
Formal Reasoning about Non-Atomic JAVA CARD

Methods in Dynamic Logic

Wojciech Mostowski

Department of Computing Science, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

W.Mostowski@cs.ru.nl

Abstract. We present an extension to JAVA CARD Dynamic Logic, a
program logic for reasoning about JAVA CARD programs, to handle JAVA

CARD’s so-called non-atomic methods. Although JAVA CARD DL already
supports the atomic transaction mechanism of JAVA CARD, non-atomic
methods present an additional challenge: state updates triggered by such
a non-atomic method are not subjected to any transaction that may pos-
sibly be in progress. The semantics of a non-atomic method itself seems to
be simple and straightforward to formalise, however experimental stud-
ies showed that non-atomic methods affect the whole semantics of the
JAVA CARD transaction mechanism in a subtle way, in particular, it af-
fects the notion of a transaction roll-back. In this paper we show how
to adapt JAVA CARD DL to accommodate this newly discovered complex
transaction behaviour. The extension completes the formalisation of all
of JAVA CARD in Dynamic Logic.

1 Introduction

Overview. The work we present in this paper can be seen as a final step to com-
plete formalisation of JAVA CARD in Dynamic Logic [2]. JAVA CARD Dynamic
Logic (JAVA CARD DL) is a program logic specifically designed to reason about
sequential JAVA programs and, in particular, programs written in JAVA CARD, a
JAVA dialect used to program smart cards. JAVA CARD DL is implemented in the
KeY system [1], an integrated design and verification system for object-oriented
programs. In an earlier paper we presented an extension to JAVA CARD DL to
handle the JAVA CARD’s transaction mechanism [3]. The transaction mechanism
is a feature specific to JAVA CARD technology. In the context of the persistent
data stored in smart card’s memory, it allows to ensure that a given program
block is executed atomically (to completion or not at all), even when loss of
power occurs. The transaction mechanism is deeply embedded in the language
specification, i.e. transaction triggering methods in JAVA CARD are native, their
implementation cannot be expressed in terms of pure JAVA code. The support for
handling transactions in JAVA CARD DL is important for two reasons: to be able
to formally verify atomicity properties in the event of unexpected/premature
program termination, and to properly model program state updates caused by
transaction roll-back (i.e. undoing updates). Indeed, the extended logic allowed

c© Springer-Verlag

2 W. Mostowski

us to prove many interesting properties about real JAVA CARD programs with the
KeY system [7,15]. Although we have treated the transaction mechanism thor-
oughly in our extension to JAVA CARD DL, one particular detail was omitted,
namely, two specific non-atomic native methods provided by the JAVA CARD API.
The intuitive semantics of non-atomic methods seems to be straightforward—a
non-atomic method simply excludes the updates it performs from any transac-
tion that might be in progress. However, recent experimental studies [10] show
that the intended semantics of JAVA CARD transactions, in particular transaction
roll-back, and non-atomic methods is more complex than described in the offi-
cial JAVA CARD platform documentation [18]. In this paper we present further
extensions to JAVA CARD DL to accommodate the extended semantics of the
transaction mechanism.

Non-atomic methods are rarely used in JAVA CARD programming, but certain
security requirements actually necessitate the use of these methods. An often
quoted example concerns PIN try counters. Such a counter is decremented each
time a PIN code provided by the user is verified against the code stored on the
smart card and the card “shuts down” if too many incorrect guesses are done.
By calling the PIN verification routine inside a transaction and deliberately
aborting that transaction, the update to the try counter would be rolled back
together with all the other updates performed within the transaction. This would
be a major security breach, giving a malicious user an infinite number of tries
to check PIN validity (the try counter would never be decremented). To avoid
such situation a non-atomic method is used to exclude the try counter decrement
from the transaction mechanism. Thus, it is really important to be able to reason
about non-atomic JAVA CARD methods so that similar security properties can
be formally verified. We briefly discuss verification of such a property in Sect. 7.

Related Work. There exist numerous tools and formal systems to reason about
JAVA programs on the source code level. Just to name the most important ones:
ESC/JAVA2 [6] performs extended static checking of JAVA programs, the LOOP
tool [12] employs a Hoare-like logic encoded in higher-order logic (PVS) [11],
higher-order logic is also used to formalise a JAVA fragment in Isabelle [19] and
in the Krakatoa tool [13]. The Jive system [14] is based on an extended Hoare
style calculus, Jack [4] on weakest precondition calculus, and KIV on yet another
version of Dynamic Logic for JAVA CARD [17]. Despite the multiplicity of formal
systems designed for JAVA CARD and other “small” JAVA dialects, it seems that
(so far) only our framework can truly deal with all of JAVA CARD, including the
intricate details of the transaction mechanism. The only other work that inves-
tigated JAVA CARD transactions is [9], however the proposed formalism has not
been implemented in a tool. The same authors performed experimental studies
of the JAVA CARD transaction mechanism [10] that we refer to in this paper.

Structure of the Paper. Sect. 2 and 3 give an overview of the KeY system and
JAVA CARD DL, in Sect. 4 we describe the JAVA CARD transaction mechanism
and non-atomic JAVA CARD methods. Sect. 5 gives a high-level description of
how transactions are treated in JAVA CARD DL, then in Sect. 6 we extend this

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 3

description to cover non-atomic methods with a sample of actual calculus rules.
Finally, Sect. 7 discusses verification examples and Sect. 8 summarises the paper.

2 The KeY System

JAVA CARD DL has been designed to be the logical infrastructure of the KeY
prover. The KeY prover is the core verification component of the KeY sys-
tem1 [1]—a tool that enhances a commercial software engineering tool with
functionality for formal specification and deductive verification of object ori-
ented programs to be used in real-world software development. Accordingly, the
design principles for the software verification component of the KeY system are:

– The specification language should be usable by people who do not have years
of training in formal methods. The Object Constraint Language (OCL),
which is incorporated into current version of the Unified Modelling Lan-
guage (UML), is one specification language that can be used for formal
specification. The other language is JAVA Modelling Language (JML), which
has recently become very popular among formal JAVA programmers.

– The programs that are verified should be written in a real object-oriented
programming language. The KeY system supports most of sequential JAVA,
and in particular the whole JAVA CARD standard. Since smart card applica-
tions are often safety and security critical, JAVA CARD seems to be a perfect
target for formal verification.

Our recent research shows that the KeY system performs its job very well—
verification of advanced security properties for industrial JAVA CARD applets of
non-trivial size is highly feasible and time-wise very efficient [7,15]. In the KeY
verification process the OCL or JML specifications are automatically translated
into JAVA CARD DL proof obligations, whose validity can then be (in most part
automatically) established with the KeY prover. Apart from OCL and JML,
JAVA CARD DL can be used explicitly for writing specifications. In the following
we briefly describe JAVA CARD DL.

3 JAVA CARD Dynamic Logic

Dynamic Logic [8] can be seen as an extension of Hoare logic. It is a first-
order modal logic with modalities [p] and 〈p〉 for every program p (p can be any
sequence of JAVA CARD statements). In the semantics of these modalities a state
w is accessible from the current state, if the program p terminates in w when
started in the current state. The formula [p]φ expresses that φ holds in all final
states of p, and 〈p〉φ expresses that φ holds in some final state of p. In versions
of DL with a non-deterministic programming language there can be several such
final states. Here, since JAVA CARD programs are deterministic, there is exactly
one such state (if p terminates) or there is no such state (if p does not terminate).
1 http://www.key-project.org

4 W. Mostowski

The formula φ → 〈p〉ψ is valid if, for every state s satisfying precondition φ, a
run of the program p starting in s terminates, and in the terminating state
the postcondition ψ holds (total correctness). The formula φ → [p]ψ expresses
the same, except that termination of p is not required, i.e. ψ must only hold if
p terminates (partial correctness).

Syntax of JAVA CARD DL As said above, a dynamic logic is constructed by
extending some non-dynamic logic with modal operators 〈·〉 and [·]. The non-
dynamic base logic of our DL is a typed first-order predicate logic. We do not
describe in detail what the types of our logic are (basically they are identical with
the JAVA types) nor how exactly terms and formulae are built. The definitions
can be found in [2]. Note that terms (which we often call “logical terms” in the
following) are different from JAVA expressions—they never have side effects.

In order to reduce the complexity of the programs occurring in DL formulae,
we introduce the notion of a program context. The context consists of API and
any additional classes/interfaces used in the program. Syntax and semantics of
DL formulae are then defined w.r.t. a given context; the programs in DL formulae
are simply blocks of executable JAVA code (method bodies). Programs occurring
in DL formulae can also contain special constructs not available in plain JAVA

CARD, whose purpose is, among other things, the handling of method calls and
the transaction mechanism. For transactions, e.g. JAVA CARD DL recognises
special “low-level” transaction statements bT, cT, and aT, which are triggered
by the “high-level” API transaction methods beginTransaction, etc.

Semantics of JAVA CARD DL The semantics of a program p is a state tran-
sition, i.e. it assigns to each state s the set of all states that can be reached
by running p starting in s. Since JAVA CARD is deterministic, that set either
contains exactly one state (if p terminates normally) or is empty (if p does not
terminate or terminates abruptly). For formulae φ that do not contain programs,
the notion of φ being satisfied by a state is defined as usual in first-order logic.
A formula 〈p〉φ is satisfied by a state s if the program p, when started in s,
terminates normally in a state s′ in which φ is satisfied.

As mentioned above, we consider programs that terminate abruptly to be
non-terminating. Thus, e.g. 〈throw x;〉φ is unsatisfiable for all φ. Nevertheless,
it is possible to express and (if true) prove that a program p terminates abruptly
by a simple program transformation. For example, the formula

exc = null → 〈try{p}catch(Exception e){exc = e;}〉(¬(exc = null) ∧ φ)

is true in a state s if and only if the program p, when started in s, terminates
abruptly by throwing an exception and condition φ is satisfied. The try-catch
block around program p ensures that the program fragment inside the modality
always terminates in a non-abrupt fashion. The postcondition requires p to throw
an exception (as otherwise no object is bound to exc) and formula φ can be
established in the abrupt termination state (in fact, this is how JML signals
clauses are represented in JAVA CARD DL).

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 5

Sequents are notated following the scheme φ1, . . . , φm ` ψ1, . . . , ψn which
has the same semantics as the formula (φ1 ∧ . . . ∧ φm) → (ψ1 ∨ . . . ∨ ψn).

Strong Invariants On top of the notion of total (resp. partial) correctness stip-
ulated by the 〈·〉 (resp. [·]) modality, JAVA CARD DL also allows expressing strong
invariant properties. A strong invariant specifies that a certain property should
be maintained throughout the execution of the program (in all the intermediate
computation states), which in JAVA CARD DL is expressed with the through-
out modality [[·]]. This allows one to prove that a given property is preserved
even when a premature termination (e.g. card tear) of the program occurs. Such
properties were the motivation to include support for the transaction mechanism
in JAVA CARD DL in the first place [3]. The semantics of the [[·]] modality relies
heavily on the notion of atomicity in JAVA CARD, which is affected by non-atomic
methods. Because of this, small subtleties are introduced to the formal seman-
tics of [[·]] and a few extra calculus rules are needed. However, in principle, the
formalisation for the [[·]] (as well as [·]) modality in the context of non-atomic
methods does not differ substantially from the formalisation of 〈·〉, thus, we are
not going to discuss the rules for [[·]]. We stress though, that we did implement
necessary rules for [[·]] and tested them on relevant examples.

State Updates We allow updates of the form {x := t} resp. {o.a := t} to
be attached to terms and formulae, where x is a program variable, o is a term
denoting an object with attribute a, and t is a term. The intuitive meaning of
an update is that the term or formula that it is attached to is to be evaluated
after changing the state accordingly, i.e. {x := t}φ has the same semantics as
〈x = t;〉φ.

Rules of the Sequent Calculus Here we present two sample rules to give the
reader intuition of how the JAVA CARD DL sequent calculus works.

Notation. The rules of our calculus operate on the first active statement p of a
program π pω. The non-active prefix π consists of, e.g. an arbitrary sequence of
opening braces “{”, labels, beginnings “try{” of try-catch blocks. The prefix
is needed to keep track of the blocks that the (first) active command is part
of, such that the abruptly terminating statements throw, return, break, and
continue can be handled appropriately.2 The postfix ω denotes the “rest” of the
program, i.e. everything except the non-active prefix and the part of the program
the rule operates on. For example, if a rule is applied to the following JAVA block

2 In DL versions for simple artificial programming languages, where no prefixes are
needed, any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ with a sequential
composition rule. In our calculus, splitting of 〈πpqω〉φ into 〈πp〉〈qω〉φ is not possible
(unless the prefix π is empty) because πp is not a valid program; and the formula
〈πpω〉〈πqω〉φ cannot be used either because its semantics is in general different from
that of 〈πpqω〉φ.

6 W. Mostowski

operating on its first active command i=0; then the non-active prefix π and the
“rest” ω are the marked parts of the block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; }catch(Exception e){ k=0; }}︸ ︷︷ ︸
ω

In the following rule schemata, U stands for an arbitrary list of updates, U{u}
for an update u appended to U , and Uφ for φ evaluated by applying updates
in U .

The Rule for if. As the first simple example, we present the rule for the if
statement:

Γ, U(b = TRUE) ` U〈π pω〉φ Γ, U(b = FALSE) ` U〈π q ω〉φ
Γ ` U〈π if(b) p else q ω〉φ (R1)

The rule has two premises, which correspond to the two cases of the if statement.
The semantics of this rule is that, if the two premises hold in a state, then the
conclusion is true in that state. In particular, if the two premises are valid,
then the conclusion is valid. In practice, rules are applied from bottom to top:
from the old proof obligation new proof obligations are derived. As the if rule
demonstrates, applying a rule from bottom to top corresponds to a symbolic
execution of the program to be verified. For every JAVA programming construct
there is such a symbolic execution rule, later we explain how transactions are
handled rather in terms of symbolic execution, than by discussing all of the
relevant calculus rules.

The Assignment Rule and Handling State Updates. The assignment rule:

Γ ` U{loc := expr}〈π ω〉φ
Γ ` U〈π loc = expr;ω〉φ (R2)

adds the assignment to the list of updates U . Of course, this does not solve
the problem of computing the effect of an assignment, which is particularly
complicated in JAVA because of aliasing. This problem is postponed and solved
by rules for simplifying updates that are attached to formulae whenever possible
(without branching the proof). The assignment rule can only be used if the
expression expr is a logical term. Otherwise, other rules have to be applied first
to evaluate expr (as that evaluation may have side effects). For example, these
rules replace the formula 〈x = i++;〉φ with 〈x = i; i = i + 1;〉φ.

4 JAVA CARD Transaction Mechanism

The memory model of JAVA CARD [5,18] differs slightly from JAVA’s model. In
smart cards there are two kinds of writable memory: persistent memory (EEP-
ROM), which holds its contents between card sessions, and transient memory
(RAM), whose contents disappear when power loss occurs, in particular, when

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 7

the card is removed from the card reader (card tear). Thus every memory el-
ement in JAVA CARD (variable or object field) is either persistent or transient.
Based on the JAVA CARD language specification the following rules can be given:

– All objects (including the reference to the currently running applet, this,
and arrays) are created in persistent memory. Thus, in JAVA CARD all as-
signments like o.attr = 2, this.a = 3, and arr[i] = 4 have permanent
character, i.e. the assigned values will be kept after the card loses power.

– A programmer can create an array with transient elements by calling a cer-
tain method from the JAVA CARD API (e.g. JCSystem.makeTransientByte-
Array), but currently there is no possibility to make objects (fields) other
than array elements transient.

– All local variables are transient.

The distinction between persistent and transient objects is very important since
these two types of objects are treated in a different way by JAVA CARD’s trans-
action mechanism. The following are the JAVA CARD API calls for transactions:

– JCSystem.beginTransaction() begins an atomic transaction. From this
point on, all assignments to fields of persistent objects are executed condi-
tionally, while assignments to transient variables or transient array elements
are executed unconditionally.3

– JCSystem.commitTransaction() commits the transaction. All conditional
assignments are committed (in one atomic step).

– JCSystem.abortTransaction() aborts the transaction. All the conditional
assignments are rolled back to the state in which the transaction started (at
least that is what [18] suggests, we explain what really happens shortly).
Assignments to transient data remain unchanged (as if there had not been
a transaction in progress).

Considering the persistent objects, the whole program block inside the trans-
action is seen by the outside world as if it were executed in one atomic step,
completely (upon commit), or nor at all (upon abort). A transaction can be
aborted explicitly by the programmer, but also implicitly by the JAVA CARD

Runtime Environment, when a transaction cannot be completed due to lack
of resources or other unexpected program termination (e.g. card tear). In the
first case, the JAVA CARD program continues its execution with the assignments
performed inside the transaction rolled back, in the second case the program is
terminated immediately and updates are rolled back during transaction recovery
process next time the JAVA CARD applet is initialised. The possibility of an ex-
plicit transaction abort has important consequences for the design of the logic to

3 Terms “conditional and unconditional assignments” that are used in the official JAVA

CARD documentation may be a little bit misleading in the context of this work. For
our purposes, unconditional assignment should be interpreted as “irreversible” or
“immediately permanent”, while conditional assignments should be interpreted as
“assignments made on copies”, so that they can be reverted.

8 W. Mostowski

handle transactions; in the logic aborting a transaction can be seen as undoing
assignment and needs appropriate handling.

Transactions do not have to be nested properly with other program con-
structs, e.g. a transaction can be started within one method and committed
within another method. However, transactions must be nested properly with
each other. In the current version of JAVA CARD (2.2.2) the nesting depth of
transactions is restricted to 1—only one transaction can be active at a time.

On top of that, JAVA CARD API provides the programmer with two native
non-atomic methods: arrayCopyNonAtomic and arrayFillNonAtomic from the
Util class. In [10], based on extensive experiments performed with JAVA CARD

devices, the behaviour of the two methods is thoroughly analysed. Here we only
present the highlights that motivated our work.

Methods arrayCopyNonAtomic and arrayFillNonAtomic copy resp. reset
an array, bypassing any transaction that might be in progress, i.e. any changes
made to the array will not be rolled-back. We have already motivated the need
for exclusion of certain persistent memory locations from the transaction mech-
anism with the PIN try counter example in the introduction.4 In the current
version, JAVA CARD only allows such non-atomic updates for elements of byte
arrays, and hence there are only two API methods to take care of non-atomic
updates. The consequence for our logic is the following. Apart from commit-
ting or aborting, a transaction can also be suspended to perform unconditional
updates to persistent array elements and later resumed to continue updating
persistent data conditionally, following the rules of the transaction mechanism
again. With the notion of transaction suspension it is also possible to incorporate
other non-atomic methods that may appear in future versions of JAVA CARD.

This, however, is not all. The experiments in [10] show that the notion of
transaction roll-back is under-specified in the official JAVA CARD documenta-
tion [18].5 Consider two short pieces of JAVA CARD code in Fig. 1. Persistent
array a stores elements of type byte and the arrayFillNonAtomic method has
the following signature:

/** Fill elements off..off+len-1 of bArray with value */
public static void native arrayFillNonAtomic(
byte[] bArray, short off, short len, byte value);

4 Another reason for introducing native, non-atomic methods for array operations is
efficiency, which in the context of this work is not relevant.

5 Actually, parts of this under-specification are deliberate to account for nondetermin-
istic behaviour of some JAVA CARD devices w.r.t. non-atomic methods [10]. Despite
this liberal approach there still exist JAVA CARD devices that do not implement
non-atomic methods in a correct way—they still go beyond the level of nondeter-
minism allowed by the official JAVA CARD specification [10]. In our formal model we
assume that cards are well behaved (deterministic). Although we present one fixed
approach in this paper, the underlying principles of our extension allow us to eas-
ily formalise other variants of the transaction model, including a nondeterministic
(random) behaviour allowed by the official specification.

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 9

a[0] = 0; a[0] = 0;

beginTransaction(); beginTransaction();

a[0] = 1; arrayFillNonAtomic(a,0,1,2);

arrayFillNonAtomic(a,0,1,2); a[0] = 1;

abortTransaction(); abortTransaction();

Fig. 1. Two transaction roll-back examples

Thus, the call to arrayFillNonAtomic in the two examples is equivalent to a[0]
= 2, with the difference that it bypasses the transaction mechanism. The main
difference in the two programs is the value of a[0] after the transaction abort.
In the program on the left, a[0] is rolled-back to 0, the value it was assigned
before the transaction was started. In the program on the right, a[0] is rolled
back to 2, the most recent value it was assigned before the first conditional
update happened. To put it in a simpler form, the value to be restored in case
of an abort is recorded just before the first conditional update happens, and
not when the transaction is started. This is not what the official JAVA CARD

documentation would make us believe, it would suggests that the value of a[0]
should be 0 in both cases. To properly handle the transaction mechanism, our
extended logic should distinguish the two situations described above.

5 Symbolic Execution of the Transaction Mechanism

Before we describe how non-atomic methods are handled in JAVA CARD DL, we
explain how the basic transaction mechanism is modelled [3]. The main idea is
to partly imitate what is actually happening in the JAVA CARD Virtual Machine
(or, what we imagine is happening); generally, when a transaction is in progress,
instead of modifying the original data (unconditional update), the updates are
performed on the backup copies of that data (conditional update).

When a call to beginTransaction is encountered during the symbolic exe-
cution, program analysis (i.e. the proof) is split into two branches. In the first
branch the program is analysed with the assumption that the transaction will
commit, in the second branch it is assumed that the transaction will be aborted.
Later, when an abortTransaction statement is encountered on the commit
branch, the branch is simply discarded—the symbolic execution is focused on
the abort branch. The same exact thing happens in the opposite situation, i.e.
when a commitTransaction is encountered on the abort branch. On the calculus
level, a rule for beginTransaction splits the proof into two branches, and each
branch (more precisely, the modality containing the program) is marked with
an appropriate tag (TRC: or TRA:) saying what kind of transaction finish is ex-
pected. Depending on the tag different rules for assignments are applied. Making
the distinction between the commit and abort case is very helpful in handling
the assignments inside the transaction. On the first branch, since we assume
that the transaction is going to commit, we do not have to worry about keeping
the backup copies of the modified data, we can commit all the changes as we

10 W. Mostowski

encounter them. Conversely, on the abort branch, we know that the assignments
eventually (upon encountering abortTransaction) will have to be rolled back,
so we can choose not to perform them in the first place.6 Here, however, we
encounter a complication: in JAVA CARD only the assignments to the persistent
data are rolled back, the assignments to transient data are always performed
unconditionally. Moreover, conditionally updated persistent values may be used
to update transient variables. Thus, we cannot simply ignore the assignments in-
side the transactions. Instead, we operate on backup (also called shadow) copies
of the persistent data, keeping the original persistent data unmodified, while the
updates to transient objects are always performed on the original data.

this.a = v1; this.a = v1;

this.ar[0] = v2; this.ar[0] = v2;

int i = 0; i = 0;

beginTransaction(); The symbolic execution splits into two branches, here we ignore
the ‘commit’ branch, which upon encountering abort will be
discarded. The fact that a transaction was started is recorded.

this.a++; First assignment to this.a inside transaction, create a new
backup copy of this.a:

this.a’ = this.a’ + 1; →
this.a’ = this.a + 1; → this.a’ = v1 + 1;

this.ar[0]++; if(this.ar.<transient>) // false
this.ar[0] = this.ar[0] + 1; else

this.ar[0]’ = this.ar[0]’ + 1; →
Here, this.ar[0]’ also not initialised, use this.ar[0] on the
RHS:

this.ar[0]’ = v2 + 1;

i = this.a +

this.ar[0];

i is local (transient), update unconditionally, on the RHS use
already initialised backup copies of this.a and this.ar[0]:

i = this.a’ + this.ar[0]’; → i = v1 + v2 + 2;

abortTransaction(); Transaction aborted, back to non-transaction mode.

Fig. 2. Symbolic execution of a JAVA CARD transaction

Let us illustrate this idea with an example in Fig. 2. On the left we give an
actual JAVA CARD program, on the right we explain how the symbolic execution
(i.e. how the program is interpreted in JAVA CARD DL) of the code on the left
proceeds. The prime symbol ’ in combination with the attribute (resp. array
element) access operator . denotes accessing backup copy of a given attribute
(resp. array element) instead of the original value. The arrow → represents sub-
sequent steps in the symbolic execution. If a backup value is required during
the evaluation but is not known (has not yet been assigned) the original value
is used. The <transient> field is assigned to every array object in the JAVA

6 The two branches correspond to resp. optimistic or pessimistic approach usually
taken in implementing a transaction mechanism.

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 11

CARD DL model and indicates whether a given array is transient or persistent.
Depending on this, the elements of such an array are updated conditionally or
unconditionally, following the specification of JAVA CARD transactions. Here we
assume that the fact that this.ar is persistent (this.ar.<transient> is false)
is already present in the program analysis. At the end of this symbolic execution
it can be established that i = v1 + v2 + 2, but the persistent data, this.a
and this.ar[0], is not affected, the values are equal to v1 and v2, respectively.
By performing the assignments on the backup copies, the effect of a transaction
roll-back is achieved in the JAVA CARD DL execution model. To sum up, inside a
transaction that is assumed to abort, assignments involving persistent data are
performed on copies of that data, so that the original values, used again after
the abort, remain unchanged. Such specific assignment handling is taken care
of specialised JAVA CARD DL calculus rules, which are applied on the (specially
tagged for this purpose) abort branch of the proof. The actual rules are described
in detail in [3]. In the next section we give a representative sample of these rules
updated to accommodate the behaviour of non-atomic methods.

6 Non-Atomic Methods in JAVA CARD DL

Assuming the transaction model just presented we now have to incorporate the
semantics of the non-atomic JAVA CARD methods. What arrayCopyNonAtomic or
arrayFillNonAtomic basically do is updating given array elements uncondition-
ally, despite the fact there might be a transaction in progress—the transaction is
suspended for the time of execution of a non-atomic method. Note, that we can-
not assume that the transaction is simply finalised when a non-atomic method is
executed, and then a new transaction is started—while the non-atomic method is
executed all the conditional assignments executed before the non-atomic method
was started are still in effect. When a non-atomic method is finished, the transac-
tion is continued with all the conditional assignments recorded previously. Thus,
we introduce the notion of transaction suspending and resuming to our JAVA

CARD DL model.
The symbolic execution model of transactions is affected in the following way.

In the commit branch non-atomic methods are not treated in any special way;
since we assume that the transaction will commit, it means that all the assign-
ments inside a transaction, including the ones performed by non-atomic methods,
will be committed. In the abort branch however, the assignments performed by
non-atomic methods should be committed (despite aborted transaction) and all
the other assignments should be committed or aborted following the regular JAVA

CARD transaction rules. Thus, for the time of execution of a non-atomic method
we have to inform the symbolic execution mechanism that the transaction is
suspended. The corresponding JAVA CARD DL rule is the following:

Γ ` U〈TRSUSP:π ω〉φ
Γ ` U〈TRA:π suspendTransaction;ω〉φ (R3)

The meaning of the rule is this: on the abort (TRA: tag) proof branch upon
encountering the suspend transaction statement (this statement is only present

12 W. Mostowski

in the logic, it is triggered by a call to non-atomic method) mark the branch
(modality) with a tag indicating that the transaction is suspended, so that cor-
responding “non-atomic” assignment rules can be applied. When a non-atomic
method is finished, transaction resume statement is triggered and normal trans-
action processing is again in effect:

Γ ` U〈TRA:π ω〉φ
Γ ` U〈TRSUSP:π resumeTransaction;ω〉φ (R4)

The idea of symbolic execution of a non-atomic method based on the notion of
transaction suspension is illustrated with an example in Fig. 3. As with the pre-
vious example, it can be established that after the execution of the program i =
v1 + v2 + 2 and this.a = v1 (here the update was rolled-back), but the value
of this.ar[0] is v2 + 1—it has been unconditionally updated inside a trans-
action through transaction suspension that took effect for the time of symbolic
execution of arrayFillNonAtomic.

this.a = v1; this.a = v1;

this.ar[0] = v2; this.ar[0] = v2;

int i = 0; i = 0;

beginTransaction(); Transaction started, transaction mode for assignments.

this.a++; this.a’ = this.a’ + 1; → this.a’ = this.a + 1; →
this.a’ = v1 + 1;

arrayFillNonAtomic(

this.ar, 0, 1,

this.ar[0]+1);

Transaction is suspended, the code executed by arrayFill-

NonAtomic is interpreted as follows. On the LHS update the
original (unconditional assignment), on the RHS use backup
copies where possible:

this.ar[0] = this.ar[0]’ + 1;

this.ar[0] = this.ar[0] + 1; → this.ar[0] = v2 + 1;

i = this.a +

this.ar[0];

Non-atomic call is finished, resume transaction mode. Here
this.ar[0]’ still not initialised, use this.ar[0]:

i = this.a’ + this.ar[0]’;

i = this.a’ + this.ar[0]; → i = v1 + v2 + 2;

abortTransaction(); Transaction aborted, back to non-transaction mode.

Fig. 3. Symbolic execution of a non-atomic method

6.1 Transaction Roll-Back

Finally we have to adapt our model to properly handle transaction roll-back. In
Sect. 4 we have already discussed how the values of persistent data are rolled
back based on recording values just before the first conditional assignment is
executed. Hence, our symbolic execution needs to take care of two more things:

– When an assignment to an array element is done inside a transaction, but not
inside a non-atomic method, then we need to record the fact that an array

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 13

element has been conditionally assigned. In our model, this information is
kept in a boolean array <trinit> associated with each array (similarly to
the <transient> attribute that indicates the persistency type of an array).
Unless explicitly initialised, a.<trinit>[x] always defaults to false (the
update simplification rules of the JAVA CARD DL take care of this).

– When transaction is suspended, before we make an assignment to an array
element, we first have to check whether it has been conditionally updated,
and depending on the result do a conditional or unconditional assignment.

The corresponding JAVA CARD DL rules are the following. First the rule for
the abort branch that records the fact that a given array element has been
conditionally assigned and does the actual assignment:

Γ, U(arr.<transient> = TRUE) ` U{arr[e] := expr′}〈TRA:π ω〉φ
Γ, U(arr.<transient> = FALSE) `

U{arr.<trinit>[e] := TRUE, arr[e]′ := expr′}〈TRA:π ω〉φ
Γ ` U〈TRA:π arr[e] = expr;ω〉φ

(R5)

For transient arrays, the assignment of the array element is always unconditional
(first premise), for persistent arrays (arr.<transient> = FALSE), record the in-
formation that the given array element has been initialised (arr.<trinit>[e] :=
TRUE) and perform a conditional assignment to that array element (arr[e]′ :=
expr′). As with the regular assignment rule (R2), expr has to be free of side
effects. The prime operator applied to expr makes sure that the backup copies
are used for all relevant subexpressions occurring in expr.

When a transaction is suspended, the rule that takes care of assigning a value
to an array element conditionally or unconditionally depending on whether the
array element has been already initialised takes the following form:

Γ, U(arr.<trinit>[e] = FALSE) ` U{arr[e] := expr′}〈TRSUSP:π ω〉φ
Γ, U(arr.<trinit>[e] = TRUE) ` U{arr[e]′ := expr′}〈TRSUSP:π ω〉φ

Γ ` U〈TRSUSP:π arr[e] = expr;ω〉φ
(R6)

The interpretation of the rule is this: inside a suspended transaction, if an array
element has not yet been conditionally assigned (arr.<trinit>[e] = FALSE),
update it unconditionally (arr[e] := expr′), if it has been already condition-
ally assigned (arr.<trinit>[e] = TRUE), keep the assignments conditional
(arr[e]′ := expr′).

These two rules follow the informal description of transactions and non-
atomic methods given in Sect. 4. To clarify this, Fig. 4 explains the symbolic ex-
ecution of the two programs in Fig. 1. Finally, we should note that only the rules
for transaction triggering statements and assignments inside a transaction are
specific in the context of non-atomic methods, the rules for other programming
constructs (e.g. the if statement) are the same as in the basic JAVA CARD DL
calculus.

14 W. Mostowski

a[0] = 0; a[0] = 0;

Transaction started, conditional updates. Transaction started, conditional updates.

a[0]’ = 1;

a.<trinit>[0] = true;

Transaction suspended, the execution of
arrayFillNonAtomic unfolds to:

if(a.<trinit>[0]) // false
a[0]’=2; else a[0]=2; → a[0]=2;

Transaction resumed.

Transaction suspended, the execution of
arrayFillNonAtomic unfolds to:
if(a.<trinit>[0]) // true
a[0]’=2; else a[0]=2; → a[0]’=2;

Transaction resumed.

a[0]’ = 1;

a.<trinit>[0] = true;

Transaction aborted, a[0] is 0. Transaction aborted, a[0] is 2.

Fig. 4. Symbolic execution for the transaction roll-back

7 Examples

All the rules for the extended JAVA CARD DL to handle non-atomic methods
have been implemented in the KeY prover. For the test, we verified the reference
implementation of the check method from the OwnerPIN API class. The property
under consideration is the one we mentioned in the introduction: the check
method should always decrement the try counter (given of course the PIN is not
correct and the try counter is not already 0) regardless of any transaction (one
about to commit or abort) that might be in progress or any exception that may
occur. The JAVA CARD DL formula specifying this is presented in Fig. 5. Since the
value of the variable b in the program inside the modality is not specified, both
possibilities (the transaction will commit or abort) have to be checked, thus we
establish the desired property. This formula is proved automatically by the KeY
prover in a matter of seconds on a regular Linux desktop computer. Of course,
the smaller examples that we have discussed in the paper are also verifiable with
the KeY prover. Recall the two programs from Fig. 1. The corresponding JAVA

CARD DL formulae (abbreviated) describing their behaviour are presented in
Fig. 6—both are quickly discharged by the KeY prover.

8 Summary

We have presented an extension to JAVA CARD Dynamic Logic to handle JAVA

CARD non-atomic methods—methods that allow the programmer to exclude up-
dates to persistent data from the transaction mechanism. Although there are
only two such methods in the JAVA CARD API, they are of critical importance
when certain security issues for smart card applications are considered, as we
argued based on the PIN try counter example. Although many people have
focused on program verification for JAVA CARD as interesting, small but real,
language [12,9,13,14,4,17], JAVA CARD DL with the extension we have presented

Formal Reasoning about Non-Atomic JAVA CARD Methods in Dynamic Logic 15

JCSystem.transactionDepth = 0 ∧ ¬(pin = null) ∧ ¬(pin. triesLeft = null) ∧
. . . rest of the OwnerPIN basic class specification (class invariant)
triesLeft@pre = pin. triesLeft[0] ∧ result = −1 →
〈try {

JCSystem.beginTransaction();

if(pin.check(pin,offset,length)) result = 1; else result = 0;

if(b) JCSystem.abortTransaction();

else JCSystem.commitTransaction();

}catch(Exception ex) {} 〉(
(triesLeft@pre = 0 → result = 0 ∧ pin. triesLeft[0] = 0) ∧
(triesLeft@pre > 0 → (result = 0 →

pin. triesLeft[0] = triesLeft@pre− 1)))

Fig. 5. JAVA CARD DL specification of the check method

¬(a = null) ∧ a.<transient> = FALSE →
〈a[0] = 0;

beginTransaction();

a[0] = 1;

arrayFillNonAtomic(a,0,1,2);

abortTransaction();〉(a[0] = 0)

¬(a = null) ∧ a.<transient> = FALSE →
〈a[0] = 0;

beginTransaction();

arrayFillNonAtomic(a,0,1,2);

a[0] = 1;

abortTransaction();〉(a[0] = 2)

Fig. 6. JAVA CARD DL specifications for the two transaction roll-back examples

here is the first complete program logic for all of JAVA CARD. Due to space re-
strictions we only discussed a small, but representative sample of the actual JAVA

CARD DL calculus rules, however the whole set of rules to deal with non-atomic
methods will soon be available in [16]. All the rules have been implemented
in the KeY prover and we showed examples of programs that can be verified
(automatically) using the extended logic.

Acknowledgements This research is supported by the research program Sen-
tinels (http://www.sentinels.nl). Sentinels is financed by the Technology
Foundation STW, the Netherlands, Organisation for Scientific Research (NWO),
and the Dutch Ministry of Economic Affairs. We would also like to thank anony-
mous reviewers and Erik Poll for their helpful comments.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and Systems Modeling, 4(1):32–54, February 2005.

2. B. Beckert. A dynamic logic for the formal verification of JAVA CARD programs. In
I. Attali and T. Jensen, editors, JAVA on Smart Cards: Programming and Security.
Revised Papers, JAVA CARD 2000, International Workshop, Cannes, France, volume
2041 of LNCS, pages 6–24. Springer, 2001.

16 W. Mostowski

3. B. Beckert and W. Mostowski. A program logic for handling JAVA CARD’s trans-
action mechanism. In M. Pezzè, editor, Proceedings, Fundamental Approaches to
Software Engineering (FASE) Conference 2003, Warsaw, Poland, volume 2621 of
LNCS, pages 246–260. Springer, April 2003.

4. L. Burdy, A. Requet, and J.-L. Lanet. JAVA applet correctness: A developer-
oriented approach. In Proceedings, Formal Methods Europe 2003, volume 2805
of LNCS, pages 422–439. Springer, 2003.

5. Z. Chen. JAVA CARD Technology for Smart Cards: Architecture and Programmer’s
Guide. JAVA Series. Addison-Wesley, June 2000.

6. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for JAVA. In Proceedings, ACM SIGPLAN 2002 Confer-
ence on Programming Language Design and Implementation, Berlin, pages 234–
245. ACM Press, 2002.

7. R. Hähnle and W. Mostowski. Verification of safety properties in the presence of
transactions. In G. Barthe and M. Huisman, editors, Proceedings, Construction and
Analysis of Safe, Secure and Interoperable Smart devices (CASSIS’04) Workshop,
volume 3362 of LNCS, pages 151–171. Springer, 2005.

8. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
9. E. Hubbers and E. Poll. Reasoning about card tears and transactions in JAVA CARD.

In Fundamental Approaches to Software Engineering (FASE’2004), Barcelona,
Spain, volume 2984 of LNCS, pages 114–128. Springer, 2004.

10. E. Hubbers and E. Poll. Transactions and non-atomic API calls in JAVA CARD:
Specification ambiguity and strange implementation behaviours. Deptartment of
Computer Science NIII-R0438, Radboud University Nijmegen, 2004.

11. M. Huisman and B. Jacobs. JAVA program verification via a Hoare logic with abrupt
termination. In Proceedings, Fundamental Approaches to Software Engineering
(FASE 2000), volume 1783 of LNCS, pages 284–303. Springer, 2000.

12. B. Jacobs and E. Poll. JAVA program verification at Nijmegen: Developments and
perspective. In Software Security – Theories and Systems: Second Mext-NSF-JSPS
International Symposium, ISSS 2003, Tokyo, Japan, November 4–6, 2003. Revised
Papers, volume 3233 of LNCS, pages 134–153. Springer, 2003.

13. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certi-
fication of JAVA/JAVA CARD programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1–2):89–106, 2004.

14. J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems: 6th International Conference, TACAS 2000, Berlin,
Germany, volume 1785 of LNCS, pages 63–77. Springer, April 2000.

15. W. Mostowski. Formalisation and verification of JAVA CARD security properties
in Dynamic Logic. In M. Cerioli, editor, Proceedings, Fundamental Approaches to
Software Engineering (FASE) Conference 2005, Edinburgh, Scotland, volume 3442
of LNCS, pages 357–371. Springer, April 2005.

16. W. Mostowski. The KeY Book, chapter 9. From Sequential JAVA to JAVA CARD.
Springer, 2006. To appear.

17. K. Stenzel. A formally verified calculus for full JAVA CARD. In C. Rattray, S. Ma-
haraj, and C. Shankland, editors, Proceedings, Algebraic Methodology and Software
Technology 2004, Stirling, Scotland, volume 3116 of LNCS. Springer, July 2004.

18. Sun Microsystems, Inc., Santa Clara, California, USA. JAVA CARD 2.2.1 Runtime
Environment Specification, Oct. 2003.

19. D. von Oheimb. Analyzing JAVA in Isabelle/HOL. PhD thesis, Institut für Infor-
matik, Technische Universität München, January 2001.

