this paper is the discovery
of the MULTOS cards as an efficient implementation platform for this kind of
protocols.

Hence, the obvious next step is to investigate the implementation of the
Idemix protocol suite on a MULTOS card. Idemix has been already implemented
on a Java Card [4] and despite the best effort of the implementers to maintain
reasonable efficiency the running times still leave room for improvement in our
opinion. Idemix has more features and is more complex than U-Prove and more
involved computations are required, so clearly we do not expect an equally fast
implementation as the one we just presented, but we certainly believe we can
considerably improve over the current Java Card Idemix implementation.

In [2, 17] we presented an efficient Java Card implementation of our own pro-
tocol based on ECC and self-blindable signatures. This protocol provides a very
strong anonymity property, however our implementation, despite the achieved
efficiency, still suffers from the inability to fully utilise the hardware capabilities
of the card hidden beyond the Java Card API. Here, a MULTOS card with full
ECC support would provide further improvement possibilities. When (if at all)
such cards are available to us we will certainly investigate these possibilities.

In parallel to this protocol and speed quest we also develop case studies and
a demo suite for on-line use of anonymous credentials. To this end, we are im-
plementing a general framework in the form of a browser plug-in for smart card
enabled web services. This framework will be targeted for the set of anonymity
friendly protocols under our consideration and will allow us to do more prac-
tical comparative studies between the different anonymous credential approaches
exemplified by suitable demos.

6 Conclusion

We have presented an efficient MULTOS implementation of the U-Prove techno-
logy that allows to run the complete prover side of the protocols on a smart card.
This provides an anonymity friendly credentials mechanism for users of such a
smart card, with full independence from authentication resources external to the

Anonymous Credentials on Smart Cards 17

smart card. From the user perspective, the most performance sensitive part of
the protocol is attribute proving. Here, the achieved worst-case running times of
0.87 seconds for the whole set of attributes clearly establishes the practical usab-
ility of our implementation. Our performance results also strongly support our
idea to use a stand-alone U-Prove smart card rather than the Microsoft device-
protection approach, which seems to overlook the current capabilities of smart
cards. One other thing that seems to be overlooked by scientists and smart card
developers is the existence of the MULTOS smart card platform. During our
work it proved itself highly flexible and reasonably fast, hence our next steps are
to implement and assess the performance of other anonymity friendly protocols,
primarily Idemix, in a (MULTOS) smart card setting.

Acknowledgements We are grateful to Jaap-Henk Hoepman, Bart Jacobs,
Christian Paquin, Erik Poll and the anonymous reviewers for their valuable
comments which helped to improve this work.

References

1. MULTOS implementation report. Tech. Rep. MAO-DOC-TEC-010 v1.36a, MAO-
SCO Limited (February 2010)

2. Batina, L., Hoepman, J.H., Jacobs, B., Mostowski, W., Vullers, P.: Developing
efficient blinded attribute certificates on smart cards via pairings. In: Gollmann,
D., Lanet, J.L. (eds.) Smart Card Research and Advanced Applications – CARDIS
2010. LNCS, vol. 6035, pp. 209–222. Springer-Verlag (April 2010)

3. Bender, J., Kügler, D., Margraf, M., Naumann, I.: Privacy-friendly revocation man-
agement without unique chip identifiers for the German national ID card. Com-
puter Fraud & Security (September 2010)

4. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stand-
ard Java Card. In: Computer and Communications Security – CCS 2009. pp. 600–
610. ACM (November 2009)

5. Brands, S., Paquin, C.: U-Prove cryptographic specification v1.0. Tech. rep., Mi-
crosoft Corporation (March 2010)

6. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press (August 2000)

7. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In:
Pfitzmann, B., Liu, P. (eds.) Computer and Communications Security – CCS 2004.
pp. 132–145. ACM (October 2004)

8. Bundesamt für Sicherheit in der Informationstechnik: Advanced security mechan-
isms for machine readable travel documents, Version 2.05. Tech. Rep. TR-03110,
German Federal Office for Information Security (BSI), Bonn, Germany (2010)

9. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonym-
ous credentials with optional anonymity revocation. In: Advances in Cryptology –
EUROCRYPT 2001. pp. 93–118. Springer-Verlag (May 2001)

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) Advances in Cryptology
– CRYPTO 2002. LNCS, vol. 2442, pp. 101–120. Springer-Verlag (August 2002)

18 W. Mostowski and P. Vullers

11. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Computer and Communications Security – CCS
2002. pp. 21–30. ACM (November 2002)

12. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.
(eds.) Advances in Cryptology – CRYPTO 1982. pp. 199–203. Plemum Publishing
(1983)

13. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Communications of the ACM 28, 1030–1044 (October 1985)

14. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Java Series, Addison-Wesley (June 2000)

15. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A. (ed.) Advances in Cryptology – CRYPTO
1986. LNCS, vol. 263, pp. 186–194. Springer-Verlag (1987)

16. France-Massey, T.: MULTOS – the high security smart card OS. Tech. rep., MAO-
SCO Limited (September 2005)

17. Hoepman, J.H., Jacobs, B., Vullers, P.: Privacy and security issues in e-ticketing
– Optimisation of smart card-based attribute-proving. In: Cortier, V., Ryan, M.,
Shmatikov, V. (eds.) Foundations of Security and Privacy – FCS-PrivMod 2010
(July 2010), (informal)

18. Hoepman, J.H., Lueks, W., Vullers, P.: Revoking self-blindable credentials (2011)
19. Lysyanskaya, A.A.: Signature schemes and applications to cryptographic protocol

design. Ph.D. thesis, Massachusetts Institute of Technology (September 2002)
20. MAOSCO Limited: MULTOS Developer’s Reference Manual (October 2009)
21. NXP Semiconductors: Smart solutions for smart services (z-card 2009). NXP Lit-

erature, Document 75016728 (2009)
22. Paquin, C.: U-Prove cryptographic specification v1.1. Tech. rep., Microsoft Cor-

poration (February 2011)
23. Paquin, C.: U-Prove cryptographic test vectors v1.1. Tech. rep., Microsoft Corpor-

ation (February 2011)
24. Paquin, C.: U-Prove technology overview v1.1. Tech. rep., Microsoft Corporation

(February 2011)
25. Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation

of anonymous credentials on Java Card smart cards. In: Information Forensics and
Security – WIFS 2009. pp. 106–110. IEEE (September 2009)

26. Sun Microsystems, Inc.: Java Card 2.2.2 Application Programming Interface Spe-
cification (March 2006)

27. Sun Microsystems, Inc.: Java Card 2.2.2 Virtual Machine Specification (March
2006)

28. Tews, H., Jacobs, B.: Performance issues of selective disclosure and blinded issuing
protocols on Java Card. In: Markowitch, O., Bilas, A., Hoepman, J.H., Mitchell,
C., Quisquater, J.J. (eds.) Information Security Theory and Practice – WISTP
2009. LNCS, vol. 5746, pp. 95–111. Springer-Verlag (September 2009)

29. Verheul, E.R.: Self-blindable credential certificates from the Weil pairing. In: Boyd,
C. (ed.) Advances in Cryptology – ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–
550. Springer-Verlag (December 2001)

