
LEARNING-BASED TESTING:

AN INTRODUCTION TO LBTEST

 Karl Meinke, CSC School, KTH Stockholm

0. Overview of Talk
1.  Introduction to LBTest tool
2.  Automotive Case Study: Brake-by-Wire (Volvo)
3.  Other case studies

•  portfolio compression service (Tri-Optima)
•  e-commerce access server (SDL)

4.  Some Current Research
5.  Conclusions

Based on:
L. Feng, S. Lundmark, K. Meinke, F. Niu, M.A. Sindhu, P.Y.H. Wong: Case
Studies in Learning-based Testing, in Proc. ICTSS 2013
K. Meinke and M. Sindhu: LBTest: A Learning-based Testing Tool for Reactive
Systems in Proc. ISCT-2013
M. Fisher, An Introduction to Practical Formal Methods Using Temporal Logic,
Wiley-Blackwell, 2011

LBTest Tool
•  LBTest implements learning-based testing for embedded

and reactive systems with (more or less) off-the-shelf
components.

•  LBTest implements:
•  Test Case Generation (ATCG)
•  Test execution (online testing)
•  Verdict construction (pass/fail/warning/exception)

• Achieves high state space coverage quite quickly.
• Uses probabilistic convergence, (PAC learning).

LBTest Architecture

Automaton
Learning Algorithm

NuSMV
Model Checker

model
abstraction Mn

observed
output

counterexample

in

on

n = 1, 2, …

System under Test
e.g. jar file

Communication wrapper

TCG and Oracle PLTL Requirement
Formula Req

Stochastic
equivalence
checker

verdict vn

Technical & Process Advantages
• Well suited to agile development
• Model is always synchronised to actual code
• No false positives or false negatives due to wrong/

outdated models
• Avoid manual model construction and maintenance

Off-the-shelf Algorithms
•  Learners
•  L*Mealy
•  IKL (Incremental Kripke learner) (Meinke, Sindhu 2011)
•  (Kearn’s algorithm)

• Model checker
• NuSMV … BDD and BMC/SAT methods

• Equivalence checker
•  First / longest / shortest difference

Requirements Modeling
• Modeling reactive systems needs a time concept
•  LBTest uses propositional linear temporal logic (PLTL)
• PLTL = “Boolean logic + time”
• Conventional model-based testing (conformance testing)

is the next-only part of PLTL.

• Could interface LTL to visual requirements modeling
languages
•  Statecharts (conventional MBT)
•  Message Sequence Charts
•  Sequence Diagrams
•  Live sequence charts (Harel)

Linear Temporal Logic LTL (.smv syntax)
• Boolean variables

 A, B, …, X, Y, .. MyVar, ...
• Boolean operators

 !(ϕ), (ϕ & φ), (ϕ | ϕ) , (ϕ -> ϕ) …
•  Temporal (time) operators

 F(ϕ) (sometime in the future ϕ)
 G(ϕ) (always in the future ϕ)
 (ϕ U φ) (φ holds until ϕ holds)
 X(ϕ) (next ϕ holds)

• Write Xn(ϕ) for X(X(… X(ϕ))) (ϕ holds in n steps)

Examples
Right now it is Wednesday

 Wednesday
Tomorrow is Wednesday

 X (Wednesday)
Thursday (always) immediately follows Wednesday

 G(Wednesday -> X (Thursday))
Saturday (always) follows Wednesday

 G(Wednesday -> F(Saturday))

•  Exercise: Define the sequence of days precisely, i.e. just one solution
•  Question: Are there any English statements you can’t make in LTL?
•  Question: Can you express use cases or state machines in LTL?

Safety Properties
• A safety property describes a situation that shall
not occur in any state.

• “Something bad never happens”
• To verify, all states must be checked exhaustively

• Safety properties usually have the form

 G!φ
where φ defines the “bad thing” (invariant)

• Counterexamples (test cases) are finite

Liveness Properties
• A liveness property describes a behavior that must

eventually hold on specific execution paths
•  “Something good eventually happens”

•  Liveness properties often have the form
F(φ) or G(ϕ -> Xnφ) or G(ϕ -> Fφ)

where φ describes the “good” thing and ϕ is some event
trigger needed for it to occur.

• Counterexamples are usually infinite (why?)
•  LBTest performs liveness testing!!

Approximate Models
•  Real-world SUTs are infinite state systems
•  LBTest constructs finite state approximations through finite

partition sets.
•  Example: ℜ can be partitioned into
•  { x ∈ ℜ : x < 0.0 }, {0.0}, {x ∈ ℜ : x > 0.0 }
•  As an input partition we choose 3 elements

•  E.g. -100.0, 0.0, 100.0
•  As an output partition we map outputs to symbolic values

•  negative, zero, positive

•  Output partitioning is implemented in the wrapper
•  Gives a limited quantifier-free first-order extension to PLTL.

Verdict Construction (Oracle step)
• On-the-fly verdict construction
• Compares two behaviours:

 (1) a predicted (bad) behaviour in model
 (2) an observed behaviour in SUT

• Prediction == Observation -> Fail/Warning
• Prediction != Observation -> Pass
• No Observation -> Exception/Timeout error

2. Recent Case Studies
•  Does LBT actually work?

•  Can we make a simple tool with off-the-shelf algorithms and
components?

•  How does LBT scale to large real-world systems?
•  Where are the bottlenecks?

•  Learning?
•  Model checking?
•  Equivalence checking?
•  SUT?

•  Can temporal logic be used in real-life?
•  Pedagogical examples – technology uptake

3. Brake-by-Wire (BBW) Case Study
• A Case Study with Volvo
•  From ARTEMIS project MBAT
•  Joint work with Volvo

• BBW is a distributed system of 5 ECUs
•  4 ABS ECUs (1 per wheel)
•  1 central controller with brake/accelerator inputs
• Controller calculates specific brake torque requests to

each wheel ABS in real-time
•  Floating point data types need partitioning

ABS:absRR
RRWhl_rpm

ABSTorq_RR

ABS:absRL ABS:absFL

ABS:absFR

GlobalBrakeController :
gbc

Pedal: brake

Pedal: accel

BBW Architecture

System variables (5 and 20 ms clocks)
25 floating point registers:

0: driverBrake;
1: GlobalTorque;
2-5: RRWhl_rpm, RLWhl_rpm, FRWhl_rpm, FLWhl_rpm;
6-9: RRWhl_torq, RLWhl_torq, FRWhl_torq, FLWhl_torq;
10: Veh_Spd_Est;
11-14: ABSTorq_RR, ABSTorq_RL, ABSTorq_FR, ABSTorq_FL;
15: Veh_Spd_Real;
16: AccPedalPos;
17-20: estimated SlipRate of four wheels
21-24: real slip rate of four wheels.

Fourteen Black-box Requirements
REQ-4 If the brake pedal is pressed and the actual speed
of the vehicle is larger than 10 km/h and the slippage
sensor shows that the (front right) wheel is slipping, this
implies that the corresponding brake torque at the (front
right) wheel should be 0.

PLTL modeling
9 of 14 Volvo requirements could be modeled in PLTL

REQ-4 G(input = brake & motion = moving & slipRR = slip
-> torqueRR = zero)

I

under1;still;zero;noSlip
a i

b

under1;still;zero;noSlip

b

biaabi

1;still;zero;noSlip
b a i

biaa

20;moving;zero;noSlip
i

biaab

1;still;nonZero;slip

b

biaaa

30;moving;zero;noSlip

a

i

bb

under1;still;nonZero;noSlip

b

bia

10;moving;zero;noSlip

a

b a i

b

a
bi

under1;still;zero;noSlip

i

b a i

a

b

i

i

b

a

biaaa

30;moving;zero;noSlip

Model #3
after 400 msec

Other Industrial Case Studies
Portfolio Compression Software (Finance)

A compression cycle has 4 stages:

 Preparation
 Sign up
 Linking
 Live execution

619,000 LoC (Python including large dependencies like Django).
100+ databases! Reset was expensive!

Tested authentication and authorization features.

Requirement 2: If Bank A is not logged in, and does log in,
then Bank A should become logged in.

Requirement 3: Cycle signup should be prohibited until a
bank adheres to the protocol.

Requirement 5: If bank A adheres to the protocol, then
cycle signup for bank A should always be allowed.

Requirement 5, was tested with two 7 hour testing
sessions. Both terminated with a “pass” verdict after about
86000 SUT executions and hypothesis sizes of up to 503
states. The log files were manually checked and contained
no errors.

 Distributed Access Server (FAS)

• Distributed, concurrent OO system developed by web
company that provides search and merchandising
services

• Developed and evolved over 12 years. Its various
modules have been tested with automated and manual
techniques.

• SUT was implementation of the SyncClient, 6400 LoC
(Java), 44 classes and 2 interfaces

•  Tested interaction between a SyncClient and a ClientJob

•  11 user requirements could be expressed in LTL

• Requirement 8: If it is not in the End state then every
schedule that the SyncClient possesses will eventually be
executed as a replication job.

• Requirement 9: The SyncClient cannot modify its
underlying file system (files =readonly) unless it is in state
WorkOnReplicate .

• All requirements passed except #8 and #9.
•  #9 was a requirement error (U replaced by W)
•  #8 was a true negative.

Some Current Research
• Software hardware co-testing with virtualised hardware
•  Joint with Scania and Hojat Khosrowjerdi
• Motivated by ISO 26262 standard

• Distributed systems fault injection from LBTest
•  Joint with Tri-Optima and Peter Nycander

•  Testing avionics mode systems
•  Joint with SAAB Aerospace and Sebastian Stenlund

Software/hardware co-testing for
distributed systems (joint with Scania)

SW

HW

SW SW

HW HW

LBTest

Learner

Learner

Learner

Learner

Learner

Learner

CAN bus CAN bus

Conclusions
•  LBTest found errors in all 3 industrial case studies
• Worked across a range of industrial domains

• Repeating these experiments today leads to much better

performance. Not yet reached theoretical limits.

•  Future research
• More efficient learning / model checking
• Parallel testing
• Virtualised Environments

Configuration File (Server side ADTs)
output_types = [speed, motion, torqueRR, slipRR];

output_values = { under1:speed, 1: speed, 10:speed,
20:speed, 30:speed, 40:speed, 50:speed, 60:speed,
70:speed, 80:speed, 90:speed, 100:speed, 110:speed,
over120:speed,
still: motion, moving: motion,
zero: wheelRotateRR, nonZero: wheelRotateRR,
zero: torqueRR, nonZero: torqueRR,
slip: slipRR, noSlip: slipRR };

inputs = { a=acc, b=brake, i=idle };

SUT Wrapper code (client side)
if(inChar == 'a’) { // full accelerate

 register[0] = 0.0; // brake pedal
 register[16] = 100.0; // gas pedal

} else if (inChar == ’b’){ // full brake

 register[0] = 100.0;
 register[16] = 0.0;

} else if (inChar == 'i’) { // idle

 register[0] = 0.0;
 register[16] = 0.0;

}

SUT Wrapper code (client side)
if (Veh_Spd_Real > 10.0) { dOut[1] = "moving”; }
else { dOut[1] = "still”; }

if (ABSTorq_RR > 0.0) { dOut[2] = "nonZero”; }
 else { dOut[2] = "zero”; }

if (slipRateRR > 0.2) { dOut[3] = "slip”; }
else { dOut[3] = "noSlip”; }

if (120.0 <= Veh_Spd_Real) dOut[0] = "over120";

