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Alternative composition

I Syntax p + q

I Intuition the process behaves
as either p or q

a + b

X X

a b

Axioms

A1 x + y = y + x
A2 x + (y + z) = (x + y) + z
A3 x + x = x

Write x ⊆ y for x + y = y .
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Sequential composition

I Syntax p · q
I Intuition the process behaves

as p and upon termination of
p, as q.

a · b

X

a

b

Axioms

A4 (x + y)·z = x ·z + y ·z
A5 (x ·y)·z = x ·(y ·z)
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Example

s0

s1

s2X s3X

coincoin

coffeecoffee teatea

t0

t1 t2

t3X t4X

coincoin coin

coffeecoffee

teateatea

coffee

tea

coffee

coin

coin · (coffee + tea)

A1 ,A3
=

(coin · (coffee + tea)) + (coin · (tea + coffee))
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Deadlock

I Syntax δ

I Intuition a process that cannot
do anything but let time pass

a · δ

a

Axioms

A6 x + δ = x
A7 δ·x = δ
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Conditional operator

(n < 42)→ a � b

I Syntax c → p � q, where c is of type Bool

I Intuition if c holds, behave as p, otherwise as q

Axioms

Cond1 true→x � y = x
Cond2 false→x � y = y
THEN c → x = c → x � δ
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Sum operator

I Syntax
∑

d :D X (d)

I Intuition generalize alternative composition: may
behave as X (d), for each value d of type D

∑
v :Nat num(2 ∗ v);

n
u

m
(0
)

n
u

m
(2
)

n
u

m
(4
)

n
u

m
(6
)
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(8
) ···

···
···
···

Axioms

SUM1
∑

d :D x = x
SUM3

∑
d :D X (d) = X(e) +

∑
d :D X (d)

SUM4
∑

d :D(X (d) + Y (d)) =
∑

d :D X (d) +
∑

d :D Y (d)
SUM5 (

∑
d :D X (d))·y =

∑
d :D X (d)·y

8 / 13



Previous Page Next Page

Sum operator

I Syntax
∑

d :D X (d)

I Intuition generalize alternative composition: may
behave as X (d), for each value d of type D

∑
v :Nat num(2 ∗ v);

n
u

m
(0
)

n
u

m
(2
)

n
u

m
(4
)

n
u

m
(6
)

n
u

m
(8
) ···

···
···
···

Axioms

SUM1
∑

d :D x = x
SUM3

∑
d :D X (d) = X(e) +

∑
d :D X (d)

SUM4
∑

d :D(X (d) + Y (d)) =
∑

d :D X (d) +
∑

d :D Y (d)
SUM5 (

∑
d :D X (d))·y =

∑
d :D X (d)·y

8 / 13



Previous Page Next Page

Sum operator

I Syntax
∑

d :D X (d)

I Intuition generalize alternative composition: may
behave as X (d), for each value d of type D

∑
v :Nat num(2 ∗ v);

n
u

m
(0
)

n
u

m
(2
)

n
u

m
(4
)

n
u

m
(6
)

n
u

m
(8
) ···

···
···
···

Axioms

SUM1
∑

d :D x = x
SUM3

∑
d :D X (d) = X(e) +

∑
d :D X (d)

SUM4
∑

d :D(X (d) + Y (d)) =
∑

d :D X (d) +
∑

d :D Y (d)
SUM5 (

∑
d :D X (d))·y =

∑
d :D X (d)·y

8 / 13



Previous Page Next Page

Example

One time usable buffer, with messages of type Message∑
m:Message

read(m) · forward(m)

Problem How to handle repetition?
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Recursion

Define set of equations with variables as left hand side:

P = x

where x a process, that can refer to variables such as P

I allows definition of infinite processes

I can store data in parameters
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Example

Reusable 1-place FIFO buffer, with messages of type
Message

Buffer =
∑

m:Message

read(m) · forward(m) · Buffer

or, in mCRL2:

sort Message;

act read ,forward: Message;

proc Buffer = sum m: Message . read(m) . forward(m) . Buffer;

init Buffer;
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Example

Infinite queue

Queue(l :List(Message) =
∑

m:Message

read(m) · Queue(l /m)

+ (l 6= []→ forward(head(l)) · Queue(tail(l))

or, in mCRL2:
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act read ,forward: Message;

proc Queue(l: List(Message )) =

sum m: Message . read(m) . Queue(l <| m)

+ (l != []) -> forward(head(l)) . Queue(tail(l));

init Queue ([]);
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Thank you very much.
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