LEARNING-BASED TESTING:
AN INTRODUCTION TO LBTEST

Karl Meinke, CSC School, KTH Stockholm

0. Overview of Talk

1. Introduction to LBTest tool
2. Automotive Case Study: Brake-by-Wire (Volvo)

3. Other case studies
- portfolio compression service (Tri-Optima)
- e-commerce access server (SDL)

4. Some Current Research
5. Conclusions

Based on:
L. Feng, S. Lundmark, K. Meinke, F. Niu, M.A. Sindhu, P.Y.H. Wong: Case
Studies in Learning-based Testing, in Proc. ICTSS 2013

K. Meinke and M. Sindhu: LBTest: A Learning-based Testing Tool for Reactive
Systems in Proc. ISCT-2013

M. Fisher, An Introduction to Practical Formal Methods Using Temporal Logic,
Wiley-Blackwell, 2011

L
L BTest Tool

- LBTest implements learning-based testing for embedded
and reactive systems with (more or less) off-the-shelf

components.

- LBTest implements:
- Test Case Generation (ATCG)
- Test execution (online testing)
- Verdict construction (pass/fail/warning/exception)

- Achieves high state space coverage quite quickly.
- Uses probabilistic convergence, (PAC learning).

L
LBTest Architecture

Communication wrapper

System under Test

e.g. jar file €«
observed o
n
output I
Automaton n n=1,2, ...
—2>| Learning Algorithm >
— el Stochastic
equivalence
@ abstraction M, < cﬂecker
—>
NuSMV counterexample
—> Model Checker
PLTL Requirement TCG and Oracle +——— verdict v,
Formula Req

Technical & Process Advantages

- Well suited to agile development
- Model is always synchronised to actual code

- No false positives or false negatives due to wrong/
outdated models

- Avoid manual model construction and maintenance

Off-the-shelf Algorithms

Learners

L*Mealy

IKL (Incremental Kripke learner) (Meinke, Sindhu 2011)
(Kearn’s algorithm)

Model checker
NuSMV ... BDD and BMC/SAT methods

Equivalence checker
First / longest / shortest difference

Requirements Modeling

- Modeling reactive systems needs a time concept
- LBTest uses propositional linear temporal logic (PLTL)
- PLTL = "Boolean logic + time”

- Conventional model-based testing (conformance testing)
Is the next-only part of PLTL.

- Could interface LTL to visual requirements modeling
languages
- Statecharts (conventional MBT)
- Message Sequence Charts
- Sequence Diagrams
- Live sequence charts (Harel)

Linear Temporal Logic LTL (.smv syntax)

- Boolean variables

A, B, ., X, Y, .. MyVar,...
- Boolean operators

'(d), (¢ & @), (b |D), ($ >) ...
- Temporal (time) operators

F($) (sometime in the future ¢)

G (¢) (always in the future ¢)

(¢ U ¢) (¢ holds until ¢ holds)

X (¢) (next ¢ holds)

- Write X"(¢) for X(X(... X(¢))) (¢ holds in n steps)

Examples

Right now it is Wednesday
Wednesday
Tomorrow is Wednesday
X (Wednesday)
Thursday (always) immediately follows Wednesday
G(Wednesday -> X (Thursday))
Saturday (always) follows Wednesday
G(Wednesday -> F(Saturday))

Exercise: Define the sequence of days precisely, i.e. just one solution
Question: Are there any English statements you can’'t make in LTL?
Question: Can you express use cases or state machines in LTL?

Safety Properties

A safety property describes a situation that shall
not occur in any state.

“Something bad never happens’
To verify, all states must be checked exhaustively

Safety properties usually have the form
G!o

where ¢ defines the “bad thing” (invariant)

Counterexamples (test cases) are finite

Liveness Properties

A liveness property describes a behavior that must
eventually hold on specific execution paths

“‘Something good eventually happens”

Liveness properties often have the form
F(p) or G(¢ -> X"o) or G(¢ -> Fo)

where ¢ describes the “good” thing and ¢ is some event
trigger needed for it to occur.

Counterexamples are usually infinite (why?)
LBTest performs liveness testing!!

Approximate Models

Real-world SUTs are infinite state systems

LBTest constructs finite state approximations through finite
partition sets.

Example: h can be partitioned into

{xeR:x<0.0},{0.0},{xeR:x>0.0}

As an input partition we choose 3 elements
E.g. -100.0, 0.0, 100.0

As an output partition we map outputs to symbolic values
negative, zero, positive

Output partitioning is implemented in the wrapper
Gives a limited quantifier-free first-order extension to PLTL.

Verdict Construction (Oracle step)

- On-the-fly verdict construction
- Compares two behaviours:

(1) a predicted (bad) behaviour in model
(2) an observed behaviour in SUT

- Prediction == Observation -> Fail/\Warning
- Prediction != Observation -> Pass
- No Observation -> Exception/Timeout error

2. Recent Case Studies

- Does LBT actually work?

- Can we make a simple tool with off-the-shelf algorithms and
components?

- How does LBT scale to large real-world systems?

- Where are the bottlenecks?
- Learning?
- Model checking?
- Equivalence checking?
- SUT?

- Can temporal logic be used in real-life?
- Pedagogical examples — technology uptake

3. Brake-by-Wire (BBW) Case Study

A Case Study with Volvo
From ARTEMIS project MIBAT
Joint work with Volvo

BBW is a distributed system of 5 ECUs
4 ABS ECUs (1 per wheel)
1 central controller with brake/accelerator inputs

Controller calculates specific brake torque requests to
each wheel ABS in real-time

Floating point data types need partitioning

ABS:absRR

RRWhI_rpm

€

Pedal: brake

Pedal: accel

ABSTorg RR l

> GlobalBrakeController :

gbc

ABS:absRL

BBW Architecture

ABS:absFR

ABS:absFL

System variables (5 and 20 ms clocks)

25 floating point registers:

O0: driverBrake;

1. GlobalTorque;

2-5: RRWhI_rpm, RLWhI_rpm, FRWhI_rpm, FLWhI_rpm;

6-9: RRWHhI torq, RLWhI torq, FRWhI_torq, FLWhI torq;

10: Veh_Spd Est;

11-14: ABSTorq_RR, ABSTorq_RL, ABSTorq_FR, ABSTorqg_ FL;
15: Veh Spd Real,

16:. AccPedalPos;

17-20: estimated SlipRate of four wheels

21-24: real slip rate of four wheels.

Fourteen Black-box Requirements

REQ-4 If the brake pedal is pressed and the actual speed
of the vehicle is larger than 10 km/h and the slippage
sensor shows that the (front right) wheel is slipping, this
implies that the corresponding brake torque at the (front
right) wheel should be 0.

L
PLTL modeling

9 of 14 Volvo requirements could be modeled in PLTL

REQ-4 G(input = brake & motion = moving & slipRR = slip
-> torqueRR = zero)

Model #3
after 400 msec

biaaa

30;moving;zero;noSlip

Other Industrial Case Studies

Portfolio Compression Software (Finance)

A compression cycle has 4 stages:
Preparation
Sign up
Linking
Live execution

619,000 LoC (Python including large dependencies like Django).
100+ databases! Reset was expensive!

Tested authentication and authorization features.

Requirement 2: If Bank A is not logged in, and does log in,
then Bank A should become logged in.

Requirement 3: Cycle signup should be prohibited until a
bank adheres to the protocol.

Requirement 5: If bank A adheres to the protocol, then
cycle signup for bank A should always be allowed.

Requirement 5, was tested with two 7 hour testing
sessions. Both terminated with a “pass” verdict after about
86000 SUT executions and hypothesis sizes of up to 503
states. The log files were manually checked and contained
no errors.

Distributed Access Server (FAS)

Distributed, concurrent OO system developed by web
company that provides search and merchandising
services

Developed and evolved over 12 years. Its various
modules have been tested with automated and manual
techniques.

SUT was implementation of the SyncClient, 6400 LoC
(Java), 44 classes and 2 interfaces

Tested interaction between a SyncClient and a ClientJob

11 user requirements could be expressed in LTL

Requirement 8: If it is not in the End state then every
schedule that the SyncClient possesses will eventually be

executed as a replication job.

Requirement 9: The SyncClient cannot modify its
underlying file system (files =readonly) unlessit is in state

WorkOnReplicate .

All requirements passed except #8 and #9.
#9 was a requirement error (U replaced by W)
#8 was a true negative.

Some Current Research

- Software hardware co-testing with virtualised hardware
- Joint with Scania and Hojat Khosrowjerdi
- Motivated by ISO 26262 standard

- Distributed systems fault injection from LBTest
- Joint with Tri-Optima and Peter Nycander

- Testing avionics mode systems
- Joint with SAAB Aerospace and Sebastian Stenlund

Software/hardware co-testing for
distributed systems (joint with Scania)

LBTest

I | I I

CAN bus i CAN bus i

Conclusions

LBTest found errors in all 3 industrial case studies
Worked across a range of industrial domains

Repeating these experiments today leads to much better
performance. Not yet reached theoretical limits.

More efficient learning / model checking
Parallel testing
Virtualised Environments

L
Configuration File (Server side ADTs)

output_types = [speed, motion, torqueRR, slipRR |;

output values = { under1:speed, 1: speed, 10:speed,
20:speed, 30:speed, 40:speed, 50:speed, 60:speed,
70:speed, 80:speed, 90:speed, 100:speed, 110:speed,
over120:speed,

still: motion, moving: motion,

zero: wheelRotateRR, nonZero: wheelRotateRR,
zero: torqueRR, nonZero: torqueRR,

slip: slipRR, noSlip: slipRR };

inputs = { a=acc, b=brake, i=idle };

L
SUT Wrapper code (client side)

if(inChar =="'a’) { // full accelerate
register[0] = 0.0; // brake pedal
register[16] = 100.0; // gas pedal

} else if (inChar =="b’){ // full brake
register[0] = 100.0;
register[16] = 0.0;

}else if (inChar==""){ //idle
register[0] = 0.0;
register[16] = 0.0;

SUT Wrapper code (client side)

if (Veh_Spd_Real >10.0) { dOut[1] = "moving”; }
else { dOut[1] = "still”’; }

if (ABSTorq_RR > 0.0) { dOut[2] = "nonZero”; }
else { dOut[2] = "zero”; }

if (slipRateRR > 0.2) { dOut[3] = "slip”’; }
else { dOut[3] = "noSlip”’; }

if (120.0 <= Veh_Spd_Real) dOut[0] = "over120";

