System Validation:
Describing Sequential Processes

Mohammad Mousavi and Jeroen Keiren

Open
Universiteit

HALMSTAD
UNIVERSITY



General Overview

System Requirements

*{ Behavior (Processes)

Semantic Domain

2/13



Alternative composition

a+b

3/13



Alternative composition

a+b
» Syntax p+ g

> Intuition the process behaves
as either p or g

3/13



Alternative composition

a+b
» Syntax p+ g

> Intuition the process behaves
as either p or g

Axioms
Al x+y=y+x
A2 x+(y+z)=(x+y)+z
A3 x+x=x
Write x C y for x+y = y.

3/13



Alternative composition

a+b
» Syntax p+ g

> Intuition the process behaves
as either p or g

Axioms

Al x+y=y+x
A2 x+(y+z)=(x+y)+z
A3 x+x=x

Write x C y for x +y = y.

3/13



Sequential composition

4/13



Sequential composition

a-b
» Syntax p- g
> Intuition the process behaves 5
as p and upon termination of
p, as q. b

4/13



Sequential composition

a-b
» Syntax p- g
> Intuition the process behaves 5
as p and upon termination of
, as q.
p.asq b
Axioms

Ad (x+y)z=xz+yz
A5 (xy)z=x(yz)

4/13



Example

coffee
tea tea @

5/13



Example

. _ - - _coin coin
coin _==7=~- ~

IRoW0
cotree ' coffee
@ tea tea @

coffee

coin - (coffee + tea)

(coin - (coffee + tea)) + (coin - (tea + coffee))

5/13



Example

) - ;c\oin coin
coin _=== - -

OO
coffee coffee
@ tea tea @

coffee

coin - (coffee + tea)

ALA3 (coin - (coffee + tea)) + (coin - (tea + coffee))

5/13



Deadlock

6/13



Deadlock

» Syntax ¢

> Intuition a process that cannot
do anything but let time pass a2

6/13



Deadlock

» Syntax ¢

> Intuition a process that cannot
do anything but let time pass a2

Axioms

A6 x+6=x
A7 6x=29¢

6/13



Deadlock

» Syntax ¢

> Intuition a process that cannot
do anything but let time pass a2

Axioms

A6 x+0=x
A7 6x=296

6/13



Conditional operator

(n<42) - acobh

7/13



Conditional operator

(n<42) - acobh

» Syntax ¢ — p < g, where c is of type Bool

> Intuition if ¢ holds, behave as p, otherwise as g

7/13



Conditional operator

» Syntax ¢ — p < g, where c is of type Bool

> Intuition if ¢ holds, behave as p, otherwise as g

Axioms

(n<42) —»aob

Condl
Cond?2
THEN

true—xoy =X
false—sxoy =y
CoX=Cc—>x00

7/13



Conditional operator

» Syntax ¢ — p < g, where c is of type Bool

> Intuition if ¢ holds, behave as p, otherwise as g

Axioms

(n<42) —»aob

Condl
Cond?2
THEN

true—>xoy = Xx
false—sxoy =y
C—oX=C—>Xx00

7/13



Sum operator
Zv:Nat num(2 * V);

num(0)

8/13



Sum operator

» Syntax . X(d
2 2.0 X{) : . 2 vNar NUM(2 % v);
> Intuition generalize alternative composition: may :

behave as X(d), for each value d of type D

num(0)

8/13



Sum operator

> Syntax }_,.p X(d)
> Intuition generalize alternative composition: may
behave as X(d), for each value d of type D

Axioms

SUM1
SUM3
SUM4
SUMb5

S = x

o X(d) = X(e) + g p X(d)

2_a:p(X(d) + Y(d)) =3 4.p X(d) +>_4.p Y(d)
(Zd:DX(d))'y = Zd:DX(d)'y

num(0)

> viNar MuM(2 % v);

8/13



Example

One time usable buffer, with messages of type Message

Z read(m) - forward(m)

m:Message

9/13



Example

One time usable buffer, with messages of type Message

Z read(m) - forward(m)

m:Message

Problem How to handle repetition?

9/13



Recursion

Define set of equations with variables as left hand side:
P =x

where x a process, that can refer to variables such as P

10/13



Recursion

Define set of equations with variables as left hand side:
P =x

where x a process, that can refer to variables such as P

> allows definition of infinite processes

> can store data in parameters

10/13



Example

Reusable 1-place FIFO buffer, with messages of type
Message

Buffer = Z read(m) - forward(m) - Buffer

m:Message

11/13



Example

Reusable 1-place FIFO buffer, with messages of type

Message

Buffer = Z read(m) - forward(m) - Buffer

m:Message
or, in mCRL2:
sort Message;
act read,forward: Message;
proc Buffer = sum m: Message . read(m)

init Buffer;

forward (m)

Buffer;

11/13



Example

Infinite queue

Queue(/:List(Message) = Z read(m) - Queue(/ < m)
m:Message

+ (I # [| — forward(head(!)) - Queue(tail())

12/13



Example
Infinite queue
Queue(I:List(Message) = Z read(m) - Queue(l < m)

m:Message

+ (I # [] — forward(head(l)) - Queue(tail(]))

12/13



Example

Infinite queue

Queue(I:List(Message) = Z read(m) - Queue(l < m)

m:Message

+ (I # [| — forward(head(!)) - Queue(tail())

or, in mCRL2:

sort Message;
act read,forward: Message;
proc Queue(l: List(Message)) =
sum m: Message . read(m) . Queue(l <| m)

+ (1 '= [1) -> forward(head(l)) . Queue(tail(l));

init Queue ([]);

12/13



Thank you very much.



	Sequential Processes
	Deadlock
	Conditional and Sum Operators


