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LBTest Tool 
•  LBTest implements learning-based testing for embedded 

and reactive systems with (more or less) off-the-shelf 
components. 

•  LBTest implements: 
•  Test Case Generation (ATCG) 
•  Test execution (online testing) 
•  Verdict construction (pass/fail/warning/exception) 

• Achieves high state space coverage quite quickly.  
• Uses probabilistic convergence, (PAC learning). 
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Technical & Process Advantages 
• Well suited to agile development 
• Model is always synchronised to actual code 
• No false positives or false negatives due to wrong/

outdated models 
• Avoid manual model construction and maintenance 



Off-the-shelf  Algorithms 
•  Learners 
•  L*Mealy 
•  IKL (Incremental Kripke learner) (Meinke, Sindhu 2011) 
•  (Kearn’s algorithm) 

• Model checker 
• NuSMV … BDD and BMC/SAT methods 

• Equivalence checker 
•  First / longest / shortest difference 
 



Requirements Modeling 
• Modeling reactive systems needs a time concept 
•  LBTest uses propositional linear temporal logic (PLTL) 
• PLTL = “Boolean logic + time” 
• Conventional model-based testing (conformance testing) 

is the next-only part of PLTL. 

• Could interface LTL to visual requirements modeling 
languages 
•  Statecharts (conventional MBT) 
•  Message Sequence Charts 
•  Sequence Diagrams 
•  Live sequence charts (Harel) 



Linear Temporal Logic LTL  (.smv syntax) 
• Boolean variables  

 A, B, …, X, Y, .. MyVar, ... 
• Boolean operators  

 !(ϕ), (ϕ & φ), (ϕ | ϕ) , (ϕ ->  ϕ)  … 
•  Temporal (time) operators 

 F(ϕ) (sometime in the future ϕ) 
 G(ϕ) (always in the future ϕ)  
 (ϕ U φ) (φ holds until ϕ holds)  
 X(ϕ) (next ϕ holds) 

 
• Write Xn(ϕ) for X(X( … X(ϕ))) (ϕ holds in n steps)  



Examples 
Right now it is Wednesday 

 Wednesday 
Tomorrow is Wednesday 

 X (Wednesday) 
Thursday (always) immediately follows Wednesday 

 G( Wednesday -> X (Thursday) ) 
Saturday (always) follows Wednesday 

 G( Wednesday -> F( Saturday ) ) 
 
•  Exercise: Define the sequence of days precisely, i.e. just one solution 
•  Question: Are there any English statements you can’t make in LTL? 
•  Question: Can you express use cases or state machines in LTL? 



Safety  Properties 
• A safety property describes a situation that shall 
not occur in any state. 

• “Something bad never happens” 
• To verify, all states must be checked exhaustively 
 
• Safety properties usually have the form  

  G!φ  
where φ defines the “bad thing” (invariant) 
 
• Counterexamples (test cases) are finite 
 



Liveness Properties 
• A liveness property describes a behavior that must 

eventually hold on specific execution paths  
•  “Something good eventually happens” 

•  Liveness properties often have the form 
F(φ) or  G(ϕ -> Xnφ ) or  G(ϕ -> Fφ ) 

  

where φ describes the “good” thing and ϕ is some event 
trigger needed for it to occur. 
 
• Counterexamples are usually infinite (why?) 
•  LBTest performs liveness testing!! 



Approximate Models 
•  Real-world SUTs are infinite state systems 
•  LBTest constructs finite state approximations through finite 

partition sets. 
•  Example: ℜ  can be partitioned into 
•  { x ∈ ℜ : x < 0.0 }, {0.0}, {x ∈ ℜ : x > 0.0 } 
•  As an input partition we choose 3 elements 

•  E.g. -100.0, 0.0, 100.0 
•  As an output partition we map outputs to symbolic values 

•  negative, zero, positive 
 
•  Output partitioning is implemented in the wrapper 
•  Gives a limited quantifier-free first-order extension to PLTL. 

 



Verdict Construction (Oracle step) 
• On-the-fly verdict construction  
• Compares two behaviours: 

 (1) a predicted (bad) behaviour in model 
 (2) an observed behaviour in SUT 

• Prediction == Observation -> Fail/Warning 
• Prediction != Observation -> Pass 
• No Observation -> Exception/Timeout error 



2. Recent Case Studies 
•  Does LBT actually work?  

•  Can we make a simple tool with off-the-shelf algorithms and 
components? 
 

•  How does LBT scale to large real-world systems? 
•  Where are the bottlenecks? 

•  Learning? 
•  Model checking? 
•  Equivalence checking? 
•  SUT? 

•  Can temporal logic be used in real-life? 
•  Pedagogical examples – technology uptake 



3. Brake-by-Wire (BBW) Case Study 
• A Case Study with Volvo  
•  From ARTEMIS project MBAT 
•  Joint work with Volvo  

• BBW is a distributed system of 5 ECUs 
•  4 ABS ECUs (1 per wheel) 
•  1 central controller with brake/accelerator inputs 
• Controller calculates specific brake torque requests to 

each wheel ABS in real-time 
•  Floating point data types need partitioning 



ABS:absRR 
RRWhl_rpm 

ABSTorq_RR 

ABS:absRL ABS:absFL 

ABS:absFR 

GlobalBrakeController :  
gbc 

Pedal: brake 

Pedal: accel 

BBW Architecture  



System variables (5 and 20 ms clocks) 
25 floating point registers: 
 
0:     driverBrake;  
1:     GlobalTorque; 
2-5:   RRWhl_rpm, RLWhl_rpm, FRWhl_rpm, FLWhl_rpm; 
6-9:   RRWhl_torq, RLWhl_torq, FRWhl_torq, FLWhl_torq; 
10:    Veh_Spd_Est; 
11-14: ABSTorq_RR, ABSTorq_RL, ABSTorq_FR, ABSTorq_FL; 
15:    Veh_Spd_Real; 
16:    AccPedalPos; 
17-20: estimated SlipRate of four wheels 
21-24: real slip rate of four wheels. 



Fourteen Black-box Requirements 
REQ-4 If the brake pedal is pressed and the actual speed 
of the vehicle is larger than 10 km/h and the slippage 
sensor shows that the (front right) wheel is slipping, this 
implies that the corresponding brake torque at the (front 
right) wheel should be 0. 



PLTL modeling 
9 of 14 Volvo requirements could be modeled in PLTL 
 
 
REQ-4  G( input = brake & motion = moving & slipRR = slip 
-> torqueRR = zero ) 
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Other Industrial Case Studies 
Portfolio Compression Software (Finance) 
 
A compression cycle has 4 stages: 

 Preparation 
 Sign up 
 Linking 
 Live execution 

 
619,000 LoC (Python including large dependencies like Django). 
100+ databases! Reset was expensive! 
 
Tested authentication and authorization features. 



Requirement 2: If Bank A is not logged in, and does log in, 
then Bank A should become logged in. 
 
Requirement 3: Cycle signup should be prohibited until a 
bank adheres to the protocol. 
 
Requirement 5: If bank A adheres to the protocol, then 
cycle signup for bank A should always be allowed. 
 
Requirement 5, was tested with two 7 hour testing 
sessions. Both terminated with a “pass” verdict after about 
86000 SUT executions and hypothesis sizes of up to 503 
states. The log files were manually checked and contained 
no errors. 



 Distributed Access Server (FAS) 

• Distributed, concurrent OO system developed by web 
company that provides search and merchandising 
services 

• Developed and evolved over 12 years. Its various 
modules have been tested with automated and manual 
techniques. 

• SUT was implementation of the SyncClient, 6400 LoC 
(Java), 44 classes and 2 interfaces 

•  Tested interaction between a SyncClient and a ClientJob 



•  11 user requirements could be expressed in LTL 

• Requirement 8: If it is not in the End state then every 
schedule that the SyncClient possesses will eventually be 
executed as a replication job. 

• Requirement 9: The SyncClient cannot modify its 
underlying file system (files =readonly) unless it is in state 
WorkOnReplicate . 

• All requirements passed except #8 and #9.  
•  #9 was a requirement error (U replaced by W) 
•  #8 was a true negative. 



Some Current Research 
• Software hardware co-testing with virtualised hardware 
•  Joint with Scania and Hojat Khosrowjerdi 
• Motivated by ISO 26262 standard 

• Distributed systems fault injection from LBTest  
•  Joint with Tri-Optima and Peter Nycander 

•  Testing avionics mode systems  
•  Joint with SAAB Aerospace and Sebastian Stenlund 



Software/hardware co-testing for 
distributed systems (joint with Scania) 
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Conclusions 
•  LBTest found errors in all 3 industrial case studies 
• Worked across a range of industrial domains 
 
• Repeating these experiments today leads to much better 

performance. Not yet reached theoretical limits. 

•  Future research 
• More efficient learning / model checking  
• Parallel testing 
• Virtualised Environments 



Configuration File (Server side ADTs) 
output_types = [ speed, motion, torqueRR, slipRR ]; 
 
output_values = { under1:speed, 1: speed, 10:speed, 
20:speed, 30:speed, 40:speed, 50:speed, 60:speed, 
70:speed, 80:speed, 90:speed, 100:speed, 110:speed, 
over120:speed,  
still: motion, moving: motion,  
zero: wheelRotateRR, nonZero: wheelRotateRR, 
zero: torqueRR, nonZero: torqueRR, 
slip: slipRR, noSlip: slipRR }; 
 
inputs = { a=acc, b=brake, i=idle }; 



SUT Wrapper code (client side) 
if( inChar == 'a’ ) {   // full accelerate 

 register[0] = 0.0;  // brake pedal    
 register[16] = 100.0;   // gas pedal  

 
} else if ( inChar == ’b’ ){  // full brake 

 register[0] = 100.0; 
 register[16] = 0.0; 

 
} else if ( inChar == 'i’ ) {   // idle 

 register[0]  = 0.0; 
 register[16] = 0.0; 

}  



SUT Wrapper code (client side) 
if ( Veh_Spd_Real > 10.0 ) { dOut[1] = "moving”; }  
else { dOut[1] = "still”; } 
 
if ( ABSTorq_RR > 0.0 ) { dOut[2] = "nonZero”; } 
 else { dOut[2] = "zero”; } 
 
if ( slipRateRR > 0.2 ) { dOut[3] = "slip”; }  
else { dOut[3] = "noSlip”; } 
 
if ( 120.0 <= Veh_Spd_Real ) dOut[0] = "over120"; 


