
Congruence for SOS with Data

MohammadReza Mousavi, Michel Reniers, Jan Friso Groote
Department of Computer Science, Eindhoven University of Technology (TU/e),

Postbox 513, NL-5600 MB, Eindhoven, The Netherlands

E-mail:{m.r.mousavi,m.a.reniers,j.f.groote}@tue.nl

Abstract

While studying the specification of the operational
semantics of different programming languages and for-
malisms, one can observe the following three facts. Firstly,
Plotkin’s style of Structured Operational Semantics (SOS)
has become a standard in defining operational semantics.
Secondly, congruence with respect to some notion of bisim-
ilarity is an interesting property for such languages and it
is essential in reasoning about them. Thirdly, there are nu-
merous languages that contain an explicit data part in the
state of the operational semantics.

The first two facts, have resulted in a line of research ex-
ploring syntactic formats of operational rules to derive the
desired congruence property for free. However, the third
point (in combination with the first two) is not sufficiently
addressed and there is no standard congruence format for
operational semantics with an explicit data state. In this
paper, we address this problem by studying the implications
of the presence of a data state on the notion of bisimilarity.
Furthermore, we propose a number of formats for congru-
ence.

1 Introduction

Structured Operational Semantics (called SOS for short)
[23] has been very popular in defining operational seman-
tics for different formalisms and programming languages.
Moreover, congruence properties of notions of (bi-) simu-
lation have been investigated in many of these languages as
a key property for compositional reasoning and refinement.
Congruence simply means that if one replaces a component
in an arbitrary system with a (bi-)similar counterpart, there-
sulting system is (bi-)similar to the original one. Proofs of
congruence for SOS semantics are usually standard but very
tedious and lengthy. This has resulted in a line of research
for defining standard syntactical formats for different types

of SOS semantics in order to obtain the congruence prop-
erty for a given notion of bisimilarity automatically.

From the early beginning, SOS has been used for lan-
guages with data as an integral part of their operational state
(e.g., the original report on SOS contains several examples
of state-bearing transition system specifications [23]). As
systems get more complex, the integration of a data state
in their semantics becomes more vital. Besides the sys-
tems that have an explicit notion of data such as [4] and
[9], real-time languages [2, 8, 14, 17] and hybrid languages
[11] are other typical examples of systems in which a data
state shows itself in the operational semantics in one way or
another. However, the introduction of data turns out not to
be as trivial as it seems and leads to new semantical issues
such as adapted notions of bisimilarity [8, 11, 14, 20].

To the best of our knowledge, no standard congruence
format for these different notions of bisimilarity with a data
state has been proposed so far. Hence, most of the congru-
ence proofs are done manually [20] or are just neglected
by making a reference to a standard format that does not
cover the data state [8]. The proposal that comes closest
([7]) is unfinished and encodes rules for state-bearing pro-
cesses into rules without a state, for which a format is given.

In this paper, we address the implications of the presence
of a data state on notions of bisimilarity and propose stan-
dard formats that induce congruence with respect to these
notions of bisimilarity.

The rest of this paper is structured as follows. In Sec-
tion 2, we review the related work in the area of congruence
formats for SOS semantics. Then, in Section 3, we set the
scene by defining transition system specifications with data
and several notions of bisimilarity. In this section, we also
sketch the relationship between these notions of bisimilarity
and point out their application areas. The main contribution
of this paper is introduced in Section 4, where we define
standard syntactic formats for proving congruence with re-
spect to the defined notions of bisimilarity. Furthermore,
we give a full comparison between congruence results for
the notions of bisimilarity with data. Subsequently, Sec-

tion 5 presents an application of the proposed theory on a
transition system specification from the domain of coordi-
nation languages. Finally, Section 6 concludes the paper
and presents possible extensions of the proposed approach.
Due to space restrictions we dispense with presenting the
proofs of the theorems. Also, for the same reason, we give
one application only. Proofs of the theorems and applica-
tions from different domains can be found in [21].

2 Related Work

The first standard format for congruence of a transition
system specification was proposed by De Simone in [25].
Bloom, Istrail and Meyer, in their study of the relation-
ship between bisimilarity and trace congruence [6], define
an extension of the De Simone format, calledGSOS(for
Structured Operational Semantics with Guarded recursion).
GSOS extends the De Simone format to cover negative
premises. Another orthogonal extension of the De Simone
format, calledtyft/tyxt, is proposed in [16] (tyft/tyxt is the
code summarizing the structure of SOS rule in this format).
This format allows for, among others, look-ahead in the
premises of a rule. The merits of the two extensions were
merged in [13] where negative premises were added to the
tyft/tyxt format, resulting in thentyft/ntyxtformat. Finally,
the PATH format [3] (for Predicates And Tyft/tyxt Hybrid
format) the PANTH format [26] (for Predicates And Nega-
tive Tyft/tyxt Hybrid format) extendtyft/tyxtandntyft/ntyxt
with predicates, respectively. A deduction rule in PANTH
format may thus have predicates, negative predicates, tran-
sitions and negative transitions in its premises and a predi-
cate or a transition in its conclusion.

In [18], the PANTH format is extended for multi-sorted
variable binding. This covers the problem of operators
such as recursion or choice over a time domain. The is-
sue of binding operators for multi-sorted process terms
is also briefly introduced in [1]. In an unpublished note
[7], the issue of state-bearing processes and multi-sorted
transition system specifications is treated and three con-
gruence formats are proposed (Super-SOS, Data-SOS, and
Special-SOS). The approach of [7] relies on transforming
state-bearing processes to multi-sorted ones and thus, state-
bearing transition system specifications cannot be dealt with
in their original representation (whilst this is possible in our
approach). The notion of bisimilarity in [7] seems to be
what we call stateless bisimilarity in this paper. However,
the formats they propose for this notion of bisimilarity are
not proved to induce congruence and moreover they impose
some unneeded restrictions that are not present in our for-
mat for stateless bisimilarity. Furthermore, the formats in
[7] do not induce congruence with respect to the other no-
tions of bisimilarity that we discuss in this paper.

We recognize the problem of multi-sorted process terms

and admit that it is an interesting problem in itself. How-
ever, we address a different issue in this paper, that is, the
issue of states having a particular structure (possibly from
different sorts). In the above works, the data state is coded
into process terms (either naturally due to the definition of
operators like time-choice operators, e.g., in [18, 24] or ar-
tificially by transforming a multi-sorted state to a single-
sorted one, e.g., in [7]). Thus, the transition system spec-
ification as well as the notion of equivalence are confined
to look at the behavior of process terms (since standard for-
mats allow defining only one function symbol at a time in
the conclusion of a deduction rule). However, if the data
state is made explicit as a part of the state in the transition
system specification, then the transition system specifica-
tion may not only address process composition operators,
but also data composition operators. This allows both for
more expressivity in the specification of SOS and for the
possibility of introducing new notions of equivalence (w.r.t.
the relationship between data and process terms).

In [5], an extension of thetyft/tyxt format is proposed
to cover the semantics of higher order languages. The ex-
tended format, calledpromoted tyft/tyxt, allows for putting
(open) terms on the labels as well as on the two sides of the
transition relation specification. Since labels are assumed
to be of the same sort as process terms, their results do not
apply to our problem domain directly (in which we have at
least two different signatures for processes and data). How-
ever, by assuming two disjoint parts of the same signature
as data and process signatures we may get a weaker result
for the case of stateless bisimilarity in Section 4 (i.e., the
resulting format would be more restrictive than ours). For
the more involved notions of bisimilarity, however, we have
to move to a multi-sorted state paradigm in order to define
our criteria for the standard format and thus the format of
[5] is not applicable.

In [11], to prove congruence for a specification language
with a data state, the transition system specification is par-
tially transformed to another transition system specification
that is isomorphic to the original one and does not contain a
data state. Furthermore, it is shown that the original notion
of bisimilarity corresponds to strong bisimilarity [19, 22]
in the new specification. Since the resulting transition sys-
tem specification is in PATH format, it is deduced that the
original notion of bisimilarity is a congruence. Although,
the formal proof for these steps is not given there in detail,
the proof sketch seems to be convincing for this particular
notion of bisimilarity (i.e., stateless bisimilarity). Wecom-
bine all these steps here in one theorem and prove it so that
such transformations and proofs are not necessary anymore.
Furthermore, we give standard formats for other notions of
bisimilarity for which such a straightforward transformation
does not exist in the literature.

3 Preliminaries

3.1 Basic Definitions

We assume infinite and disjoint sets of process variables
Vp (with typical membersx, y, x0, y0 . . .) and data variables
Vd (with typical memberv). A process signatureΣp is a set
of function symbols with their fixed arity. Functions with
zero arity are called constants. A process termt ∈ T (Σp)
is defined inductively as follows: a variablex ∈ Vp is a
process term, ift0, . . . , tn−1 are process terms then for all
f ∈ Σp with arity n, f(t0, . . . , tn−1) is a process term,
as well (i.e., constants are indeed process terms). Process
terms are typically denoted byt, t′, ti, Similarly, data
termsu ∈ T (Σd) are defined based on a data signature
Σd and the set of variablesVd and typically denoted by
u, u′, ui, u

′

i, Closed termsC(Σx) in each of these con-
texts are defined as expected (closed process terms are typ-
ically denoted byp, q, p′, q′, p0, q0, p

′

0, q
′

0 . . .). A substitu-
tionσ replaces a variable in an open term with another (pos-
sibly open) term. The set of variables appearing in termt is
denoted byvars(t).

Definition 1 (Transition System Specification)A
transition system specification with datais a tuple
(Σp,Σd, L,D(Rel)) where Σp is a process signature,
Σd is a data signature,L is a set of labels (with typical
membersl, l′, l0, . . .), andD(Rel) is a set of deduction
rules, whereRel is a set of (ternary) relation symbols. For
all r ∈ Rel , l ∈ L ands, s′ ∈ T (Σp) × T (Σd) we define
that(s, l, s′) ∈ r is a formula. A deduction ruledr ∈ D is
defined as a tuple(H, c) whereH is a set of formulas andc
is a formula. The formulac is called the conclusion and the
formulas fromH are called premises.

Notions of open and closed and the concept of substi-
tution are lifted to formulas in the natural way. A for-
mula(s, l, s′) ∈ r is denoted by the more intuitive notation

s
l

→r s
′, as well. A deduction rule is mostly denoted by

H

c
.

A proof of a formula φ is a well-founded upwardly
branching tree of which the nodes are labelled by formu-
las such that

• the root node is labelled byφ, and

• if ψ is the label of a nodeq and{ψi | i ∈ I} is the
set of labels of the nodes directly aboveq, then there is

a deduction rule
{χi | i ∈ I}

χ
, a process substitutionσ

and a data substitutionξ such that application of these
substitutions toχ gives the formulaψ, and for alli ∈ I,
application of the substitutions toχi gives the formula
ψi.

3.2 Notions of Bisimilarity

The introduction of data to the state adds a new dimen-
sion to the notion of bisimilarity. One might think that we
can easily deal with data states by imposing the original no-
tion of strong bisimilarity [19, 22] to the extended state. Our
survey of the literature has revealed that such a notion of
strong bisimilarity is not used at all. It is clear that a for-
mat that respects strong bisimilarity as a congruence must
necessarily be very restricted. Therefore, in this paper, we
restrict ourselves to comparing processes with respect to the
same data state. In this way, we get to what we call astate-
based bisimilarity, depicted in Figure 1.

(p0, d0)

(p1, d1) (p2, d2)

(p′0, d0)

(p′1, d1) (p′2, d2)

Rsb

Rsb

Rsb

Figure 1. Statebased Bisimilarity

Definition 2 (Statebased Bisimilarity) A relationRsb ⊆
(C(Σp)×C(Σd))×(C(Σp)×C(Σd)) is astatebased bisim-
ulation relation if and only if∀p0,p1,d,r ((p0, d), (p1, d

′)) ∈
Rsb ⇒ d = d′∧

1. ∀l0,p′

0
,d′ (p0, d)

l0→r (p′0, d
′) ⇒ ∃p′

1
(p1, d)

l0→r (p′1, d
′)

∧((p′0, d
′), (p′1, d

′)) ∈ Rsb;

2. ∀l1,p′

1
,d′ (p1, d)

l1→r (p′1, d
′) ⇒ ∃p′

0
(p0, d)

l1→r (p′0, d
′)

∧((p′0, d
′), (p′1, d

′)) ∈ Rsb.

Two closed state terms(p, d) and (q, d) are statebased
bisimilar, denoted by(p, d) ↔sb (q, d), if and only if there
exists a statebased bisimulation relationRsb such that
((p, d), (q, d)) ∈ Rsb.

Definition 3 (Process-congruence)For ∼⊆ (C(Σp) ×
C(Σd)) × (C(Σp) × C(Σd)), ∼ is called a process-
congruencew.r.t. an n-ary process functionf ∈ Σp if
and only if for all pi, qi ∈ C(Σp) (0 ≤ i < n), for all
d ∈ C(Σd), if (pi, d) ∼ (qi, d) then(f(p0, . . . , pn−1), d) ∼
(f(q0, . . . , qn−1), d). Furthermore,∼ is called aprocess-
congruencefor a transition system specification if and only
if it is a process-congruence w.r.t. all process functions of
the process signature.

Statebased bisimilarity is a rather weak notion of bisim-
ilarity for most practical examples. The problem lies in the

p0

(p0, d0)

(p1, d
′

0)

(p0, d1)

(p2, d
′

1)

p′0

(p′0, d0)

(p′1, d
′

0)

(p′0, d1)

(p′2, d
′

1)

↔isl

Rsb

Rsb

Rsb

Rsb

Figure 2. Initially Stateless Bisimilarity

fact that in this notion of bisimilarity the process parts are
only related with respect to a particular data state. Thus,
if the common initial data state is not known (e.g., if the
components have to start their execution on the result of
an unknown or non-deterministic process), then statebased
bisimilarity is not useful.

This problem leads to the introduction of a new notion
of bisimilarity which takes all possible initial states into ac-
count [15, 14]. We call this notioninitially stateless bisimi-
larity (see Figure 2). This notion of bisimilarity is very use-
ful for the case where components are composed sequen-
tially. In such cases, when we prove that two components
are bisimilar, we do not rely on the initial starting state and
thus, we allow for sequential composition with any other
component.

Definition 4 (Initially Stateless Bisimilarity) Two closed
process termsp andq are initially stateless bisimilar, de-
noted byp↔isl q, if and only if there exists a statebased
bisimulation relationRsb such that((p, d), (q, d)) ∈ Rsb

for all d ∈ C(Σd).

For initially stateless bisimilarity (and also for stateless
bisimilarity), congruence is defined as expected in the fol-
lowing definition.

Definition 5 (Congruence) For arbitrary∼⊆ C(Σp) ×
C(Σp), ∼ is called acongruencew.r.t. ann-ary process
functionf ∈ Σp if and only if for all pi, qi ∈ C(Σp) (0 ≤
i < n), if pi ∼ qi thenf(p0, . . . , pn−1) ∼ f(q0, . . . , qn−1).
Furthermore,∼ is called acongruencefor a transition sys-
tem specification if and only if it is a congruence w.r.t. all
process functions of the process signature.

However, initially stateless bisimilarity does not solve all
problems, either. If there is a possibility of change in the in-
termediate data states (by an outside process), then initially

p0

(p0, d0)

(p1, d
′

0)

p1

(p0, d1)

(p2, d
′

1)

p2

p′0

(p′0, d0)

(p′1, d
′

0)

p′1

(p′0, d1)

(p′2, d
′

1)

p′2

Rsl

Rsl

Rsl

Figure 3. Stateless Bisimilarity

stateless bisimilarity is not preserved in such an environ-
ment. This, for instance, happens in open concurrent sys-
tems.

Stateless bisimilarity [8, 11, 15, 20], shown in Figure 3,
is the solution to this problem and the finest notion of bisim-
ilarity for state-bearing processes that one can find in the
literature. Two process terms are stateless bisimilar if, for
all identical data states, they satisfy the same predicatesand
they can mimic transitions of each other and the resulting
process terms are again stateless bisimilar. In other words,
we compare process terms for all identical data states and
allow all sorts of change (interference) in the data part after
each transition.

Definition 6 (Stateless Bisimilarity) A relation Rsl ⊆
C(Σp) × C(Σp) is a stateless bisimulationrelation if and
only if ∀p0,p1

(p0, p1) ∈ Rsl ⇒ ∀r

1. ∀d0,l0,p′

0
,d′

0
(p0, d0)

l0→r (p′0, d
′

0) ⇒

∃p′

1
(p1, d0)

l0→r (p′1, d
′

0) ∧(p′0, p
′

1) ∈ Rsl;

2. ∀d1,l1,p′

1
,d′

1
(p1, d1)

l1→r (p′1, d
′

1) ⇒

∃p′

0
(p0, d1)

l1→r (p′0, d
′

1) ∧(p′0, p
′

1) ∈ Rsl.

Two closed process termsp and q are stateless bisimilar,
denoted byp↔sl q, if and only if there exists a stateless
bisimulation relationRsl such that(p, q) ∈ Rsl.

None of the three notions of bisimilarity is the perfect
notion. Statebased bisimilarity is the easiest one to check
and establish but is not very robust in application. It is most

suitable for closed deterministic sequential systems. Ini-
tially stateless bisimilarity is a bit more difficult to check
and establish but is more robust and suitable for closed non-
deterministic sequential systems. Finally, stateless bisimi-
larity is the hardest one to establish but it is considered the
most robust one for open concurrent systems. In general, a
compromise has to be made in order to find the right level of
robustness and strength and as a result the most suitable no-
tion of bisimilarity has to be determined for each language
/ application separately.

A common practice in establishing bisimulation rela-
tions for concurrent systems is to transform them to non-
deterministic sequential systems preserving stateless bisim-
ilarity and then using initially stateless bisimilarity inthat
setting [15]. Another option for open systems with a lim-
ited possibility of intervention from the environment is to
parameterize the notion of bisimilarity with an interference
relation [15, 10, 11]. Our congruence format for statebased
bisimilarity can easily be adapted to the parameterized no-
tion of bisimilarity.

4 Standard Formats for Congruence

In this section we present standard formats and prove
congruence results with respect to aforementioned notions
of bisimilarity. To do this, we extend thetyft format of [14]
with data in three steps for stateless, statebased, and ini-
tially stateless bisimilarity. Finally, we present how ourfor-
mats can be extended to covertyxt rules and rules contain-
ing predicates and negative premises (thus, extending the
PANTH format [26] with data).

4.1 Congruence Format for Stateless Bisimilarity

In this paper, we allow for deduction rules that adhere to
the tyft-format with respect to the process terms and are not
restricted in the data terms. This format is calledprocess-
tyft.

Definition 7 (Process-tyft) Let (Σp,Σd, L,D(Rel)) be a
transition system specification. A deduction ruledr ∈
D(Rel) is in process-tyft formatif it is of the form

(dr)
{(ti, ui)

li→ri
(yi, u

′

i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l

→r (t′, u′)
,

whereI is a set of indices,→r ∈ Rel , l ∈ L, f ∈ Σp is a
process function of arityn, the variablesx0, . . . , xn−1 and
yi (i ∈ I) are all distinct variables fromVp, and, for alli ∈
I: →ri

∈ Rel , li ∈ L, ti, t′ ∈ T (Σp) andu, u′, ui, u
′

i ∈
T (Σd).

We name the set of process variables appearing in the
left-hand-side of the conclusionXp and in the right-hand-
side of the premisesYp. The two setsXp andYp are ob-
viously disjoint following the requirements of the format.
The above deduction rule is called anf -defining deduction
rule.

A transition system specification is inprocess-tyft format
if all its deduction rules are in process-tyft format.

It turns out that for any transition system specification in
process-tyft format, stateless bisimilarity is a congruence.

Theorem 1 If a transition system specification is in
process-tyft format, then stateless bisimilarity is a congru-
ence for that transition system specification.

4.2 Congruence Format for Statebased Bisimilar-
ity

In this section, we introduce a format for establishing
congruence of statebased bisimilarity. First, we show that
we cannot simply use the previously introduced process-tyft
format.

Example 1 Consider a transition system specification in
process-tyft format, where the signature consists of three
process constantsa, b, andc, one unary process functionf ,
and two data constantsd andd′ and the deduction rules are
the following:

(1)
(a, v)

l
→ (b, d′)

(2)
(b, d)

l
→ (b, d′)

(3)
(f(x), v)

l
→ (x, d′)

Then, we have:(a, d) ↔sb (b, d). On the other hand, how-
ever, it does not hold that(f(a), d) ↔sb (f(b), d), since
(f(a), d) has anl transition to(a, d′), while (f(b), d) only
has anl transition to(b, d′) and these two states are not
statebased bisimilar as the first one has anl transition due to
deduction rule (1), while the second one does not. Hence,
statebased bisimilarity is not a process-congruence (forf).

In deduction rules (1) and (3) of the above example,
we have transitions that (potentially) change the data state
while keeping the process variable. That is the reason why
we fail to have that state-based bisimilarity is a process-
congruence.

We remedy this shortcoming by adding more constraints
to the format. We define the binding between process vari-
ables and data terms and force it to remain consistent in
each of the deduction rules.

Definition 8 A state (t, u) satisfies the data dependency
x V u′, denoted by(t, u) |= x V u′ (pronounced asx
is bound tou in state(t, u)), if and only if x ∈ vars(t) and
u′ = u.

Example 2 Consider once more the transition system spec-
ification from Example 1. The left-hand-side of the
conclusion of deduction rule (3) has a data dependency
(f(x), v) |= x V v and the right-hand-side of the conclu-
sion has a data dependency(x, d′) |= x V d′. This means
that we rely on initially stateless bisimilarity of arguments
appearing at this index.

Definition 9 (Sfsb) A deduction rule(dr) is in sfsb for-
mat (for Standard Format for StateBased bisimulation) if
it is in process-tyft format and satisfies the following data-
dependency constraints:

1. If a data dependency on a variablex ∈ Xp is satis-
fied in the right-hand-side of the conclusion, the de-
pendency is satisfied in the left-hand-side of the con-
clusion, that is,

∀x∈Xp
(t′, u′) |= x V u′ ⇒
(f(x0, . . . , xn−1), u) |= x V u′.

2. If a data dependency on a variabley ∈ Yp is satisfied in
the right-hand-side of the conclusion, the dependency
is satisfied in the right-hand-side of a premise, that is,

∀y∈Yp
(t′, u′) |= y V u′ ⇒
∃i∈I (yi, u

′

i) |= y V u′.

3. If a data dependency on a variablex ∈ Xp is satisfied
in the left-hand-side of a premise, the dependency is
satisfied in the left-hand-side of the conclusion:

∀i∈I,x∈Xp
(ti, ui) |= x V ui ⇒
(f(x0, . . . , xn−1), u) |= x V ui.

4. If a data dependency on a variabley ∈ Yp is satisfied
in the left-hand-side of a premise, the dependency is
satisfied in the right-hand-side of a premise:

∀i∈I,y∈Yp
(ti, ui) |= y V ui ⇒
∃j∈I (yj , u

′

j) |= y V ui.

A transition system specification is insfsb formatif and
only if all its deduction rules are.

Informally speaking, we foresee a flow of binding be-
tween process variables and data terms from the left-hand-
side of the conclusion to the left-hand-side of the premises
and the right-hand-side of the conclusion and from the right-
hand-side of the premises to the left-hand-sides of other

premises and finally, to the right-hand-side of the conclu-
sion. For simplicity in proofs, we require the acyclicity of
the variable dependency graph, as well. However, this re-
quirement can be removed using the result of [12].

Theorem 2 If a transition system specification is in sfsb
format, then statebased bisimilarity is a process-congruence
for that transition system specification.

In [21], we have shown that if the proposed format is re-
laxed in any conceivable way, the congruence result is lost.

4.3 Congruence Format for Initially Stateless
Bisimilarity

Later, when comparing congruence conditions for the
different notions of bisimilarity, we show that the sfsb for-
mat works perfectly well for initially stateless bisimilarity.
However, it may turn out to be too restrictive in application.
The following example shows a common problem in this
regard.

Example 3 Consider the following transition system speci-
fication (with process constantsa andb, unary process func-
tion f , and data constantsd andd′) and the following de-
duction rules:

(1)
(a, v)

l
→ (a, v)

, (2)
(b, d)

l
→ (b, d)

,

(3)
(x0, v)

l
→ (y, v)

(f(x0, x1), v)
l
→ (x1, d

′)
.

This transition system specification does not satisfy the
sfsb format and statebased bisimilarity is not a congru-
ence (since(a, d) ↔sb (b, d), but it does not hold that
(f(b, a), d) ↔sb (f(b, b), d)). However, it can be checked
that initially stateless bisimilarity is indeed a congruence.
The reason is that the change in the data state in deduction
rule (3) is harmless sincex1’s are now related using all data
states includingd′ (e.g., the above counterexample does not
work anymore since it does not hold thata↔isl b).

This gives us some clue that for initially stateless bisim-
ilarity, we may weaken the data-dependency constraints.

Definition 10 (Sfisl) A deduction rule(dr) is in sfisl format
(for Standard Format for Initially StateLess bisimulation) if
it is in process-tyft format and satisfies the following local
(relaxed) data-dependency constraints:

1. If a data dependency on a variabley ∈ Yp is satisfied in
the right-hand-side of the conclusion, the dependency
is satisfied in the right-hand-side of a premise, that is,

∀y∈Yp
(t′, u′) |= y V u′ ⇒
∃i∈I (yi, u

′

i) |= y V u′.

2. If a data dependency on a variabley ∈ Yp is satisfied
in the left-hand-side of a premise, the dependency is
satisfied in the right-hand-side of a premise:

∀i∈I,y∈Yp
(ti, ui) |= y V ui ⇒
∃j∈I (yj , u

′

j) |= y V ui.

The data-dependency constraints that were required for
variables from the setXp for congruence of statebased
bisimilarity, need not be satisfied for this format anymore.
The reason of violating these constraints is that we rely on
the fact that certain positions are instantiated by process
terms that are related for all possible data. To formalize this
concept, first we define positions for which the two con-
straints are violated and then we check the global conse-
quences of this violation.

Definition 11 A variablex ∈ Xp is calledunresolvedif

∃i∈I x ∈ vars(ti) ⇒ (ti, ui) 6|= x V u

∨
x ∈ vars(t′) ⇒ (t′, u′) 6|= x V u.

We defineXu
p to be the set of unresolved variables.

For each process functionf , we define a setIV f that
contains indices off for which we need initially stateless
bisimilarity because a data-dependency is violated with re-
spect to the variable that occurs in that position in the left-
hand-side of the conclusion. The setIV f contains at least
the indices of the unresolved variables of thef -defining de-
duction rules, but it may contain more indices due to the
use off in other deduction rules in the right-hand-side of
the conclusion or the left-hand-side of a premise.

Definition 12 For a given transition system specification in
process-tyft format, we define, for allf ∈ Σp, the setsIV f

as the smallest sets that satisfy, for allf -defining deduction
rulesdr:

1. the indices of unresolved variables (i.e., variables from
Xu

p) of dr are inIV f ;

2. for all n-ary process functionsg ∈ Σp: for each oc-
currence of a process termg(t0, . . . , tn−1) in the left-
hand-side of a premise or the right-hand-side of the
conclusion ofdr:

∀i∈IV g
∀x∈vars(ti) ∃j∈IV f

x = xj .

Note that with the above definition, it is possible that
such a set does not exist. In such cases, the global data-
dependency constraint given below cannot be established.

Example 4 Consider the transition system specification of
Example 3, in deduction rule(3), variablex1 is unresolved,
and thus2 ∈ IV f .

Definition 13 (Sfisl) A transition system specification is in
sfisl formatif all its deduction rules are in sfisl format and
furthermore for each process functionf the setIV f exists.

Informally, this means that a deduction rule may change
the data state associated with a process term (arbitrarily)
if according to the other rules, the process term is guaran-
teed to be among the initial argument of the topmost process
function (thus, benefitting from the initially stateless bisim-
ilarity assumption). The positions of a process functionf

benefitting from the initially stateless bisimilarity assump-
tion are thus denoted byIV f .

Theorem 3 If a transition system specification is in sfisl
format, then initially stateless bisimilarity is a congruence
for that transition system specification.

In [21], we have shown that none of the two constraints
of sfisl can be relaxed in any conceivable way.

4.4 Comparing Congruence Results

When motivating different notions of bisimilarity, we
stated that statebased bisimilarity is considered the weak-
est (least distinguishing) and least robust notion of bisim-
ilarity with respect to data change. This statement, espe-
cially the least robust part, may suggest that if for a transi-
tion system specification statebased bisimilairty is a congru-
ence, stateless and initially stateless bisimilarity are trivially
congruences, as well. This conjecture can be supported by
the standard formats that we gave in this section where the
statebased format is the most restrictive and stateless is the
most relaxed one. Surprisingly, this conclusion is not en-
tirely true. It turns out that congruence for statabased bisim-
ilarity is indeed stronger than congruence for initially state-
less bisimilarity but incomparable to congruence for state-
less bisimilarity. A similar incomparability result holdsfor
congruence for initially stateless bisimilarity versus state-
less bisimilarity, as well.

The following two examples show that congruence re-
sults for statebased bisimilarity and stateless bisimilarity are
incomparable. In other words, there are both cases in which
one of the two notions is a congruence and the other is not.

Example 5 Consider the following transition system speci-
fication (with process constantsa andb, unary process func-
tion f , and data constantsd andd′) and the following de-
duction rules:

(1)
(a, d′)

l
→ (a, d′)

, (2)
(f(a), d)

l
→ (a, d′)

.

In the above transition system specification, the process
constantsa andb are not stateless bisimilar and hence, con-
gruence of stateless bisimilarity follows trivially. However,
we have(a, d) ↔sb (b, d), but not(f(a), d) ↔sb (f(b), d).

Example 6 Consider the following transition system spec-
ification (with process constantsa, b, andc, unary process
functionf , and data constantsd andd′) and the following
deduction rules:

(1)
(c, d′)

l′

→ (c, d′)
, (2)

(f(a), d)
l
→ (b, d)

,

(3)
(f(b), d)

l
→ (c, d)

, (4)
(f(c), d)

l
→ (a, d)

.

Statebased bisimilarity is obviously a congruence though
the transition system specification does not satisfy the pro-
posed format. Now, consider the processesa andb. These
two processes are stateless bisimilar, however,f(a) and
f(b) are not stateless bisimilar, since(f(a), d) can make a
transition to(b, d), then(f(b), d) is forced to make a transi-
tion to (c, d) while b andc are clearly not stateless bisimilar
(due to their difference w.r.t. datad′).

The following lemma states that if statebased bisimilar-
ity is a congruence, then initially stateless bisimilarityis a
congruence as well.

Lemma 1 For a transition system specification, if state-
based bisimilarity is a congruence, then initially stateless
bisimilarity is a congruence, as well.

Corollary 1 If a transition system specification is in sfsb
format, then initially stateless bisimilarity is a congruence
for it.

Lemma 1 shows that congruence for initially stateless
bisimilarity is either stronger than or incomparable to con-
gruence for stateless bisimilarity (since in Example 6, we
have already shown that there exists a case were statebased
bisimilarity, thus initially stateless bisimilarity, is acongru-
ence but stateless bisimilarity is not). To prove the incom-
parability result, we need a counter example where stateless
bisimilarity is a congruence but initially stateless bisimilar-
ity is not (the counter-examples of Example 5 do not work
in this case). The following example establishes this fact.

Example 7 Consider the following transition system spec-
ification (with process constantsa, b, andc, unary process
functionf , and data constantsd andd′) and the following
deduction rules:

(1)
(a, d′)

l
→ (a, d)

, (2)
(b, d′)

l
→ (c, d′)

,

(3)
(c, d)

l
→ (c, d)

,

(4)
(f(a), d)

l
→ (c, d)

, (5)
(f(b), d′)

l
→ (c, d′)

.

According to the above transition system specification,
none of the three constantsa, b andc are stateless bisimilar,
thus congruence of stateless bisimilarity is obvious. How-
ever, we havea↔isl b but notf(a) ↔isl f(b).

So, to conclude, we have proved in this section, that con-
gruence for statebased bisimilarity implies congruence for
initially stateless bisimilarity (and not vice versa). How-
ever, proving congruence for stateless bisimilarity does not
necessarily mean anything for congruence for the two other
notions.

4.5 Seasoning the Process-tyft Format

The deduction rules in all three proposed formats are of
the following form:

{(ti, ui)
li→ri

(yi, u
′

i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l

→r (t, u′)
.

Using this form we cannot go far with proving congruence
properties of existing theories since there are many other
constructs and patterns that are not present in the above for-
mat. In this section, we show how to exploit the format in
presence of such constructs. A common type of deduction
rules used in transition system specifications is thetyxt form
which has the following structure:

(dr)
{(ti, ui)

li→ri
(yi, u

′

i)|i ∈ I}

(x, u)
l

→r (t, u′)
.

Rules of the above form fit within thetyft form if we copy
the above rule for all function symbolsf ∈ Σp with (ar-
bitrary) arity n and substitute all occurrences ofx with
f(x0, . . . , xn−1).

Another common phenomenon is the presence of predi-
cates. Predicates of the formPred(t, u) may be present in
the premises or the conclusion of a deduction rule. Predi-
cates can be dealt with in the above formats, as if they are
left-hand-side of a transition relation (this can be formally
proved by introducing fresh dummy transition relations for
each predicate that always have a fresh dummy variable in
their right-hand-side [3]).

Regarding negative premises, if we can define a measure
on formulas over the signatureΣp that, for each deduction
rule of the transition system specification, does not increase
from conclusion to all positive premises and strictly de-
creases from conclusion to negative premises (i.e., if a strat-
ification for all rules exists) then the congruence results can
be used safely. Note that an extension to negative premises
requires another definition of what a proof of a transition is
(see [13, 26]).

5 Case study: Operational semantics of
Linda

In [9], the operational semantics of Linda is given using
a combination of SOS rules and a structural congruence. As
this kind of transition system specification is not purely in
the format used in this paper, we have transformed it in such
a way that it fits the format (by extending the language with
a process constantε). A formulation of this semantics with-
out the constantε is also possible, but the resulting transi-
tion system specification is much larger. In this section, we
apply the proposed formats on the extended language. Pro-
cess constants (atomic process terms) in this language areε

(for terminating process),ask(t) andnask(t) (for checking
existence and absence of tuplet in the shared data space,
respectively),tell(t) (for adding tuplet to the space) and
get(t) (for taking tuplet from the space). Process compo-
sition operators in this language include nondeterministic
choice (+), sequential composition (;) and parallel compo-
sition (||). Operational state of a Linda program is denoted
by (p, ς) wherep is a process term in the above syntax and
ς is a set modeling the shared data space.

(ε, ς) ↓ (ask(t), ς ∪ {t})→ (ε, ς ∪ {t})

(tell(t), ς)→ (ε, ς ∪ {t}) (get(t), ς ∪ {t})→ (ε, ς)

(nask(t), ς)→ (ε, ς)
[t 6∈ ς]

(x0, ς) ↓

(x0 + x1, ς) ↓

(x1, ς) ↓

(x0 + x1, ς) ↓

(x0, ς)→ (y, ς ′)

(x0 + x1, ς)→ (y, ς ′)

(x1, ς)→ (y, ς ′)

(x0 + x1, ς)→ (y, ς ′)

(x0, ς)→ (y, ς ′)

(x0 ; x1, ς)→ (y ; x1, ς
′)

(x0, ς) ↓ (x1, ς)→ (y, ς ′)

(x0 ; x1, ς)→ (y, ς ′)

(x0, ς)→ (y, ς ′)

(x0||x1, ς)→ (y||x1, ς
′)

(x1, ς)→ (y, ς ′)

(x0||x1, ς)→ (x0||y, ς
′)

(x0, ς) ↓ (x1, ς) ↓

(x0 ; x1, ς) ↓

(x0, ς) ↓ (x1, ς) ↓

(x0||x1, ς) ↓

Obviously these deduction rules are all in process-tyft
format (with appropriate seasoning for termination predi-
cate↓). As a consequence, stateless bisimilarity is a congru-
ence. Initially stateless bisimilarity is a congruence forall
operators except parallel composition. Note thatIV + = ∅
and IV ; = {1}. Thus, initially stateless bisimilarity is a
congruence for the sequential part of Linda.

Because congruence of initially stateless bisimilarity
w.r.t. parallel composition cannot be concluded using our
format, we may wonder whether this result must have been
expected. In the following example, we show that this is
indeed the case and the indications given by our format are
true (i.e., initially stateless bisimilarity is not a congruence
for the language with parallel composition operator).

Example 8 Consider the processesp = ask(1) ;
(nask(1) ; ask(2)) andq = ask(1) ; nask(1). Accord-
ing to the above transition system specification, it holds that
p↔isl q (in both processes, using an arbitrary common ini-
tial state, eitherask(1) executes followed by deadlock or
both deadlock immediately). However, if we compose each
of the two processes in parallel with the processr = get(1),
then the two processes may behave differently for some data
states. For example, consider the data state{1, 2}. For this
data state, one execution path of(p || r, {1, 2}) is: first exe-
cutingask(1) fromp successfully, thenget(1) from r (thus,
resulting in data state{2}), and executingnask(1) followed
by ask(2) successfully. However, all possible executions of
(q || r, {1, 2}) can never make four consecutive transitions
before termination. Thus, we conclude that initially state-
less bisimilarity is not a congruence with respect to parallel
composition.

In [21], the formats developed in this paper have also
been applied successfully to transition system specifications
from the domains of real-time and hybrid systems.

6 Conclusion

In this paper, we investigated the impact of the presence
of a data state on notions of bisimilarity and standard con-
gruence formats. To do this, we defined three notions of
bisimilarity with data and elaborated on their existing and
possible uses. Then, we proposed three standard formats
that provide congruence results for these three notions. Fur-
thermore, we briefly pointed out the relationships between
these notions and between the corresponding congruences.
The proposed formats are applied to several examples from
the literature successfully. In this paper, we illustratedthe
use of our format using a data coordination language, called
Linda.

Extending the format for a parameterized notion of
bisimilarity (with an explicit interference relation or a sym-
bolic / logical representation of interference possibilities) is
another interesting extension which should follow the same
line as our relaxation of statebased constraints to initially
stateless. Furthermore, we may extend the theory to bisim-
ulation relations which allow for different data states butso
far we have seen no practical application of such a bisimilar-
ity notion. Investigating the possibility of applying the same

techniques for congrence with respect to weaker notions of
bisimulation (e.g., branching bisimulation) is another inter-
esting direction for our future research.

Acknowledgements The authors would like to express
their appreciation to Pieter Cuijpers and Ana Sokolova for
their comments on early versions of this documents. Valu-
able comments of the anonymous referees are also acknowl-
edged.

References

[1] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural oper-
ational semantics. In J. A. Bergstra, A. Ponse, and S. A.
Smolka, editors,Handbook of Process Algebra, Chapter 3.
Elsevier Science, Dordrecht, The Netherlands, 2001.

[2] J. C. M. Baeten and C. A. Middelburg.Process Algebra
with Timing. EATCS Monographs. Springer-Verlag, Berlin,
Germany, 2002.

[3] J. C. M. Baeten and C. Verhoef. A congruence theorem for
structured operational semantics with predicates. In E. Best,
editor, International Conference on Concurrency Theory
(CONCUR’93), volume 715 ofLecture Notes in Computer
Science, pages 477–492. Springer-Verlag, Berlin, Germany,
1993.

[4] J. W. d. Bakker and E. P. d. Vink.Control Flow Semantics.
Foundations of Computing Series. The MIT Press, 1996.

[5] K. L. Bernstein. A congruence theorem for structured op-
erational semantics of higher-order languages. InIEEE
Symposium on Logic In Computer Science (LICS’98), pages
153–164. IEEE Computer Society, Los Alamitos, CA, USA,
1998.

[6] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be
traced.Journal of the ACM (JACM), 42:232–268, Jan. 1995.

[7] B. Bloom and F. Vaandrager. SOS rules formats for pa-
rameterized and state-bearing processes (draft). Unpub-
lished note, available through:http://www.cs.kun.
nl/ita/publications/papers/fvaan/.

[8] V. Bos and J. J. Kleijn. Redesign of a systems engineering
language — formalisation ofχ. Formal Aspects of Comput-
ing, 15(4), Dec. 2003.

[9] A. Brogi and J.-M. Jacquet. On the expressiveness of
linda-like concurrent languages. In I. Castellani and
C. Palamidessi, editors,Proceedings of Fifth Interna-
tional Workshop on Expressiveness in Concurrency (EX-
PRESS’98), volume 16 ofElectronic Notes in Theoreti-
cal Computer Science. Elsevier Science, Dordrecht, The
Netherlands, 1998.

[10] M. R. V. Chaudron.Separating Computation and Coordi-
nation in the Design of Parallel and Distributed Programs.
PhD thesis, Department of Computer Science, Rijksuniver-
siteit Leiden, Leiden, The Netherlands, 1998.

[11] P. J. Cuijpers and M. A. Reniers. Hybrid process alge-
bra. Technical Report 03-07, Department of Computer Sci-
ence, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2003.

[12] W. J. Fokkink and R. J. van Glabbeek. Ntyft/ntyxt rules re-
duce to ntree rules.Information and Computation, 126(1):1–
10, 1996.

[13] J. F. Groote. Transition system specifications with negative
premises.Theoretical Computer Science, 118(2):263–299,
1993.

[14] J. F. Groote. The syntax and semantics of timed
µCRL. Technical Report SEN-R9709, CWI - Centrum
voor Wiskunde en Informatica, Amsterdam, The Nether-
lands, June 30, 1997.

[15] J. F. Groote and A. Ponse. Process algebra with guards com-
bining hoare logic with process algebra. Technical Report
CS-R9069, Amsterdam, The Netherlands, 1990.

[16] J. F. Groote and F. Vaandrager. Structured operational se-
mantics and bisimulation as a congruence.Information and
Computation, 100, Oct. 1992.

[17] J.-M. Jacquet, K. De Bosschere, and A. Brogi. On timed co-
ordination languages. In A. Porto and G.-C. Roman, editors,
Proceedings of Coordination Languages and Models, 4th In-
ternational Conference, Limassol, Cyprus, volume 1906 of
Lecture Notes in Computer Science, pages 81–98. Springer-
Verlag, Berlin, Germany, 2000.

[18] C. A. Middelburg. Variable binding operators in transition
system specifications.Journal of Logic and Algebraic Pro-
gramming, 47(1):15–45, 2001.

[19] R. A. Milner. A Calculus of Communicating Systems, vol-
ume 92 ofLecture Notes in Computer Science. Springer-
Verlag, 1980.

[20] M. Mousavi, T. Basten, M. Reniers, M. Chaudron, and
G. Russello. Separating functionality, behavior and timing in
the design of reactive systems: (GAMMA + coordination) +
time. Technical Report 02-09, Department of Computer Sci-
ence, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2002.

[21] M. Mousavi, M. Reniers, and J. F. Groote. Congruence
for SOS with data. Technical Report 04-05, Department
of Computer Science, Eindhoven University of Technology,
2004.

[22] D. M. Park. Concurrency and automata on infinite se-
quences. InProceedings of 5th GI Conference, volume
104 of Lecture Notes in Coputer Science, pages 167–183.
Springer-Verlag, Berling, Germany, 1981.

[23] G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science
Department, Aarhus University, Aarhus, Denmark, Sept.
1981.

[24] M. A. Reniers, J. F. Groote, M. B. van der Zwaag, and J. van
Wamel. Completeness of timedµCRL. Fundamenta Infor-
maticae, 50(3-4):361–402, 2002.

[25] R. d. Simone. Higher-level synchronizing devices in MEIJE-
SCCS. Theoretical Computer Science (TCS), 37:245–267,
1985.

[26] C. Verhoef. A congruence theorem for structured oper-
ational semantics with predicates and negative premises.
Nordic Journal of Computing, 2(2):274–302, 1995.

